Recent Progress in Green Cement Technology Utilizing Low-Carbon Emission Fuels and Raw Materials: A Review
Abstract
:1. Introduction
2. Current Status of Portland Cements
2.1. Manufacturing Process
calcium | silica | calcium | carbon |
carbonate | silicate | dioxide | |
(clinker) |
2.2. Global Production and Environmental Impacts
- (1)
- Calcination process that is responsible for around 50% of the total emissions;
- (2)
- Fuel combustion used to heat raw materials.
3. Resource Efficient Cements
3.1. Alternative Fuel
3.2. Supplementary Cementitious Materials (SCMs)
4. Alternative Binders
4.1. Alkali-Activated Cements
- (1)
- Alkali-activated slag-based cements
- (2)
- Alkali-activated pozzolan cements
- (3)
- Alkali-activated lime-pozzolan/slag cements
- (4)
- Alkali-activated calcium aluminate blended cements
- (5)
- Alkali-activated Portland blended cements
4.2. Belite-Rich Portland Cement
4.3. Calcium Sulfoaluminate (CSA) Cement
4.4. Belite–Calcium Sulfoaluminate Ferrite (BCSAF) or Belite–Ye’elimite–Ferrite (BYF) Cement
4.5. Magnesium-Based Cements
4.6. Calcium Hydrosilicate-Based Cements (Celitement)
4.7. Carbonatable Calcium Silicate Cement
4.8. Life Cycle Assessment
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Imbabi, M.S.; Carrigan, C.; McKenna, S. Trends and developments in green cement and concrete technology. Int. J. Sustain. Built Environ. 2012, 1, 194–216. [Google Scholar] [CrossRef] [Green Version]
- Phair, J.W. Green chemistry for sustainable cement production and use. Green Chem. 2006, 8, 763–780. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Mineral Commodity Summaries 2018; U.S. Geological Survey: Reston, VA, USA, 2018.
- Smith, R.A.; Kersey, J.R.; Griffiths, P.J. The Construction Industry Mass Balance: Resource use, wastes and emissions. Construction 2002, 4, 680. [Google Scholar]
- World Business Council for Sustainable Development. Toward a Sustainable Cement Industry. March 2002. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?rep=rep1&type=pdf&doi=10.1.1.123.3145 (accessed on 24 October 2018).
- Mehta, P.K.; Monteiro, P.J.M. Concrete Microstructure, Properties, and Materials, 3rd ed.; McGraw-Hill: New York, NY, USA, 2006; ISBN 0071589198. [Google Scholar]
- Hasanbeigi, A.; Price, L.; Lu, H.; Lan, W. Analysis of energy-efficiency opportunities for the cement industry in Shandong Province, China: A case study of 16 cement plants. Energy 2010, 35, 3461–3473. [Google Scholar] [CrossRef]
- Turner, L.K.; Collins, F.G. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 2013, 43, 125–130. [Google Scholar] [CrossRef]
- Valipour, M.; Yekkalar, M.; Shekarchi, M.; Panahi, S. Environmental assessment of green concrete containing natural zeolite on the global warming index in marine environments. J. Clean. Prod. 2014, 65, 418–423. [Google Scholar] [CrossRef]
- Rashad, A.M.; Zeedan, S.R. The effect of activator concentration on the residual strength of alkali-activated fly ash pastes subjected to thermal load. Constr. Build. Mater. 2011, 25, 3098–3107. [Google Scholar] [CrossRef]
- Rashad, A.M. An exploratory study on high-volume fly ash concrete incorporating silica fume subjected to thermal loads. J. Clean. Prod. 2015, 87, 735–744. [Google Scholar] [CrossRef]
- Rashad, A.M.; Bai, Y.; Basheer, P.A.M.; Milestone, N.B.; Collier, N.C. Hydration and properties of sodium sulfate activated slag. Cem. Concr. Compos. 2013, 37, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Lund, P. Impacts of EU carbon emission trade directive on energy-intensive industries—Indicative micro-economic analyses. Ecol. Econ. 2007, 63, 799–806. [Google Scholar] [CrossRef]
- World Business Council for Sustainable Development. The Cement Sustainability Initiative, Cement Industry Energy and CO2 Performance: “Getting the Numbers Right”; WBCSD: Geneva, Switzerland, 2009; Volume 44, ISBN 978-3-940388-48-3. [Google Scholar]
- Kartini, K.; Hamidah, M.S.; Norhana, A.R.; Nur Hanani, A.R. Quarry dust fine powder as substitute for ordinary portland cement in concrete mix. J. Eng. Sci. Technol. 2014, 9, 191–205. [Google Scholar]
- Yang, K.H.; Jung, Y.B.; Cho, M.S.; Tae, S.H. Effect of Supplementary Cementitious Materials on Reduction of CO2Emissions From Concrete. Handb. Low Carbon Concr. 2016, 103, 89–110. [Google Scholar] [CrossRef]
- Crossin, E. The greenhouse gas implications of using ground granulated blast furnace slag as a cement substitute. J. Clean. Prod. 2015, 95, 101–108. [Google Scholar] [CrossRef]
- European Commission DG A New Approach to Evaluating the Sustainability of Substituting Raw Materials: Science for Environmental Policy; The University of the West of England: Bristol, UK, 2018.
- Li, C.; Sun, H.; Li, L. A review: The comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cem. Concr. Res. 2010, 40, 1341–1349. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Castro-Gomes, J.; Jalali, S. Alkali-activated binders: A review. Part 1. Historical background, terminology, reaction mechanisms and hydration products. Constr. Build. Mater. 2008, 22, 1305–1314. [Google Scholar] [CrossRef]
- Ojan, M.; Montenegro, P.; Borsa, M.; Altert, C.; Fielding, R. Development of New Types of Low Carbon Cement. 2016. Available online: https://www.wbcsd.org/Sector-Projects/Cement-Sustainability-Initiative/News/CSI-climate-and-energy-workshop (accessed on 24 October 2018).
- Scrivener, K.L. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2016. [Google Scholar] [CrossRef]
- Bontempi, E. A new approach for evaluating the sustainability of raw materials substitution based on embodied energy and the CO2 footprint. J. Clean. Prod. 2017, 162, 162–169. [Google Scholar] [CrossRef]
- Bontempi, E. A New Approach to Evaluate the Sustainability of Raw Materials Substitution. In Raw Materials Substitution Sustainability; Springer: Cham, Switzerland, 2017; ISBN 978-3-319-60830-3. [Google Scholar]
- Bosoaga, A.; Masek, O.; Oakey, J.E. CO2 Capture Technologies for Cement Industry. Energy Procedia 2009. [Google Scholar] [CrossRef]
- Gartner, E.M.; MacPhee, D.E. A physico-chemical basis for novel cementitious binders. Cem. Concr. Res. 2011, 41, 736–749. [Google Scholar] [CrossRef]
- Damtoft, J.S.; Herfort, D.; Yde, E. Concrete Binders, Mineral Additions and Chemical Admixtures: State of the Art and Challenges for the 21st Century; University of Dundee: Scotland, UK, 2006. [Google Scholar]
- Mindess, S.; Young, J.F.; Darwin, D. Concrete; Prentice Hall, Pearson Education, Inc.: Upper Saddle River, NJ, USA, 2003; p. 644. ISBN 9780130646323. [Google Scholar]
- Valderrama, C.; Granados, R.; Cortina, J.L.; Gasol, C.M.; Guillem, M.; Josa, A. Implementation of best available techniques in cement manufacturing: A life-cycle assessment study. J. Clean. Prod. 2012, 25, 60–67. [Google Scholar] [CrossRef]
- Josa, A.; Aguado, A.; Cardim, A.; Byars, E. Comparative analysis of the life cycle impact assessment of available cement inventories in the EU. Cem. Concr. Res. 2007, 37, 781–788. [Google Scholar] [CrossRef] [Green Version]
- Von Bahr, B.; Hanssen, O.J.; Vold, M.; Pott, G.; Stoltenberg-Hansson, E.; Steen, B. Experiences of environmental performance evaluation in the cement industry. Data quality of environmental performance indicators as a limiting factor for benchmarking and rating. J. Clean. Prod. 2003, 11, 713–725. [Google Scholar] [CrossRef]
- Boesch, M.E.; Hellweg, S. Identifying improvement potentials in cement production with life cycle assessment. Environ. Sci. Technol. 2010, 44, 9143–9149. [Google Scholar] [CrossRef] [PubMed]
- Humpher, K. Toward a Sustainable Cement Industry. Sub-Study 8: Climate Change; WBCSD: Geneva, Switzerland, 2002. [Google Scholar]
- Hendriks, C.A.; Worrell, E.; de Jager, D.; Block, K.; Riemer, P. Emission Reduction of Greenhouse Gases from the Cement Industry. In Proceedings of the IEA Greenhouse Gas Control Technologies Conference, Vancouver, BC, Canada, 5–9 September 2004. [Google Scholar]
- Josa, A.; Aguado, A.; Heino, A.; Byars, E.; Cardim, A. Comparative analysis of available life cycle inventories of cement in the {EU}. Cem. Concr. Res. 2004, 34, 1313–1320. [Google Scholar] [CrossRef]
- Flower, D.J.M.; Sanjayan, J.G. Greenhouse Gas Emissions Due to Concrete Manufacture. Handb. Low Carbon Concr. 2016, 12, 1–16. [Google Scholar] [CrossRef]
- Chen, C.; Habert, G.; Bouzidi, Y.; Jullien, A. Environmental impact of cement production: Detail of the different processes and cement plant variability evaluation. J. Clean. Prod. 2010, 18, 478–485. [Google Scholar] [CrossRef]
- ATILH. Environmental Inventory of French Cement Production; ATILH: Paris, France, 2002. [Google Scholar]
- Van Oss, H.G.; Padovani, A.C. Cement manufacture and the environment, Part II: Environmental challenges and opportunities. J. Ind. Ecol. 2003, 7, 93–126. [Google Scholar] [CrossRef]
- Gartner, E. Industrially interesting approaches to “low-CO2” cements. Cem. Concr. Res. 2004, 34, 1489–1498. [Google Scholar] [CrossRef]
- Huntzinger, D.N.; Eatmon, T.D. A life-cycle assessment of Portland cement manufacturing: Comparing the traditional process with alternative technologies. J. Clean. Prod. 2009, 17, 668–675. [Google Scholar] [CrossRef]
- Febelcem, v.z.w. Environmental Report of the Belgian Cement Industry; Febelcem, v.z.w.: Brussels, Belgium, 2006. [Google Scholar]
- Damtoft, J.S.; Lukasik, J.; Herfort, D.; Sorrentino, D.; Gartner, E.M. Sustainable development and climate change initiatives Original Research Article. Cem. Concr. Res. 2008, 38, 115–127. [Google Scholar] [CrossRef]
- Habert, G.; Billard, C.; Rossi, P.; Chen, C.; Roussel, N. Cement production technology improvement compared to factor 4 objectives. Cem. Concr. Res. 2010, 40, 820–826. [Google Scholar] [CrossRef]
- Habert, G. Assessing the environmental impact of conventional and ‘green’cement production. Eco-Effic. Constr. Build. Mater. 2014, 199–238. [Google Scholar] [CrossRef]
- Schneider, M.; Romer, M.; Tschudin, M.; Bolio, H. Sustainable cement production-present and future. Cem. Concr. Res. 2011, 41, 642–650. [Google Scholar] [CrossRef]
- MPA Cement Fact Sheet. Novel Cements: Low Energy, Low Carbon Cements. 1–9. Available online: https://cement.mineralproducts.org/documents/FS_12_Novel_cements_low_energy_low_carbon_cements.pdf (accessed on 6 Novemebr 2018).
- World Business Council for Sustainable Development. Cement Technology Roadmap 2009, Carbon Emissions Reductions up to 2050. Available online: https://www.iea.org/publications/freepublications/publication/Cement.pdf (accessed on 6 November 2018).
- Della, E.S.; Grutzeck, M.W. Giga-scale disposal: A real frontier for ceramic research. Mater. Res. Innov. 1999, 3, 55–56. [Google Scholar]
- Rovira, J.; Mari, M.; Nadal, M.; Schuhmacher, M.; Domingo, J.L. Science of the Total Environment Partial replacement of fossil fuel in a cement plant: Risk assessment for the population living in the neighborhood. Sci. Total Environ. 2010, 408, 5372–5380. [Google Scholar] [CrossRef]
- Papadakis, V.G.; Fardis, M.N.; Vayenas, C.G. Hydration and carbonation of pozzolanic cements. Mater. J. 1992, 89, 109–130. [Google Scholar]
- Habert, G.; Choupay, N.; Montel, J.M.; Guillaume, D.; Escadeillas, G. Effects of the secondary minerals of the natural pozzolans on their pozzolanic activity. Cem. Concr. Res. 2008, 38, 963–975. [Google Scholar] [CrossRef]
- Tironi, A.; Trezza, M.A.; Scian, A.N.; Irassar, E.F. Assessment of pozzolanic activity of different calcined clays. Cem. Concr. Compos. 2013, 37, 319–327. [Google Scholar] [CrossRef]
- Taylor-Lange, S.C.; Lamon, E.L.; Riding, K.A.; Juenger, M.C.G. Calcined kaolinite-bentonite clay blends as supplementary cementitious materials. Appl. Clay Sci. 2015, 108, 84–93. [Google Scholar] [CrossRef]
- Fernandez, R.; Martirena, F.; Scrivener, K.L. The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cem. Concr. Res. 2011, 41, 113–122. [Google Scholar] [CrossRef]
- Garg, N.; Skibsted, J. Thermal activation of a pure montmorillonite clay and its reactivity in cementitious systems. J. Phys. Chem. C 2014, 118, 11464–11477. [Google Scholar] [CrossRef]
- He, C.; Makovicky, E.; Osbæck, B. Thermal stability and pozzolanic activity of raw and calcined mixed-layer mica/smectite. Appl. Clay Sci. 2000, 17, 141–161. [Google Scholar] [CrossRef]
- Kakali, G.; Perraki, T.; Tsivilis, S.; Badogiannis, E. Thermal treatment of kaolin: The effect of mineralogy on the pozzolanic activity. Appl. Clay Sci. 2001, 20, 73–80. [Google Scholar] [CrossRef]
- Habert, G.; Choupay, N.; Escadeillas, G.; Guillaume, D.; Montel, J.M. Clay content of argillites: Influence on cement based mortars. Appl. Clay Sci. 2009, 43, 322–330. [Google Scholar] [CrossRef]
- Donatello, S.; Tyrer, M.; Cheeseman, C.R. Comparison of test methods to assess pozzolanic activity. Cem. Concr. Compos. 2010, 32, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-efficient cements: Potential economically viable solutions for a low-CO2cement-based materials industry. Cem. Concr. Res. 2018. [Google Scholar] [CrossRef]
- Khatib, J.M. Sustainability of Construction Materials; Woodhead Publishing Limited: Cambridge, UK, 2009. [Google Scholar]
- Sánchez Berriel, S.; Favier, A.; Rosa Domínguez, E.; Sánchez MacHado, I.R.; Heierli, U.; Scrivener, K.; Martirena Hernández, F.; Habert, G. Assessing the environmental and economic potential of Limestone Calcined Clay Cement in Cuba. J. Clean. Prod. 2016, 124, 361–369. [Google Scholar] [CrossRef]
- Scrivener, K.; Martirena, F.; Bishnoi, S.; Maity, S. Calcined clay limestone cements (LC3). Cem. Concr. Res. 2017, 114, 49–56. [Google Scholar] [CrossRef]
- Scrivener, K.L. 202 Special Issue—Options for the future of cement. Indian Concr. J. 2014, 88, 11–21. [Google Scholar] [CrossRef]
- Scrivener, K.L.; Avet, F.; Maraghechi, H.; Zunino, F.; Ston, J.; Favier, A.; Hanpongpun, W. Impacting factors and properties of Limestone Calcined Clay Cements (LC3). In Green Materials; ICE Publishing: London, UK, 2018. [Google Scholar]
- Antoni, M.; Rossen, J.; Martirena, F.; Scrivener, K. Cement substitution by a combination of metakaolin and limestone. Cem. Concr. Res. 2012, 42, 1579–1589. [Google Scholar] [CrossRef]
- Shi, C.; Jiménez, A.F.; Palomo, A. New cements for the 21st century: The pursuit of an alternative to Portland cement. Cem. Concr. Res. 2011, 41, 750–763. [Google Scholar] [CrossRef]
- Shi, C.; Krivenko, P.V.; Roy, D. Alkali-Activated Cements and Concrete; Taylor & Francis: New York, NY, USA, 2006; ISBN 978-0-415-70004-7. [Google Scholar]
- Provis, J.L. Geopolymers and other alkali activated materials: Why, how, and what? Mater. Struct. Constr. 2014, 47, 11–25. [Google Scholar] [CrossRef]
- Khale, D.; Chaudhary, R. Mechanism of geopolymerization and factors influencing its development: A review. J. Mater. Sci. 2007, 42, 729–746. [Google Scholar] [CrossRef]
- De Silva, P.; Sagoe-Crenstil, K.; Sirivivatnanon, V. Kinetics of geopolymerization: Role of Al2O3 and SiO2. Cem. Concr. Res. 2007, 37, 512–518. [Google Scholar] [CrossRef]
- Somna, K.; Jaturapitakkul, C.; Kajitvichyanukul, P.; Chindaprasirt, P. NaOH-activated ground fly ash geopolymer cured at ambient temperature. Fuel 2011, 90, 2118–2124. [Google Scholar] [CrossRef]
- Kovalchuk, G.; Fernández-Jiménez, A.; Palomo, A. Alkali-activated fly ash: Effect of thermal curing conditions on mechanical and microstructural development—Part II. Fuel 2007, 86, 315–322. [Google Scholar] [CrossRef]
- Rovnaník, P. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr. Build. Mater. 2010, 24, 1176–1183. [Google Scholar] [CrossRef]
- Jang, J.G.; Ahn, Y.B.; Souri, H.; Lee, H.K. A novel eco-friendly porous concrete fabricated with coal ash and geopolymeric binder: Heavy metal leaching characteristics and compressive strength. Constr. Build. Mater. 2015, 79, 173–181. [Google Scholar] [CrossRef]
- Barbosa, V.F.F.; MacKenzie, K.J.D. Thermal behaviour of inorganic geopolymers and composites derived from sodium polysialate. Mater. Res. Bull. 2003, 38, 319–331. [Google Scholar] [CrossRef]
- Weil, M.; Dombrowski, K.; Buchwald, A. Life-cycle analysis of geopolymers. In Geopolymers; Woodhead Publishing Limited: Cambridge, UK, 2009; pp. 194–210. [Google Scholar]
- Habert, G.; Espinose, J.B.; Lacaillerie, D.; Roussel, N. An environmental evaluation of geopolymer based concrete production: Reviewing current research trends. J. Clean. Prod. 2011, 19, 1229–1238. [Google Scholar] [CrossRef]
- Jang, J.G.; Lee, N.K.; Lee, H.K. Fresh and hardened properties of alkali-activated fly ash/slag pastes with superplasticizers. Constr. Build. Mater. 2014, 50, 169–176. [Google Scholar] [CrossRef]
- Park, S.M.; Jang, J.G.; Lee, H.K. Unlocking the role of MgO in the carbonation of alkali-activated slag cement. Inorg. Chem. Front. 2018, 5, 1661–1670. [Google Scholar] [CrossRef]
- Xie, Z.; Xiang, W.; Xi, Y. ASR Potentials of Glass Aggregates in Water-Glass Activated Fly Ash and Portland Cement Mortars. J. Mater. Civ. Eng. 2003, 15. [Google Scholar] [CrossRef]
- Ferna, A. The alkali–Silica reaction in alkali-activated granulated slag mortars with reactive aggregate. Cem. Concr. Res. 2002, 32, 1019–1024. [Google Scholar]
- Gartner, E.; Sui, T. Alternative cement clinkers. Cem. Concr. Res. 2018, 114, 27–39. [Google Scholar] [CrossRef]
- Sui, T.; Li, J.; Peng, X.; Li, W.; Wen, Z.; Wang, J.; Fan, L. A Comparison of HBC & MHC Massive Concretes for Three Gorges Project in China. In Measuring, Monitoring and Modeling Concrete Properties; Springer: Dordrecht, The Netherlands, 2006; pp. 341–342. [Google Scholar]
- Sui, T.; Fan, L.; Wen, Z.; Wang, J. Properties of Belite-Rich Portland Cement and Concrete in China. J. Civ. Eng. Arch. 2015, 9, 384–392. [Google Scholar] [CrossRef]
- Sui, T.; Liu, K. Study on the properties of High-Belite cement. J. Chin. Ceram. Soc. 1999, 488–492. [Google Scholar]
- Jang, J.G.; Lee, H.K. Microstructural densification and CO2 uptake promoted by the carbonation curing of belite-rich Portland cement. Cem. Concr. Res. 2016, 82, 50–57. [Google Scholar] [CrossRef]
- Taylor, H.F.W. Cement Chemistry; Academic Press: London, UK, 1990. [Google Scholar]
- Chatterjee, A.K. Structure and Performance Cements. In Special Cements; Bensted, J., Barnes, P., Eds.; E & FN Spon: London, UK, 2002; pp. 226–231. [Google Scholar]
- Glasser, F.P.; Zhang, L. High-performance cement matrices based on calcium sulfoaluminate—Belite compositions. Cem. Concr. Res. 2001, 31, 1881–1886. [Google Scholar] [CrossRef]
- Lan, W.; Glasser, F.P. Hydration of calcium sulphoaluminate cements. Adv. Cem. Res. 1996, 8, 127–134. [Google Scholar] [CrossRef]
- Older, I. Cements containing calcium sulfoaluminate. In Special Inorganic Cements; Bentur, A., Mindess, S., Eds.; E & FN Spon: London, UK, 2000; pp. 69–87. [Google Scholar]
- Mehta, P.K. Mechanism of expansion associated with ettringite formation. Cem. Concr. Res. 1973. [Google Scholar] [CrossRef]
- Su, M.; Kurdowski, W. Development in non- Portland cements. In Proceedings of the 9th International Congress on the Chemistry of Cement, New Dehli, India, 1992; pp. 317–354. Available online: https://catalog.hathitrust.org/Record/009223995 (accessed on 18 Janaury 2019).
- Beretka, J.; Sherman, N.; Marrocooli, M.; Pompo, A. Effect of composition on the hydration properties of rapid-hardening silfoaluminate cements. In Proceedings of the 10th International Congress on the Chemistry of Cement, Gothenburg, Sweden, 2–6 June 1997. [Google Scholar]
- Factsheet, M.P. Mineral Planning Factsheet. 2014. Available online: https://www.bgs.ac.uk/downloads/start.cfm?id=1353 (accessed on 14 November 2018).
- Ambroise, J. Immobilization of calcium sulfate contained in demolition waste. J. Hazard. Mater. 2008, 151, 840–846. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Muzhen, S.; Yanmou, W. Development and use of sulfo and ferro aluminate cements in China. Adv. Cem. Res. 1999, 11, 15–21. [Google Scholar] [CrossRef]
- Diao, J. Actuality and perspective of Chinese CSA development (in Chinese). J. Chin. Concr. Cem. Assoc. 2008. [Google Scholar]
- Gartner, E. What are BYF cements, and how do they differ from CSA cements? In Proceedings of the Future of Cement, 200 Years after Louis Vicat, UNESCO, Paris, France, 6–8 June 2017. [Google Scholar]
- Barcelo, L.; Kline, J.; Walenta, G.; Gartner, E. Cement and carbon emissions. Mater. Sci. 2014, 47, 1055–1065. [Google Scholar] [CrossRef]
- Majling, J.; Roy, D.M. The potential of fly ash for cement manufacture. Am. Ceram. Soc. Bull. 1993, 72, 45–50. [Google Scholar]
- Arjunan, P.; Silsbee, M.R.; Roy, D.M. Sulfoaluminate-belite cement from low-calcium fly ash and sulfur-rich and other industrial by-products. Cem. Concr. Res. 1999, 29, 1305–1311. [Google Scholar] [CrossRef]
- Sorel, S.; Hebd, C.R. Sorel cement. CR Hebd. Seances Acad. Sci. 1867, 65, 102. [Google Scholar]
- Maravelaki-kalaitzaki, P.; Moraitou, G. Sorel’s cement mortars Decay susceptibility and effect on Pentelic marble. Cem. Concr. Res. 2000, 29, 1929–1935. [Google Scholar] [CrossRef]
- Harrison, A.J.W. New cement based on the addition of reactive magnesia to Portland cement with or without added pozzolana. In Proceedings of the CIA Conference: Concrete in the Third Millennium, Brisbane, Australia, 17–19 July 2003; Available online: http://www.tececo.com/document.conference_presentations.php (accessed on 29 November 2018).
- USGS. United States Geological Survey. 2012. Available online: https://minerals.usgs.gov/minerals (accessed on 29 November 2018).
- Daspoddar, K.; Chowdhry, B.N.; Basu, R. Effect of Calcination Temperature of Magnesium carbonate on the Propertiesof Magnesium Oxysulphate Cement. J. Indian Chem. Soc. 1992, 550–551. [Google Scholar]
- Lackner, K.S. Erratum: A guide to CO2 sequestration. Science 2003, 300, 1677–1678. Available online: http://science.sciencemag.org/content/300/5626/1677.long (accessed on 29 November 2018). [CrossRef] [PubMed]
- Liska, M.; Vandeperre, L.J. Influence of carbonation on the properties of reactive magnesia cement-based pressed masonry units. Adv. Cem. Res. 2008, 20, 53–64. [Google Scholar] [CrossRef]
- TecEco Pty Ltd. TecEco Cements; TecEco Pty Ltd.: Glenorchy, Australia, 2013. [Google Scholar]
- Gartner, E.; Hirao, H. Cement and Concrete Research A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete. Cem. Concr. Res. 2015, 78, 126–142. [Google Scholar] [CrossRef]
- Stemmermann, P.; Beuchle, G.; Garbev, K.; Schweike, U.C. A new sustainable hydraulic binder based on calcium hydrosilicates. In Proceedings of the 13th international Congress on the Chemistry of Cement, Madrid Spain, 13 June 2011. [Google Scholar]
- Stemmermann, P.; Schweike, U.; Garbev, K.; Beuchle, G. Celitement—A sustainable prospect for the cement industry. Cem. Int. 2010, 8, 52–66. [Google Scholar]
- Atakan, V.; Sahu, S.; Quinn, S.; Xudongh, H. Why CO2 Matters-Advances in a New Class of Cement; Solidia Technologies: Piscataway, NJ, USA, 2014; Available online: http://solidiatech.com/wp-content/uploads/2014/03/ZKG_Sonderdruck_Solidia_Technologie_print.pdf (accessed on 3 December 2018).
- Rebitzer, G.; Ekvall, T.; Frischknecht, R.; Hunkeler, D.; Norris, G.; Rydberg, T.; Schmidt, W.P.; Suh, S.; Weidema, B.P.; Pennington, D.W. Life cycle assessment Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environ. Int. 2004, 30, 701–720. [Google Scholar] [CrossRef] [PubMed]
- Pennington, D.W.; Potting, J.; Finnveden, G.; Lindeijer, E.; Jolliet, O.; Rydberg, T.; Rebitzer, G. Life cycle assessment Part 2: Current impact assessment practice. Environ. Int. 2004, 30, 721–739. [Google Scholar] [CrossRef] [PubMed]
- ISO, 14040: Environmental Management-Life Cycle Assessment-Principles and Framwork; ISO: London, UK, 2006.
- ISO, 14044: Environmental Management-Life Cycle Assessment-Requirements and Guidelines; ISO: London, UK, 2006.
- Gäbel, K.; Forsberg, P.; Tillman, A.M. The design and building of a lifecycle-based process model for simulating environmental performance, product performance and cost in cement manufacturing. J. Clean. Prod. 2004, 12, 77–93. [Google Scholar] [CrossRef] [Green Version]
- Stafford, F.N.; Raupp-Pereira, F.; Labrincha, J.A.; Hotza, D. Life cycle assessment of the production of cement: A Brazilian case study. J. Clean. Prod. 2016, 137, 1293–1299. [Google Scholar] [CrossRef]
- Van Den Heede, P.; De Belie, N. Environmental impact and life cycle assessment (LCA) of traditional and “green” concretes: Literature review and theoretical calculations. Cem. Concr. Compos. 2012, 34, 431–442. [Google Scholar] [CrossRef]
- Galvez-Martos, J.L.; Schoenberger, H. An analysis of the use of life cycle assessment for waste co-incineration in cement kilns. Resour. Conserv. Recycl. 2014, 86, 118–131. [Google Scholar] [CrossRef]
- Georgiopoulou, M.; Lyberatos, G. Life cycle assessment of the use of alternative fuels in cement kilns: A case study. J. Environ. Manag. 2018, 216, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Italcementi Group. Environmental Product Declaration as per ISO 14025 and EN 15804; Institut Bauen und Umwelt e.V. (IBU): Berlin, Germany, 2012; Available online: https://epd-online.com/EmbeddedEpdList/Download/9128 (accessed on 22 December 2018).
Tricalcium silicate, alite | 50% | |
Dicalcium silicate, belite | 25% | |
Tricalcium aluminate, aluminate | 10% | |
Tetracalcium aluminoferrite, ferrite | 10% | |
Gypsum | 5% |
Ref. | CO2 | SO2 | NOx | CKD/PM-10 | ||||
---|---|---|---|---|---|---|---|---|
[33] | 870 | g/kg * | - | - | - | - | - | - |
[34] | 810 | g/kg * | - | - | - | - | - | - |
[35] | 800 | g/kg * | 0.40–0.60 | g/kg * | 2.4 | g/kg * | 0.1–10 | g/kg * |
[36] | 820 | g/kg * | - | - | - | - | - | - |
[37] | 690 | g/kg * | 0.82 | g/kg * | 1.2 | g/kg * | 0.49 | g/kg * |
[38] | 810 | g/kg * | 0.58 | g/kg * | 1.5 | g/kg * | 0.04 | g/kg * |
[39] | 900 | g/kg * | 0.27 | g/kg ** | 1–4 | g/kg ** | 200 | g/kg ** |
[40] | 895 | g/kg * | - | - | - | - | 150–200 | g/kg ** |
[41] | - | - | 0.54 | g/kg ** | - | - | - | - |
[42] | - | - | - | - | 2.5 | g/kg ** | 0.1–0.3 | g/kg ** |
Mean | 814 | g/kg * | 0.5 | g/kg * | 2.5 | g/kg * | 25 | g/kg * |
Kiln Process | Thermal Energy Consumption (GJ/Clinker) |
---|---|
Wet process | 5.85–6.28 |
Long dry process | 4.60 |
Shaft kiln | 3.70–6.60 |
1-stage cyclone preheater | 4.18 |
2-stage cyclone preheater | 3.77 |
4-stage cyclone preheater | 3.55 |
4-stage cyclone preheater plus calciner | 3.14 |
6-stage cyclone preheater plus calciner | <2.93 |
Clinker Compounds | Raw Materials | CO2 Emissions (g of CO2 per g of Raw Material) |
---|---|---|
Magnesia | Magnesite | 1.092 |
Calcia (Lime) | Limestone | 0.785 |
Alite | Limestone + silica | 0.578 |
Belite | Limestone + silica | 0.511 |
Tricalcium aluminate | Limestone + alumina | 0.489 |
Calcium aluminoferrite | Same above + iron oxide | 0.362 |
Sodium metasilicate | Soda + silica | 0.361 |
Monocalcium aluminate | Limestone + alumina | 0.279 |
Calcium aluminosilicate | Same above + anhydrite | 0.216 |
Name | Type | Raw Material | Process Temperature | CO2 Reduction |
---|---|---|---|---|
Geopolymer | Alkali activated materials | Fly ash, Al/Si wastes, alkaline solutions | Ambient | Approx. 70% |
Sulfolauminate cement | - | Limestone, gypsum, bauxite, sand/clay | 1200–1300 °C | 30–40% |
Magnesia Binder (Novacem) | Magnesium oxide | Magnesium silicates | 200 °C (180 bar) + 700 °C | >100% |
Magnesia Binder (TechEco) | Magnesium oxide + OPC + fly ash | MgCO3 | <450 °C (Tec-Kiln) | >100% |
Celitement (KIT) | Calcium silicate hydrate | As OPC (Ca/Si ratio 1–2) | 150–200 °C (hydrothermal) | Approx. 50% |
Carbonatable Calcium Silicate cement (Solidia) | Calcium silicate (wollastonite) | As OPC for cement | 1200 °C | Approx. 70% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naqi, A.; Jang, J.G. Recent Progress in Green Cement Technology Utilizing Low-Carbon Emission Fuels and Raw Materials: A Review. Sustainability 2019, 11, 537. https://doi.org/10.3390/su11020537
Naqi A, Jang JG. Recent Progress in Green Cement Technology Utilizing Low-Carbon Emission Fuels and Raw Materials: A Review. Sustainability. 2019; 11(2):537. https://doi.org/10.3390/su11020537
Chicago/Turabian StyleNaqi, Ali, and Jeong Gook Jang. 2019. "Recent Progress in Green Cement Technology Utilizing Low-Carbon Emission Fuels and Raw Materials: A Review" Sustainability 11, no. 2: 537. https://doi.org/10.3390/su11020537
APA StyleNaqi, A., & Jang, J. G. (2019). Recent Progress in Green Cement Technology Utilizing Low-Carbon Emission Fuels and Raw Materials: A Review. Sustainability, 11(2), 537. https://doi.org/10.3390/su11020537