Typical Combined Travel Mode Choice Utility Model in Multimodal Transportation Network
Abstract
:1. Introduction
2. Data Acquisition and Analysis
2.1. Survey Design
2.2. Survey Implementation
2.3. Traveler Personal and Socio-Economic Attribute Analysis
2.4. Travel Mode Characteristics Analysis
3. Methodology
3.1. Travel Utility
3.2. Nested Logit (NL) Model
3.3. Variables Definition
4. Model Estimation and Results
4.1. Estimation Result
4.2. Result Analysis
4.2.1. Socio-Economic and Personal Variables
4.2.2. Cost and Time Variables
4.2.3. Comfort and Punctuality
5. Discussion
5.1. Variation of VOT by Distance Interval
5.2. Sensitivity Analysis
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hartgen, D.T. Attitudinal and situational variables influencing urban mode choice: Some empirical findings. Transportation 1974, 3, 377–392. [Google Scholar] [CrossRef]
- Bhat, C.R.; Srinivasan, S. A multidimensional mixed ordered-response model for analyzing weekend activity participation. Transp. Res. Part B Methodol. 2005, 39, 255–278. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Li, D.; Wang, W.; Zhao, J.; Chen, X. Modeling Gender-Based Differences in Mode Choice considering Time-Use Pattern: Analysis of Bike, Public Transit, and Car Use in Suzhou, China. Adv. Mech. Eng. 2013, 2013, 706918. [Google Scholar] [CrossRef]
- Dell’olio, L.; Ibeas, A.; Cecin, P. The quality of service desired by public transport users. Transp. Policy 2011, 18, 217–227. [Google Scholar] [CrossRef]
- Redman, L.; Friman, M.; Gärling, T.; Hartig, T. Quality attributes of public transport that attract car users: A research review. Transp. Policy 2013, 25, 119–127. [Google Scholar] [CrossRef]
- Bates, J.; Polak, J.; Jones, P.; Cook, A. The valuation of reliability for personal travel. Transp. Res. Part E 2011, 37, 191–229. [Google Scholar] [CrossRef]
- Müller, S.; Tscharaktschiew, S.; Haase, K. Travel-to-school mode choice modelling and patterns of school choice in urban areas. J. Transp. Geogr. 2008, 16, 342–357. [Google Scholar] [CrossRef]
- McFadden, D. Conditional logit analysis of qualitative choice behavior. Front. Econom. 1974, 105–142. Available online: https://scholar.google.com/scholar?hl=zhCN&as_sdt=0%2C5&q=McFadden%2C+D.+Conditional+logit+analysis+of+qualitative+choice+behavior&btnG= (accessed on 16 January 2019).
- Ben-Akiva, M.E.; Lerman, S.R.; Lerman, S.R. Discrete Choice Analysis: Theory and Application to Travel Demand; MIT Press: Cambridge, UK, 1985. [Google Scholar]
- Koppelman, F.S.; Bhat, C. A Self Instructing Course in Mode Choice Modeling: Multinomial and Nested Logit Models. Elements 2006, 28, 501–512. [Google Scholar]
- Lo, H.K.; Yip, C.W.; Wan, Q.K. Modeling competitive multi-modal transit services: A nested logit approach. Transp. Res. Part C Emerg. Technol. 2004, 12, 251–272. [Google Scholar] [CrossRef]
- Asensio, J. Transport mode choice by commuters to Barcelona’s CBD. Urban Stud. 2002, 39, 1881–1895. [Google Scholar] [CrossRef]
- Scheiner, J. Interrelations between travel mode choice and trip distance: Trends in Germany 1976–2002. J. Transp. Geogr. 2010, 18, 75–84. [Google Scholar] [CrossRef]
- Tseng, Y.Y.; Knockaert, J.; Verhoef, E.T. A revealed-preference study of behavioural impacts of real-time traffic information. Transp. Res. Part C Emerg. Technol. 2013, 30, 196–209. [Google Scholar] [CrossRef]
- Hensher, D.A. Stated preference analysis of travel choices: The state of practice. Transportation 1994, 21, 107–133. [Google Scholar] [CrossRef]
- Anciaes, P.R.; Jones, P.; Metcalfe, P.J. A stated preference model to value reductions in community severance caused by roads. Transp. Policy 2018, 64, 10–19. [Google Scholar] [CrossRef]
- Majumdar, B.B.; Mitra, S. Analysis of bike route-related improvement strategies for two Indian cities using a stated preference survey. Transp. Policy 2018, 63, 176–188. [Google Scholar] [CrossRef]
- Toşa, C.; Sato, H.; Morikawa, T.; Miwa, T. Commuting behavior in emerging urban areas: Findings of a revealed-preferences and stated-intentions survey in Cluj-Napoca, Romania. J. Transp. Geogr. 2018, 68, 78–93. [Google Scholar] [CrossRef]
- Milosavljević, N.; Simićević, J. User response to parking policy change: A comparison of stated and revealed preference data. Transp. Policy 2016, 46, 40–45. [Google Scholar] [CrossRef]
- Richter, C.; Keuchel, S. Modelling mode choice in passenger transport with integrated hierarchical information integration. J. Choice Model. 2012, 5, 1–21. [Google Scholar] [CrossRef]
- Bourgeat, P. A revealed/stated preference approach to bus service configuration. Transp. Res. Procedia 2015, 6, 411–423. [Google Scholar] [CrossRef]
- Garcia-Martinez, A.; Cascajo, R.; Jara-Diaz, S.R.; Chowdhury, S.; Monzon, A. Transfer penalties in multimodal public transport networks. Transp. Res. Part A Policy Pract. 2018, 114, 52–66. [Google Scholar] [CrossRef]
- Washington, S.; Karlaftis, M.; Mannering, F. Statistical and Econometric Methods for Transportation Data Analysis, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- StataCorp. Stata Statistical Software; StataCorp: College Station, TX, USA, 2009. [Google Scholar]
- Athira, I.C.; Muneera, C.P.; Krishnamurthy, K.; Anjaneyulu, M.V.L.R. Estimation of Value of Travel Time for Work Trips. Transp. Res. Procedia 2016, 17, 116–123. [Google Scholar] [CrossRef]
- Bhat, C.R.; Sardesai, R. The impact of stop-making and travel time reliability on commute mode choice. Transp. Res. Part B 2006, 40, 709–730. [Google Scholar] [CrossRef] [Green Version]
- He, S.Y.; John, T. The impact of attitudes and perceptions on travel mode choice and car ownership in a Chinese megacity: The case of Guangzhou. Res. Transp. Econ. 2017, 62, 57–67. [Google Scholar] [CrossRef]
- Paleti, R.; Vovsha, P.; Givon, D.; Birotker, Y. Impact of individual daily travel pattern on value of time. Transportation 2015, 42, 1003–1017. [Google Scholar] [CrossRef]
- Zong, F.; Juan, Z.; Zhang, H.; Jia, H. Calculation and Application of Value of Travel Time. J. Transp. Syst. Eng. Inf. Technol. 2009, 9, 114–119. [Google Scholar]
Scenario | Travel Distance (km) | Attributes | Levels (min) | Uniform Design Form |
---|---|---|---|---|
1 | 2–5 | Commute time of bus | 8,10,12,15,18,20 | |
Transfer waiting time | 2,5,8,10,12,15 | |||
Commute time of bike | 2,3,4,5,6,7 | |||
Transfer walking time | 1,2,3,4,5,6 | |||
2 | 5–15 | Waiting time of bus | 2,5,8,10 | |
Waiting time of metro | 1,2,3,5 | |||
Commuting time of bike | 3,5,8,10 | |||
Transfer walking time | 3,4,5,6 | |||
Commute time of metro | 10,15,20,25 | |||
3 | >15 | Waiting time of bus | 2,5,8,10 | |
Waiting time of metro | 1,2,3,5 | |||
Commute time of car | 10,20,30,40 | |||
Transfer walking time | 3,4,5,6 | |||
Commute time of metro | 20,30,40,50 |
Total Sample (N = 589) | Scenario 1 (N = 271) | Scenario 2 (N = 232) | Scenario 3 (N = 86) | ||
---|---|---|---|---|---|
Gender | Male | 0.57 | 0.60 | 0.54 | 0.58 |
Female | 0.43 | 0.40 | 0.46 | 0.42 | |
Age(years) | 10–20 | 0.05 | 0.08 | 0.03 | 0.02 |
20–30 | 0.43 | 0.47 | 0.43 | 0.31 | |
30–40 | 0.36 | 0.31 | 0.38 | 0.49 | |
40–50 | 0.11 | 0.07 | 0.13 | 0.14 | |
50 and over | 0.05 | 0.06 | 0.03 | 0.03 | |
Individual Income | 3000 and less | 0.23 | 0.31 | 0.17 | 0.13 |
(yuan/month) | 3000–6000 | 0.25 | 0.27 | 0.27 | 0.18 |
6000–10,000 | 0.27 | 0.23 | 0.33 | 0.28 | |
10,000–20,000 | 0.16 | 0.10 | 0.17 | 0.27 | |
20,000 and more | 0.09 | 0.09 | 0.07 | 0.14 | |
Number of Cars | 0 | 0.33 | 0.42 | 0.33 | 0 |
1 | 0.53 | 0.47 | 0.53 | 0.77 | |
2 and more | 0.14 | 0.11 | 0.14 | 0.23 |
Detailed Variables | Unit | Denotation | |
---|---|---|---|
Dummy level | Male | -- | Reference |
Female | -- | female | |
10–20: Age from 10 to 20 years old | -- | age1 | |
20–30: Age from 20 to 30 years old | -- | age2 | |
30–40: Age from 30 to 40 years old | -- | age3 | |
40–50: Age from 40 to 50 years old | -- | age4 | |
50 and over: Age over 50 years old | -- | Reference | |
Commute distance | km | distance | |
Transfer walking time | min | ttwalk | |
Transfer waiting time | min | twait | |
Alternative level | Cost | yuan 1 | cost |
Commute time | min | time | |
Waiting time | min | wait | |
Walk to transferring bus time | min | twalk | |
3000 and below: Income from 0 to 3000 | yuan/month | income1 | |
3000–6000: Income from 3000 to 6000 | yuan/month | income2 | |
6000–10,000: Income from 6000 to 10,000 | yuan/month | income3 | |
10,000–20,000: Income from 10,000 to 20,000 | yuan/month | income4 | |
20,000 and more: Income over 20,000 | yuan/month | Reference | |
0: Possess no car | -- | nveh1 | |
1: Possess one car | -- | nveh2 | |
2 and more: Possess more than two cars | -- | Reference | |
Satisfaction with the punctuality of one mode | -- | pun | |
Satisfaction with the comfort of one mode | -- | com |
Short Distance | Middle Distance | Long Distance | ||||||
---|---|---|---|---|---|---|---|---|
Variables | Coefficient | P | Coefficient | P | Coefficient | P | ||
Dummy level | Personal variables | Reference | ||||||
gender | -- | 0.54 | 0.000 | 0.47 | 0.030 | |||
age1 | -- | -- | -- | |||||
age2 | 1.17 | 0.002 | −0.72 | 0.000 | -- | |||
age3 | 1.01 | 0.013 | -- | −1.63 | 0.000 | |||
age4 | 1.51 | 0.001 | 0.56 | 0.001 | −1.45 | 0.000 | ||
Reference | ||||||||
Cost and time variables | distance | −0.22 | 0.007 | -- | −0.27 | 0.000 | ||
twalk | -- | -- | ||||||
ttwalk | -- | −0.36 | 0.000 | −0.41 | 0.001 | |||
twait0 | −0.12 | 0.055 | −0.25 | 0.000 | -- | |||
Alternative level | Socio-economic variables | income1_bike | 2.03 | 0.003 | -- | -- | ||
income1_metro | -- | -0.35 | 0.028 | -- | ||||
income1_btb | 1.71 | 0.001 | -- | -- | ||||
income2_btb | 0.79 | 0.015 | -- | -- | ||||
income3_bus | −1.41 | 0.058 | -- | -- | ||||
income3_ctm | -- | -- | 1.82 | 0.004 | ||||
income3_btm | -- | 0.26 | 0.058 | −2.52 | 0.009 | |||
income4_bus | −3.94 | 0.000 | -- | -- | ||||
Reference | ||||||||
nveh1_bike | −2.39 | 0.000 | -- | -- | ||||
nveh1_bus | −1.72 | 0.001 | −0.29 | 0.010 | -- | |||
nveh2_metro | -- | 0.32 | 0.010 | -- | ||||
nveh2_btm | -- | 1.82 | 0.000 | -- | ||||
Reference | ||||||||
Cost and time variables | cost | −1.12 | 0.000 | −0.06 | 0.006 | −0.46 | 0.000 | |
twalk | -- | −0.05 | 0.004 | −0.48 | 0.058 | |||
time | −0.08 | 0.051 | −0.02 | 0.030 | −0.07 | 0.099 | ||
twait1 | −0.38 | 0.002 | -- | -- | ||||
tinveh | -- | -- | −0.05 | 0.052 | ||||
Comfort and punctuality | carpun_bike | 1.75 | 0.000 | -- | ||||
carpun_btb | 1.22 | 0.000 | -- | |||||
carpun_ctm | -- | -- | −1.13 | 0.008 | ||||
carpun_btm | -- | -- | 2.59 | 0.009 | ||||
bikepun_bike | −2.23 | 0.000 | -- | -- | ||||
bikepun_bus | -- | 0.21 | 0.027 | -- | ||||
bikepun_metro | -- | 0.16 | 0.018 | -- | ||||
bikepun_btm | -- | −0.67 | 0.000 | -- | ||||
bikepun_btb | −1.40 | -- | 0.012 | -- | ||||
buspun_btm | -- | -- | 0.000 | −1.63 | 0.000 | |||
metropun_ctm | -- | -- | 0.027 | 3.96 | 0.008 | |||
metropun_btm | -- | -- | 0.036 | 4.96 | 0.000 | |||
carcom_ctm | -- | -- | 1.24 | 0.000 | ||||
carcom_btm | -- | -- | −1.95 | 0.002 | ||||
buscom_bike | −1.28 | -- | -- | |||||
buscom_bus | −1.66 | −0.29 | -- | |||||
buscom_ctm | -- | -- | 1.69 | 0.000 | ||||
buscom_btm | -- | 0.30 | −3.00 | 0.000 | ||||
buscom_btb | −0.98 | -- | -- | |||||
metrocom_metro | -- | −0.13 | -- | |||||
metrocom_btm | -- | −0.16 | −1.04 | 0.001 | ||||
bikecom_bike | −1.69 | -- | -- | |||||
bikecom_btb | −0.53 | -- | -- | |||||
Adjusted R2 | 0.211 | 0.157 | 0.287 | |||||
VOT(yuan/h) | 9.13 | 20 | 4.29 |
Change of Cost | Car Choice Probability | Bus Choice Probability | Metro Choice Probability | btm Choice Probability |
---|---|---|---|---|
Before change of cost | 21.12% | 0.40% | 65.90% | 12.57% |
Cost of car +10% | 17.13% | 0.42% | 69.24% | 13.21% |
Cost of car −10% | 25.76% | 0.38% | 62.03% | 11.84% |
Cost of bus +10% | 21.14% | 0.31% | 65.96% | 12.59% |
Cost of bus −10% | 21.10% | 0.52% | 65.82% | 12.56% |
Cost of metro +10% | 24.86% | 0.48% | 59.86% | 14.80% |
Cost of metro −10% | 17.68% | 0.34% | 71.46% | 10.52% |
Cost of btm +10% | 21.74% | 0.42% | 67.85% | 9.99% |
Cost of btm −10% | 20.36% | 0.39% | 63.54% | 15.71% |
Change of ttwalk | Car Choice Probability | Bus Choice Probability | Metro Choice Probability | btm Choice Probability |
---|---|---|---|---|
ttwalk −10% | 20.17% | 0.39% | 62.94% | 16.50% |
ttwalk −30% | 17.59% | 0.34% | 54.89% | 27.18% |
ttwalk −50% | 14.17% | 0.27% | 44.21% | 41.35% |
ttwalk 0% | 21.12% | 0.40% | 65.90% | 12.57% |
ttwalk +10% | 21.87% | 0.42% | 68.24% | 9.47% |
ttwalk +30% | 22.89% | 0.44% | 71.42% | 5.25% |
ttwalk +50% | 23.47% | 0.45% | 73.23% | 2.85% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Chen, J.; Wu, W.; Ye, J. Typical Combined Travel Mode Choice Utility Model in Multimodal Transportation Network. Sustainability 2019, 11, 549. https://doi.org/10.3390/su11020549
Liu Y, Chen J, Wu W, Ye J. Typical Combined Travel Mode Choice Utility Model in Multimodal Transportation Network. Sustainability. 2019; 11(2):549. https://doi.org/10.3390/su11020549
Chicago/Turabian StyleLiu, Yue, Jun Chen, Weiguang Wu, and Jiao Ye. 2019. "Typical Combined Travel Mode Choice Utility Model in Multimodal Transportation Network" Sustainability 11, no. 2: 549. https://doi.org/10.3390/su11020549
APA StyleLiu, Y., Chen, J., Wu, W., & Ye, J. (2019). Typical Combined Travel Mode Choice Utility Model in Multimodal Transportation Network. Sustainability, 11(2), 549. https://doi.org/10.3390/su11020549