Effects of Organic Material Types on Temporal Changes in Characteristics of Humic Acids Extracted from a Chernozem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Design
2.3. Extraction and Purification of HAs
2.4. Instrumental Techniques
3. Results and Discussion
3.1. E4/E6 Ratio of HAs
3.2. Comparison in FTIR Spectra of HAs
3.3. FTIR Spectra of HAs Extracted from the Chernozem Amended with BFA
3.4. FTIR Spectra of HAs Extracted from the Chernozem Amended with M
3.5. FTIR Spectra of HAs Extracted from the Chernozem Amended with Ps
3.6. FTIR Spectra of HAs Extracted from the Chernozem Amended with Pr
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bastida, F.; Jindo, K.; Moreno, J.L.; Hernández, T.; García, C. Effects of organic amendments on soil carbon fractions, enzyme activity and humus-enzyme complexes under semi-arid conditions. Eur. J. Soil Sci. 2012, 53, 94–102. [Google Scholar] [CrossRef]
- Westerman, P.W.; Bicudo, J.R. Management considerations for organic waste use in agriculture. Bioresour. Technol. 2005, 96, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Kõlli, R.; Köster, T. Interrelationships of humus cover (pro humus form) with soil cover and plant cover: Humus form as transitional space between soil and plant. Appl. Soil Ecol. 2018, 123, 451–454. [Google Scholar] [CrossRef]
- Li, J.M.; Wu, J.G. Compositional and structural difference of fulvic acid from black soil applied different organic materials: Assessment after three years. J. Integr. Agr. 2013, 12, 1865–1871. [Google Scholar] [CrossRef]
- Dai, H.C.; Chen, Y.Q.; Yang, X.L.; Cui, J.X.; Sui, P. The effect of different organic materials amendment on soil bacteria communities in barren sandy loam soil. Environ. Sci. Pollut. R. 2017, 24, 24019–24028. [Google Scholar] [CrossRef]
- Hu, J.; Wu, J.G.; Qu, X.J.; Li, J.M. Effects of organic wastes on structural characterizations of humic acid in semiarid soil under plastic mulched drip irrigation. Chemosphere 2018, 200, 313–321. [Google Scholar] [CrossRef]
- Lucas, E.G.; Izquierdo, C.G.; Fernández, M.T.H. Changes in humic fraction characteristics and humus-enzyme complexes formation in semiarid degraded soils restored with fresh and composted urban wastes. A 5-year field experiment. J. Soil Sediment 2018, 18, 1376–1388. [Google Scholar] [CrossRef]
- Pospíšilová, L.; Fasurová, N. Spectroscopic characteristics of humic acids originated in soils and lignite. Soil Water Res. 2009, 4, 168–175. [Google Scholar] [Green Version]
- Chen, J.; Gu, B.H.; LeBoeuf, E.J.; Pan, H.J.; Dai, S. Spectroscopic characterization of the structural and functional properties of natural organic matter fractions. Chemosphere 2002, 48, 59–68. [Google Scholar] [CrossRef]
- Giovanela, M.; Crespo, J.S.; Antunes, M.; Adamatti, D.S.; Fernandes, A.N.; Barison, A.; da Silva, C.W.P.; Guegan, R.; Motelica-Heino, M.; Sierra, M.M.D. Chemical and spectroscopic characterization of humic acids extracted from the bottom sediments of a Brazilian subtropical microbasin. J. Mol. Struct. 2010, 981, 111–119. [Google Scholar] [CrossRef] [Green Version]
- Moreno-Cornejo, J.; Zornoza, R.; Faz, A. Carbon and nitrogen mineralization during decomposition of crop residues in a calcareous soil. Geoderma 2014, 230–231, 58–63. [Google Scholar] [CrossRef]
- Meng, F.Q.; Dungait, J.A.J.; Xu, X.L.; Bol, R.; Zhang, X.; Wu, W.L. Coupled incorporation of maize (Zea mays L.) straw with nitrogen fertilizer increased soil organic carbon in Fluvic Cambisol. Geoderma 2017, 304, 19–27. [Google Scholar] [CrossRef]
- Guignard, C.; Lemée, L.; Amblès, A. Structural characterization of humic substances from an acidic peat using thermochemolysis techniques. Agronomie 2000, 20, 465–475. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; An, T.; Wei, D.; Chi, F.; Zhou, B. Effects of long-term fertilization on soil humic acid composition and structure in black soil. PLoS ONE 2017, 12, e0186918. [Google Scholar] [CrossRef]
- Xin, Y.; Wang, J.Q.; Li, Y.Y.; Asiri, A.M.; Marwani, H.M.; Hu, S.H.; Wang, G.; Xu, Z.M. Influence of humic acid on the immobilization of U(VI) by montmorillonite in simulated environmental conditions. Sep. Sci. Technol. 2018, 53, 696–706. [Google Scholar] [CrossRef]
- Niemeyer, J.; Chen, Y.; Bollag, J.M. Characterization of humic acids, composts, and peat by diffuse reflectance Fourier-transform infrared spectroscopy. Soil Sci. Soc. Am. J. 1992, 56, 135–140. [Google Scholar] [CrossRef]
- Li, L.J.; Han, X.Z.; You, M.Y.; Yuan, Y.R.; Ding, X.L.; Qiao, Y.F. Carbon and nitrogen mineralization patterns of two contrasting crop residues in a Mollisol: Effects of residue type and placement in soils. Eur. J. Soil Sci. 2013, 54, 1–6. [Google Scholar] [CrossRef]
- Wu, M.; Song, M.Y.; Liu, M.; Jiang, C.Y.; Li, Z.P. Fungicidal activities of soil humic/fulvic acids as related to their chemical structures in greenhouse vegetable fields with cultivation chronosequence. Sci. Rep. Uk 2016, 6, 32858. [Google Scholar] [CrossRef]
- Souza, F.D.; Bragança, S.R. Extraction and characterization of humic acid fromcoal for the application as dispersant of ceramic powders. J. Mater. Res. Technol. 2018, 7, 254–260. [Google Scholar] [CrossRef]
- Rezaeova, V.; Baldrian, P.; Hrselova, H. Influence of mineral and organic fertilization on soil fungi, enzyme activities and humic substances in a long-term field experiment. Folia Microbiol. 2007, 52, 415–421. [Google Scholar] [CrossRef]
- Azeez, J.O.; Averbeke, W.V. Nitrogen mineralization potential of three animal manures applied on a sandy clay loam soil. Bioresour. Technol. 2010, 101, 5645–5651. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; He, C.; You, S.J.; Liu, W.J.; Wang, W.; Zhang, R.J.; Qi, H.H.; Ren, N.Q. Transformation of organic matters in animal wastes during composting. J. Hazard Mater. 2015, 300, 745–753. [Google Scholar] [CrossRef] [PubMed]
- Masunga, R.H.; Uzokwe, V.N.; Mlay, P.D.; Odeh, I.; Singh, A.; Buchan, D.; Neve, S.D. Nitrogen mineralization dynamics of different valuable organic amendments commonly used in agriculture. Appl. Soil Ecol. 2016, 101, 185–193. [Google Scholar] [CrossRef]
- Kalsom, M.S.U.; Nur, H.; Norlea, A.A.; Ngaspan, S. Characterization of humic acid from humification of oil palm empty fruit bunch fibre using Trichoderma viride. J. Trop. Agric. Food Sci. 2006, 34, 165–172. [Google Scholar]
- Hsu, J.H.; Lo, S.L. Chemical and spectroscopic analysis of organic matter transformations during composting of pig manure. Environ. Pollut. 1999, 104, 189–196. [Google Scholar] [CrossRef]
Wavelength (cm−1) | Assignments | References |
---|---|---|
3400–3480 | H-bonded O–H stretching vibrations of hydroxyl groups from alcohols, phenols, organic acids and H-bonded N–H groups | Lucas et al. [7] |
2920–2960 and 2850–2860 | Aliphatic C–H stretching of CH3/CH2 groups | Xin et al. [15] |
1600–1655 | Aromatic C=C skeletal vibrations and C=O stretching of quinine | Chen et al. [9] |
1380–1470 | –CH deformation of –CH3 and –CH bending of CH2 or typical lignin pattern | Niemeyer et al. [16] Li et al. [17] |
1090–1170 | C–O stretching of polysaccharides and polysaccharide-like substances | Wu et al. [18] |
Treatments | BFA-0 | BFA-30 | BFA-60 | BFA-90 | |
Wavelength (cm−1) | |||||
3419–3445 | 41.1 ± 0.2 Ab | 41.3 ± 0.3 Ab | 42.4 ± 0.6 Aa | 41.0 ± 0.1 Ab | |
2923–2925 α | 6.5 ± 0.2 Cc | 7.8 ± 0.3 Ca | 7.1 ± 0.2 Db | 7.8 ± 0.4 Ca | |
2854 β | 3.4 ± 0.1 Bc | 3.9 ± 0.1 Ba | 3.6 ± 0.0 Cb | 3.7 ± 0.1 Bb | |
1629–1643 γ | 18.7 ± 0.3 Bb | 15.3 ± 0.1 Cd | 19.2 ± 0.4 Ba | 16.3 ± 0.2 Cc | |
1456–1463 δ | 11.6 ± 0.8 Ba | 6.3 ± 0.2 Cc | 6.2 ± 0.2 Dc | 8.8 ± 0.6 Cb | |
1130–1161 | 18.8 ± 0.5 Dd | 25.4 ± 0.8 Ba | 21.6 ± 0.3 Bc | 22.4 ± 0.4 Bb | |
Ratio of γ/(α + β + δ) | 0.87 ± 0.01 b | 0.86 ± 0.09 b | 1.14 ± 0.09 a | 0.80 c | |
Treatments | M-0 | M-30 | M-60 | M-90 | |
Wavelength (cm−1) | |||||
3419–3448 | 36.5 ± 0.2 Cd | 40.3 ± 1.0 Ba | 38.1 ± 0.3 Bb | 37.0 ± 0.2 Cc | |
2923–2925 α | 7.3 ± 0.1 Bc | 8.6 ± 0.2 Ba | 8.3 ± 0.1 Cb | 7.1 ± 0.2 Dc | |
2852–2854 β | 3.4 ± 0.2 Bc | 3.9 ± 0.1 Bb | 4.0 ± 0.2 Ba | 3.8 ± 0.1 Bb | |
1635–1645 γ | 15.8 ± 0.3 Cd | 17.2 ± 0.1 Bc | 21.1 ± 0.4 Aa | 18.8 ± 0.3 Bb | |
1382–1457 δ | 12.8 ± 0.2 Ab | 10.6 ± 0.2 Ad | 14.9 ± 0.4 Aa | 11.8 ± 0.1 Ac | |
1112–1157 | 24.2 ± 0.6 Ba | 19.5 ± 0.4 Dd | 22.0 ± 0.2 Bb | 21.5 ± 0.1 Cc | |
Ratio of γ/(α + β + δ) | 0.67 ± 0.02 d | 0.74 ± 0.01 c | 0.78 ± 0.01 b | 0.83 ± 0.02 a | |
Treatments | Ps-0 | Ps-30 | Ps-60 | Ps-90 | |
Wavelength (cm−1) | |||||
3422–3445 | 23.9 ± 0.2 Da | 23.1 ± 0.4 Db | 21.4 ± 0.2 Cc | 20.9 ± 0.3 Dd | |
2921–2925 α | 9.7 ± 0.2 Ab | 13.0 ± 0.2 Aa | 13.1 ± 0.1 Aa | 9.3 ± 0.1 Ac | |
2852–2854 β | 19.3 ± 0.5 Aa | 14.2 ± 0.2 Ad | 15.1 ± 0.3 Ac | 18.1 ± 0.2 Ab | |
1631–1652 γ | 3.2 ± 0.1 Dc | 3.3 ± 0.2 Db | 3.6 ± 0.2 Ca | 3.6 ± 0.1 Da | |
1430–1461 δ | 7.5 ± 0.0 Db | 7.4 ± 0.1 Bb | 7.3 ± 0.0 Cc | 8.1 ± 0.3 Da | |
1122–1128 | 36.5 ± 0.7 Ac | 39.0 ± 0.2 Ab | 39.4 ± 0.3 Ab | 40.0 ± 0.2 Aa | |
Ratio of γ/(α + β + δ) | 0.09 ± 0.01 a | 0.10 ± 0.00 a | 0.10 ± 0.01 a | 0.10 ± 0.01 a | |
Treatments | Pr-0 | Pr-30 | Pr-60 | Pr-90 | |
Wavelength (cm−1) | |||||
3419–3455 | 38.3 ± 0.3 Bb | 35.6 ± 0.8 Cc | 38.3 ± 0.3 Bb | 40.3 ± 0.6 Ba | |
2923–2925 α | 6.6 ± 0.2 Cd | 6.9 ± 0.3 Dc | 11.2 ± 0.7 Ba | 8.2 ± 0.5 Bb | |
2854 β | 3.1 ± 0.0 Cc | 3.5 ± 0.1 Cb | 3.4 ± 0.0 Db | 3.8 ± 0.1 Ba | |
1635–1650 γ | 22.2 ± 0.5 Aa | 19.2 ± 0.1 Ab | 19.4 ± 0.1 Bb | 19.3 ± 0.1 Ab | |
1459–1463 δ | 10.0 ± 0.1 Cc | 10.9 ± 0.2 Ab | 12.2 ± 0.7 Ba | 10.0 ± 0.2 Bc | |
1066–1141 | 19.9 ± 0.2 Cb | 23.9 ± 0.7 Ca | 15.5 ± 0.4 Cd | 18.4 ± 0.3 Dc | |
Ratio of γ/(α + β + δ) | 1.13 ± 0.05 a | 0.90 ± 0.01 b | 0.72 ± 0.03 c | 0.88 ± 0.00 b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Yin, X.; Wang, S.; Wu, J. Effects of Organic Material Types on Temporal Changes in Characteristics of Humic Acids Extracted from a Chernozem. Sustainability 2019, 11, 5683. https://doi.org/10.3390/su11205683
Chen S, Yin X, Wang S, Wu J. Effects of Organic Material Types on Temporal Changes in Characteristics of Humic Acids Extracted from a Chernozem. Sustainability. 2019; 11(20):5683. https://doi.org/10.3390/su11205683
Chicago/Turabian StyleChen, Shiji, Xinhua Yin, Shuai Wang, and Jinggui Wu. 2019. "Effects of Organic Material Types on Temporal Changes in Characteristics of Humic Acids Extracted from a Chernozem" Sustainability 11, no. 20: 5683. https://doi.org/10.3390/su11205683
APA StyleChen, S., Yin, X., Wang, S., & Wu, J. (2019). Effects of Organic Material Types on Temporal Changes in Characteristics of Humic Acids Extracted from a Chernozem. Sustainability, 11(20), 5683. https://doi.org/10.3390/su11205683