An Assessment of the Environmental Sustainability and Circularity of Future Scenarios of the Copper Life Cycle in the U.S.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Modeling Approach
2.2. Base Case Scenario Methodology
2.3. Scenario Analysis Methodology
3. Results
3.1. Base Case (FS1) Scenario Results
3.2. Scenario Analysis Results Scenarios (FS2–FS6)
3.3. Circularity Metrics for Evaulation of Scenario Analysis Results
3.4. Environmental Sustainabiltiy Implications and Estimated Footprint
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Gorman, M.R.; Dzombak, D.A. Stocks and Flows of Copper in the U.S.: Analysis of Circularity 1970–2015 and Potential for Increased Recovery. Resour. Conserv. Recycl. in press.
- Fishman, T.; Schandl, H.; Tanikawa, H.; Walker, P.; Krausmann, F. Accounting for the Material Stock of Nations. J. Ind. Ecol. 2014, 18, 407–420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schandl, H.; Hatfield-Dodds, S.; Wiedmann, T.; Geschke, A.; Cai, Y.; West, J.; Newth, D.; Baynes, T.; Lenzen, M.; Owen, A. Decoupling Global Environmental Pressure and Economic Growth: Scenarios for Energy Use, Materials Use and Carbon Emissions. J. Clean. Prod. 2016, 132, 45–56. [Google Scholar] [CrossRef]
- Gordon, R.B.; Bertram, M.; Graedel, T.E. Metal Stocks and Sustainability. Proc. Natl. Acad. Sci. USA 2006, 103, 1209–1214. [Google Scholar] [CrossRef]
- Zeltner, C.; Bader, H.-P.; Scheidegger, R.; Baccini, P. Sustainable Metal Management Exemplified by Copper in the USA. Reg. Environ. Chang. 1999, 1, 31–46. [Google Scholar] [CrossRef]
- Gerst, M.D. Linking Material Flow Analysis and Resource Policy via Future Scenarios of In-Use Stock: An Example for Copper. Environ. Sci. Technol. 2009. [Google Scholar] [CrossRef]
- Elshkaki, A.; Graedel, T.E.; Ciacci, L.; Reck, B. Copper Demand, Supply, and Associated Energy Use to 2050. Glob. Environ. Chang. 2016, 39, 305–315. [Google Scholar] [CrossRef]
- Meinert, L.; Robinson, G.; Nassar, N. Mineral Resources: Reserves, Peak Production and the Future. Resources 2016, 5, 14. [Google Scholar] [CrossRef]
- Labys, W.C.; Waddell, L.M. Commodity Lifecycles in US Materials Demand. Resour. Policy 1989, 15, 238–252. [Google Scholar] [CrossRef]
- Wernick, I.K.; Herman, R.; Govind, S.; Ausubel, J.H. Materialization and Dematerialization: Measures and Trends. Daedalus Natl. Acad. Tecbahia 1996, 125. Available online: https://phe.rockefeller.edu/Daedalus/Demat/ (accessed on 11 October 2019).
- Steinberger, J.K.; Krausmann, F.; Eisenmenger, N. Global Patterns of Materials Use: A Socioeconomic and Geophysical Analysis. Ecol. Econ. 2010, 69, 1148–1158. [Google Scholar] [CrossRef]
- Steger, S.; Bleischwitz, R. Drivers for the Use of Materials across Countries. J. Clean. Prod. 2011, 19, 816–826. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Copper statistics [through 2015; last modified 2017]. In Historical Statistics for Mineral and Material Commodities in the United States U.S. Geological Survey Data Series; Kelly, T.D., Matos, G.R., Eds.; U.S. Geological Survey: Reston, VA, USA, 2017; Volume 140, p. 4. Available online: https://www.usgs.gov/centers/nmic/historical-statistics-mineral-and-material-commodities-united-states (accessed on 11 October 2019).
- Zhang, C.; Chen, W.-Q.; Ruth, M. Measuring Material Efficiency: A Review of the Historical Evolution of Indicators, Methodologies and Findings. Resour. Conserv. Recycl. 2018, 132, 79–92. [Google Scholar] [CrossRef]
- Gorman, M. US Copper Life Cycle Data. Kilthub Data Repos. 2019. [Google Scholar] [CrossRef]
- Bretschger, L. Energy Prices, Growth, and the Channels in between: Theory and Evidence. Resour. Energy Econ. 2015, 39, 29–52. [Google Scholar] [CrossRef]
- Liu, R.Q.; Jacobi, C.; Hoffmann, P.; Stober, G.; Merzlyakov, E.G. A Piecewise Linear Model for Detecting Climatic Trends and Their Structural Changes with Application to Mesosphere/Lower Thermosphere Winds over Collm, Germany. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Campra, P.; Morales, M. Trend analysis by a piecewise linear regression model applied to surface air temperatures in Southeastern Spain (1973–2014). Nonlinear Process. Geophys. 2016. Available online: http://doi.org/10.5194/npg-2016-29 (accessed on 11 October 2019).
- U.S. Census Bureau. Section 1. Population. Statistical Abstract of the United States: 2012. Available online: https://www.census.gov/library/publications/2011/compendia/statab/131ed/population.html (accessed on 11 October 2019).
- U.S. Census Bureau. 2017 National Population Projections Datasets. 2017. Available online: https://www.census.gov/data/datasets/2017/demo/popproj/2017-popproj.html (accessed on 11 October 2019).
- UN Population Division. World Urbanization Prospects: The 2018 Revision. 2018. Available online: https://esa.un.org/unpd/wup/Download/Files/WUP2018-F02-Proportion_Urban.xls (accessed on 11 October 2019).
- U.S. Geological Survey. Metal prices in the United States through 2010: U.S. Geological Survey Scientific Investigations Report 2012–5188. 2013; p. 204. Available online: http://pubs.usgs.gov/sir/2012/5188 (accessed on 11 October 2019).
- World Bank Commodity Markets. World Bank Commodities Price Forecast [April 2019]. 2019. Available online: http://pubdocs.worldbank.org/en/598821555973008624/CMO-April-2019-Forecasts.pdf (accessed on 11 October 2019).
- World Bank. GDP, United States. 2017. Available online: https://data.worldbank.org/indicator/NY.GDP.MKTP.CD?locations=US (accessed on 11 October 2019).
- U.S. Department of Agriculture. Real GDP (2010 dollars) Projection, International Macroeconomic Data Set. Economic Research Service. 2018. Available online: https://www.ers.usda.gov/data-products/international-macroeconomic-data-set.aspx (accessed on 11 October 2019).
- World Bank Data Bank. World Development Indicators. 2019. Available online: https://databank.worldbank.org/reports.aspx?source=2&series=NY.GDP.MKTP.CD,NV.AGR.TOTL.ZS,NV.IND.TOTL.ZS,NV.IND.MANF.ZS,NV.SRV.TOTL.ZS (accessed on 11 October 2019).
- UN Statistics Division. Indicator 12.2.2, Domestic Materials Consumption. UN Sustainable Development Goal Indicators. 2019. Available online: https://unstats.un.org/sdgs/indicators/database/ (accessed on 11 October 2019).
- Lorenz, M.O. Methods of measuring the concentration of wealth. J. Am. Stat. Assoc. 1905, 70, 209–219. [Google Scholar] [CrossRef]
- Wasserman, G.S.; Vijit, P.J. Use of Q-Q plots for comparing life data. Quality Congress. ASQ’s Annu. Qual. Congr. Proc. 2003, 57, 183–194. Available online: https://search-proquest-com.proxy.library.cmu.edu/docview/214386221?accountid=9902 (accessed on 11 October 2019).
- OECD. Real GDP Long-Term Forecast. 2019. Available online: https://data.oecd.org/gdp/real-gdp-long-term-forecast.htm#indicator-chart (accessed on 11 October 2019).
- UN Population Division. World Population Prospects 2019. 2019. Available online: https://population.un.org/wpp/Download/Standard/Population/ (accessed on 11 October 2019).
- Krausmann, F.; Gingrich, S.; Eisenmenger, N.; Erb, K.H.; Haberl, H.; Fischer-Kowalski, M. Growth in Global Materials Use, GDP and Population during the 20th Century. Ecol. Econ. 2009, 68, 2696–2705. [Google Scholar] [CrossRef]
- Reuter, M. (UNEP). Metal Recycling: Opportunities, Limits, Infrastructure; UNEP: Nairobi, Kenya, 2013. [Google Scholar]
- Parchomenko, A.; Nelen, D.; Gillabel, J.; Rechberger, H. Measuring the Circular Economy—A Multiple Correspondence Analysis of 63 Metrics. J. Clean. Prod. 2019, 210, 200–216. [Google Scholar] [CrossRef]
- Gorman, M.R.; Dzombak, D.A. A Review of Sustainable Mining and Resource Management: Transitioning from the Life Cycle of the Mine to the Life Cycle of the Mineral. Resour. Conserv. Recycl. 2018, 137. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Z.; Wu, Y.; Li, L.; Li, B.; Pan, D.; Zuo, T. Environmental Benefits of Secondary Copper from Primary Copper Based on Life Cycle Assessment in China. Resour. Conserv. Recycl. 2019, 146, 35–44. [Google Scholar] [CrossRef]
- Ekman Nilsson, A.; Macias Aragonés, M.; Arroyo Torralvo, F.; Dunon, V.; Angel, H.; Komnitsas, K.; Willquist, K. A Review of the Carbon Footprint of Cu and Zn Production from Primary and Secondary Sources. Minerals 2017, 7, 168. [Google Scholar] [CrossRef]
Material Flow Driver | Unit | Source for Historical Data 1970–2015 or Most Recently Available | Source for Expected Projection 2015–2030 |
---|---|---|---|
Time | Year 1970–2030 | ||
Population | 106 People | U.S. Census Bureau, 2012 [19] | U.S. Census Bureau, 2017 [20] |
Urbanization | % of pop | UN Population Division, 2018 [21] | UN Population Division, 2018 [21] |
Copper Price | Cents/lb | USGS, 2013 [22]; USGS, 2017 [13] | World Bank Commodity Markets, 2019 [23] |
GDP | 109 US 2010 $ | World Bank, 2017 [24] | USDA, 2018 [25] |
Manufacturing Contribution to GPD (Mfg%) | % GDP | World Bank DataBank, 2019 [26] | Linearly Projected * |
Domestic Materials Consumption (DMC) | 106 tonnes | UN Statistics Division, 2019 [27] | Linearly Projected * |
Forecast Scenario | Description | Population Increase Rate | GDP Increase Rate | Mfg% Decrease Rate | DMC Decrease Rate | Urbanization Increase Rate | Copper Price | |
---|---|---|---|---|---|---|---|---|
FS1 | Base Case | Expected outcome based on expected driver projections | Expected | Expected | Expected | Expected | Expected | Expected |
FS2 | Slower driver change | Outcome if drivers change more slowly than expected * | Low | Low | Low | Low | Low | Expected |
FS3 | Faster driver change | Outcome if drivers change more quickly than expected * | High | High | High | High | High | Expected |
FS4 | Population Migration | Slower population increase; faster urbanization increase | Low | Expected | Expected | Expected | High | Expected |
FS5 | Economic transition | Faster GDP growth, slower decline in Mfg% | Expected | High | Low | Expected | Expected | Expected |
FS6 | Economic stagnation | Slower GDP growth, faster decline in Mfg% | Expected | Low | High | Expected | Expected | Expected |
Driver | Low Rate-of-Change Projection | Expected Projection | High Rate-of-Change Projection |
---|---|---|---|
Population | Zero migration scenario | U.S. Census Bureau, 2017 [20] | High variant scenario |
UN Population Division, 2019 [31] | UN Population Division. 2019 [31] | ||
Urbanization | 95% confidence interval linear fit | UN Population Division, 2018 [21] | 95% confidence interval of linear fit |
Copper Price | Expected projection was used in all scenarios | ||
World Bank Commodity Markets, 2019 [23] | |||
GDP | OECD 2019 [30] | Expected projection used also for high rate-of-change USDA, 2018 [25] | |
Mfg% | 95% confidence interval of initial linear regression | Linear Projection | 95% confidence interval of initial linear regression |
DMC | 95% confidence interval of initial linear regression | Linear Projection | 95% confidence interval of initial linear regression |
Material Flows (Fj) | |||||||
---|---|---|---|---|---|---|---|
1. Primary Production | 2. Consumption | 3. EoL Collection | 4. Landfilled Scrap | 5. Scrap Exports | 6. New Scrap | ||
Intercept (α) | 6730 | 5155 | −1333 | −1896 | 202 | −1486 | |
β values for Drivers (p-values) | Year | −1010 (2 × 10−3) | −806 (2 × 10−2) | 180 (5 × 10−8) | 28 (2 × 10−5) | 210 (1 × 10−3) | |
Urbanization | 221 (4 × 10−3) | 223 (6 × 10−3) | −84.9 (5 × 10−3) | ||||
Population | −7.72 (8 × 10−3) | 32.2 (2 × 10−3) | −17.6 (2 × 10−4) | ||||
Cu Price | −0.239 (8 × 10−3) | 0.21 (8 × 10−4) | 0.136 (7 × 10−3) | 0.169 (1 × 10−3) | |||
GDP | −2.17 (3 × 10−5) | −1.46 (7 × 10−3) | |||||
Mfg% | 3.58 (7 × 10−4) | ||||||
DMC | 0.861 (9 × 10−3) | ||||||
R2 | 0.80 | 0.95 | 0.99 | 0.98 | 0.95 | 0.94 |
Circular Economy Metrics | |||
---|---|---|---|
Scenario | Consumption from Recycled Material (% of Demand Met by Available Scrap) | Waste Production (Thousand Tons) | Import Reliance (% of Demand from Imports) |
FS1 | 25% | 4926 | 19% |
FS2 | 72% | 6364 | Net exporter (0.9 Mt) |
FS3 | N/A | 4391 | 35% |
FS4 | 77% | 6221 | Net exporter (13 Mt) |
FS5 | 24% | 5031 | 24% |
FS6 | 30% | 4921 | 125% |
Fresh Water (Million Tons) | Solid Waste (Billion Tons) | PM (Thousand Tons) | Carbon Footprint (Billion Tons) | |
---|---|---|---|---|
Future Scenarios: | ||||
FS1 | 961 | 3.41 | 358 | 1.37 |
FS2 | 992 | 3.47 | 402 | 1.54 |
FS3 | 1100 | 3.94 | 390 | 1.49 |
FS4 | 938 | 3.27 | 383 | 1.47 |
FS5 | 1010 | 3.58 | 375 | 1.43 |
FS6 | 913 | 3.24 | 343 | 1.31 |
Observed Scenario: | ||||
2000–2015 | 645 | 2.26 | 257 | 0.984 |
Scenario | Fresh Water | Solid Waste | PM | Carbon Footprint |
---|---|---|---|---|
FS1 | 49% | 51% | 40% | 39% |
FS2 | 54% | 53% | 57% | 57% |
FS3 | 70% | 74% | 52% | 51% |
FS4 | 45% | 45% | 49% | 49% |
FS5 | 56% | 58% | 46% | 46% |
FS6 | 42% | 43% | 34% | 33% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorman, M.R.; Dzombak, D.A. An Assessment of the Environmental Sustainability and Circularity of Future Scenarios of the Copper Life Cycle in the U.S. Sustainability 2019, 11, 5624. https://doi.org/10.3390/su11205624
Gorman MR, Dzombak DA. An Assessment of the Environmental Sustainability and Circularity of Future Scenarios of the Copper Life Cycle in the U.S. Sustainability. 2019; 11(20):5624. https://doi.org/10.3390/su11205624
Chicago/Turabian StyleGorman, Miranda R., and David A. Dzombak. 2019. "An Assessment of the Environmental Sustainability and Circularity of Future Scenarios of the Copper Life Cycle in the U.S." Sustainability 11, no. 20: 5624. https://doi.org/10.3390/su11205624
APA StyleGorman, M. R., & Dzombak, D. A. (2019). An Assessment of the Environmental Sustainability and Circularity of Future Scenarios of the Copper Life Cycle in the U.S. Sustainability, 11(20), 5624. https://doi.org/10.3390/su11205624