Bioeconomy Transitions through the Lens of Coupled Social-Ecological Systems: A Framework for Place-Based Responsibility in the Global Resource System
Abstract
:Highlights
- We explore bioeconomy transitions from a social-ecological systems (SES) perspective
- An SES lens allows assessing economic activity in its social and ecological context
- A sustainable SES perspective reconciles satiable human needs with ecosystem functioning
- We develop an SES-based framework to support place-based bioeconomy transitions
- Embedding the SDGs in the BIO-SES framework creates synergies in monitoring, evaluation, and governance efforts.
1. Introduction
2. From “Three-Pillar” Sustainability to a Coupled Social-Ecological Systems Perspective
3. Understanding Bioeconomy Transitions through a Social-Ecological Systems Lens
3.1. Ecologically Oriented SES Perspective
3.2. Socially rooted SES Perspective
3.3. Telecoupling SES Perspective
3.4. Summary of SES Perspectives on Bioeconomy Related Activities
4. A Place-Based BIO-SES Framework to Support Sustainable Bioeconomy Transitions
5. Synergies in SDG-Aligned Bioeconomy Transitions
6. Conclusions and Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Heimann, T. Bioeconomy and Sustainable Development Goals (SDGs): Does the bioeconomy support the achievement of the SDGs? Earth’s Future 2018, 7, 43–57. [Google Scholar] [CrossRef]
- Biobased Industries Consortium (Ed.) Bioeconomy and the UN Sustainable Development Goals; Biobased Industries Consortium: Brussels, Belgium, 2018. [Google Scholar]
- Zeug, W.; Bezama, A.; Moesenfechtel, U.; Jähkel, A.; Thrän, D. Stakeholders’ interests and perceptions of bioeconomy monitoring using a sustainable development goal framework. Sustainability 2019, 11, 1511. [Google Scholar] [CrossRef]
- Pfau, S.; Hagens, J.; Dankbaar, B.; Smits, A. Visions of sustainability in bioeconomy research. Sustainability 2014, 6, 1222–1249. [Google Scholar] [CrossRef]
- Aguilar, A.; Magnien, E.; Thomas, D. Thirty years of European biotechnology programmes: From biomolecular engineering to the bioeconomy. New Biotechnol. 2013, 30, 410–425. [Google Scholar] [CrossRef] [PubMed]
- Lokko, Y.; Heijde, M.; Schebesta, K.; Scholtès, P.; Van Montagu, M.; Giacca, M. Biotechnology and the bioeconomy—Towards inclusive and sustainable industrial development. New Biotechnol. 2017, 40, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Parajuli, R.; Dalgaard, T.; Jørgensen, U.; Adamsen, A.P.S.; Knudsen, M.T.; Birkved, M.; Gylling, M.; Schjørring, J.K. Biorefining in the prevailing energy and materials crisis: A review of sustainable pathways for biorefinery value chains and sustainability assessment methodologies. Renew. Sustain. Energy Rev. 2015, 43, 244–263. [Google Scholar] [CrossRef]
- Mohan, S.V.; Nikhil, G.; Chiranjeevi, P.; Reddy, C.N.; Rohit, M.; Kumar, A.N.; Sarkar, O. Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresour. Technol. 2016, 215, 2–12. [Google Scholar] [CrossRef]
- German Bioeconomy Council. Bioeconomy Policy (Part III): Update Report of National Strategies Around the World; Office of the Bioeconomy Council: Berlin, Germany, 2018. [Google Scholar]
- Dubois, O.; Gomez San Juan, M. How Sustainability is Addressed in Official Bioeconomy Strategies at International, National and Regional Levels: An Overview; Environment and Natural Resources Management. Working Paper no. 63; FAO: Rome, Italy, 2016. [Google Scholar]
- Haarich, S.; Kirchmayr-Novak, S.; Fontenl, A.; Toptsidou, M.; Hans, S. Bioeconomy Development in EU Regions. Mapping of EU Member States’ Regions’ Research and Innovation Plans & Strategies for Smart Specialisation (RIS3) on Bioeconomy for 2014-2020; Study commissioned by DG Research & Innovation; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- Lowe, P.; Marsden, T.; Whatmore, S. Regulating Agriculture; David Fulton Publishers: London, UK, 1994; p. 190. [Google Scholar]
- WIFO. Über das BIP hinaus - Österreich auf dem Prüfstand erweiterter Wohlfahrtsmaße; Wirtschaftsforschungsinstitut: Wien, Austria, 2011. [Google Scholar]
- DeFries, R.S.; Foley, J.A.; Asner, G.P. Land-use choices: Balancing human needs and ecosystem function. Front. Ecol. Environ. 2004, 2, 249–257. [Google Scholar] [CrossRef]
- Geist, H.J.; Lambin, E.F. Proximate Causes and Underlying Driving Forces of Tropical Deforestation. BioScience 2002, 52, 143–150. [Google Scholar] [CrossRef]
- Moran, D.; Kanemoto, K. Identifying species threat hotspots from global supply chains. Nat. Ecol. Evol. 2017, 1, 0023. [Google Scholar] [CrossRef]
- IPCC. Summary for policymakers. In Global Warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., et al., Eds.; World Meteorological Organization: Geneva, Switzerland, 2018; p. 32. [Google Scholar]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 1259855. [Google Scholar] [CrossRef] [PubMed]
- Vermeulen, S.J.; Campbell, B.M.; Ingram, J.S. Climate change and food systems. Annu. Rev. Environ. Resour. 2012, 37, 195–222. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019. [Google Scholar] [CrossRef]
- Schanes, K.; Dobernig, K.; Gözet, B. Food waste matters-A systematic review of household food waste practices and their policy implications. J. Clean. Prod. 2018, 182, 978–991. [Google Scholar] [CrossRef]
- EC. The Impact of EU Consumption on Deforestation: Comprehensive Analysis of the Impact of EU Consumption on Deforestation; DG ENV Technical Report 2013-063; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- Bruckner, M.; Häyhä, T.; Giljum, S.; Maus, V.W.; Fischer, G.; Tramberend, S.; Boerner, J. Quantifying the global cropland footprint of the European Union’s non-food bioeconomy. Environ. Res. Lett. 2019, 14, 1–12. [Google Scholar] [CrossRef]
- Giljum, S.; Bruckner, M.; Gözet, B.; de Schutter, L. Land Under Pressure. Global Impacts of the EU Bioeconomy; Friends of the Earth Europe: Brussels, Belgium, 2016. [Google Scholar]
- O’Brien, M.; Wechsler, D.; Bringezu, S.; Schaldach, R. Toward a systemic monitoring of the European bioeconomy: Gaps, needs and the integration of sustainability indicators and targets for global land use. Land Use Policy 2017, 66, 162–171. [Google Scholar] [CrossRef]
- Giddings, B.; Hopwood, B.; O’brien, G. Environment, economy and society: Fitting them together into sustainable development. Sustain. Dev. 2002, 10, 187–196. [Google Scholar] [CrossRef]
- Lewandowski, I. Bioeconomy: Shaping the Transition to a Sustainable, Biobased Economy; Springer: Berlin, Germany, 2017. [Google Scholar]
- Camia, A.; Robert, N.; Jonsson, R.; Pilli, R.; García-Condado, S.; López-Lozano, R.; van der Velde, M.; Ronzon, T.; Gurría, P.; M’Barek, R.; et al. Biomass Production, Supply, Uses and Flows in the European Union. First Results from an Integrated Assessment; Publications Office of the European Union: Luxemburg, Luxembourg, 2018. [Google Scholar]
- Purvis, B.; Mao, Y.; Robinson, D. Three pillars of sustainability: In search of conceptual origins. Sustain. Sci. 2018, 14, 681–695. [Google Scholar] [CrossRef]
- Holling, C.S.; Berkes, F.; Folke, C. Science, sustainability and resource management. Link. Soc. Ecol. Syst. Manag. Pract. Soc. Mech. Build. Resil. 1998, 342, 350–352. [Google Scholar]
- Berkes, F.; Folke, C.; Colding, J. Linking Social and Ecological Systems: Management Practices and Social Mechanisms for Building Resilience; Cambridge University Press: Cambridge, UK; New York, NY, USA, 1998; pp. xvi, 459. [Google Scholar]
- MEA. Millennium Ecosystem Assessment: Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Folke, C. Resilience: The emergence of a perspective for social–ecological systems analyses. Glob. Environ. Chang. 2006, 16, 253–267. [Google Scholar] [CrossRef]
- Ostrom, E. A general framework for analyzing sustainability of social-ecological systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Anderies, J.; Janssen, M.; Ostrom, E. A framework to analyze the robustness of social-ecological systems from an institutional perspective. Ecol. Soc. 2004, 9, art. 18. [Google Scholar] [CrossRef]
- Liu, J.G.; Dietz, T.; Carpenter, S.R.; Alberti, M.; Folke, C.; Moran, E.; Pell, A.N.; Deadman, P.; Kratz, T.; Lubchenco, J.; et al. Complexity of coupled human and natural systems. Science 2007, 317, 1513–1516. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hull, V.; Batistella, M.; DeFries, R.; Dietz, T.; Fu, F.; Hertel, T.W.; Izaurralde, R.C.; Lambin, E.F.; Li, S.; et al. Framing Sustainability in a Telecoupled World. Ecol. Soc. 2013, 18, 26. [Google Scholar] [CrossRef]
- Bell, J.; Paula, L.; Dodd, T.; Nemeth, S.; Nanou, C.; Mega, V.; Campos, P. EU ambition to build the world’s leading bioeconomy—Uncertain times demand innovative and sustainable solutions. New Biotechnol. 2018, 40, 25–30. [Google Scholar] [CrossRef] [PubMed]
- OECD. The Bioeconomy to 2030: Designing a Policy Agenda; OECD: Paris, France, 2009. [Google Scholar]
- European Commission. Innovating for Sustainable Growth: A Bioeconomy for Europe; DG Research and Innovation: Brussels, Belgium, 2012. [Google Scholar]
- White House. National Bioeconomy Blueprint; White House: Washington, DC, USA, 2012. [Google Scholar]
- Schütte, G. What kind of innovation policy does the bioeconomy need? New Biotechnol. 2018, 40, 82–86. [Google Scholar] [CrossRef]
- EC. A Sustainable Bioeconomy for Europe: Strengthening the Connection between Economy, Society and the Environment—Updated Bioeconomy Strategy; Directorate-General for Research and Innovation, Ed.; European Commission: Brussels, Belgium, 2018; p. 103. [Google Scholar] [CrossRef]
- Bugge, M.M.; Hansen, T.; Klitkou, A. What is the bioeconomy? A review of the literature. Sustainability 2016, 8, 691. [Google Scholar] [CrossRef]
- Ramcilovic-Suominen, S.; Pülzl, H. Sustainable development—A ‘selling point’of the emerging EU bioeconomy policy framework? J. Clean. Prod. 2016, 172, 4170–4180. [Google Scholar] [CrossRef]
- Gerber, J.-F.; Scheidel, A. In search of substantive economics: Comparing today’s two major socio-metabolic approaches to the economy–MEFA and MuSIASEM. Ecol. Econ. 2018, 144, 186–194. [Google Scholar] [CrossRef]
- Folke, C.; Biggs, R.; Norström, A.V.; Reyers, B.; Rockström, J. Social-ecological resilience and biosphere-based sustainability science. Ecol. Soc. 2016, 21, art. 41. [Google Scholar] [CrossRef]
- Bruckmeier, K. Social-Ecological Transformation; Springer: Berlin, Germany, 2016. [Google Scholar]
- Egenolf, V.; Bringezu, S. Conceptualization of an Indicator System for Assessing the Sustainability of the Bioeconomy. Sustainability 2019, 11, 443. [Google Scholar] [CrossRef]
- Müller, A.; Sukhdev, P. Measuring What Matters in Agriculture and Food Systems. A Synthesis of the Results and Recommendations of Teeb for Agriculture and Food’s Scientific and Economic Foundations Report; UN Environment: Geneva, Switzerland, 2018. [Google Scholar]
- Scordato, L.; Bugge, M.M.; Fevolden, A.M. Directionality across diversity: Governing contending policy rationales in the transition towards the bioeconomy. Sustainability 2017, 9, 206. [Google Scholar] [CrossRef]
- Hausknost, D.; Schriefl, E.; Lauk, C.; Kalt, G. A Transition to Which Bioeconomy? An Exploration of Diverging Techno-Political Choices. Sustainability 2017, 9, 669. [Google Scholar] [CrossRef]
- Schmidt, O.; Padel, S.; Levidow, L. The bio-economy concept and knowledge base in a public goods and farmer perspective. Bio-Based Appl. Econ. 2012, 1, 47–63. [Google Scholar]
- Marsden, T.; Farioli, F. Natural powers: From the bio-economy to the eco-economy and sustainable place-making. Sustain. Sci. 2015, 10, 331–344. [Google Scholar] [CrossRef]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S., I; Lambin, E.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.; et al. Planetary Boundaries: Exploring the Safe Operating Space for Humanity. Ecol. Soc. 2009, 14, art. 32. [Google Scholar]
- Springmann, M.; Clark, M.; Mason-D’Croz, D.; Wiebe, K.; Bodirsky, B.L.; Lassaletta, L.; de Vries, W.; Vermeulen, S.J.; Herrero, M.; Carlson, K.M. Options for keeping the food system within environmental limits. Nature 2018, 562, 519. [Google Scholar] [CrossRef]
- Conijn, J.; Bindraban, P.; Schröder, J.; Jongschaap, R. Can our global food system meet food demand within planetary boundaries? Agric. Ecosyst. Environ. 2018, 251, 244–256. [Google Scholar] [CrossRef]
- Raworth, K. A safe and just space for humanity: Can we live within the doughnut. Oxfam Policy Pract. Clim. Chang. Resil. 2012, 8, 1–26. [Google Scholar]
- Raworth, K. Perspectives and Pathways Ahead. In Proceedings of the Growth in Transition Conference, Vienna, Austria, 14–15 November 2018; Available online: https://vimeo.com/300946012,34′ (accessed on 15 January 2019).
- Holden, E.; Linnerud, K.; Banister, D. The imperatives of sustainable development. Sustain. Dev. 2017, 25, 213–226. [Google Scholar] [CrossRef]
- Costanza, R.; Fisher, B.; Ali, S.; Beer, C.; Bond, L.; Boumans, R.; Danigelis, N.L.; Dickinson, J.; Elliott, C.; Farley, J. Quality of life: An approach integrating opportunities, human needs, and subjective well-being. Ecol. Econ. 2007, 61, 267–276. [Google Scholar] [CrossRef]
- Rauschmayer, F.; Omann, I.; Frühmann, J. Needs, capabilities and quality of life: Refocusing sustainable development. In Sustainable Development; Rauschmayer, F., Omann, I., Frühmann, J., Eds.; Routledge Studies in Ecological Economics: New York, NY, USA, 2012; pp. 1–24. [Google Scholar]
- Koch, M.; Buch-Hansen, H.; Fritz, M. Shifting priorities in degrowth research: An argument for the centrality of human needs. Ecol. Econ. 2017, 138, 74–81. [Google Scholar] [CrossRef]
- Gabriel, C.-A.; Bond, C. Need, Entitlement and Desert: A Distributive Justice Framework for Consumption Degrowth. Ecol. Econ. 2019, 156, 327–336. [Google Scholar] [CrossRef]
- Brand-Correa, L.I.; Steinberger, J.K. A Framework for Decoupling Human Need Satisfaction From Energy Use. Ecol. Econ. 2017, 141, 43–52. [Google Scholar] [CrossRef]
- Vita, G.; Hertwich, E.; Stadler, K.; Wood, R. Connecting global emissions to fundamental human needs and their satisfaction. Environ. Res. Lett. 2018, 14, 1–16. [Google Scholar] [CrossRef]
- Steinberger, J.K.; Roberts, J.T. From constraint to sufficiency The decoupling of energy and carbon from human needs, 1975-2005. Ecol. Econ. 2010, 70, 425–433. [Google Scholar] [CrossRef]
- Max-Neef, M.A. Development and human needs. In Real-Life Economics: Understanding Wealth Creation; Ekins, P., Max-Neef, M.A., Eds.; Routledge: London, UK; New York, NY, USA, 1992. [Google Scholar]
- Doyal, L.; Gough, I. A Theory of Human Need; Guilford Press: New York, NY, USA, 1991; p. xvi, 365. [Google Scholar]
- Schmidt-Traub, G. On Metrics and Financing for the Sustainable Development Goals. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2018. [Google Scholar]
- Waage, J.; Yap, C.; Bell, S.; Levy, C.; Mace, G.; Pegram, T.; Unterhalter, E.; Dasandi, N.; Hudson, D.; Kock, R. Governing the UN Sustainable Development Goals: Interactions, infrastructures, and institutions. Lancet Glob. Health 2015, 3, e251–e252. [Google Scholar] [CrossRef]
- Schoon, M.; Van der Leeuw, S. The shift toward social-ecological systems perspectives: Insights into the human-nature relationship. Nat. Sci. Sociétés 2015, 23, 166–174. [Google Scholar] [CrossRef]
- Daly, H.E. Economics for a Full World. Great Transition Initiative. Tellus Institute: Cambridge, MA, USA. Available online: https://greattransition.org/publication/economics-for-a-full-world (accessed on 1 March 2019).
- Daly, H.E.; Farley, J. Ecological Economics: Principles and Applications; Island Press: Washington, DC, USA, 2011. [Google Scholar]
- Venkatesan, M. Fostering sustainable bioeconomies: The role of conscious consumption. In Towards a Sustainable. Bioeconomy: Principles, Challenges and Perspectives; Leal Filho, W., Mihaela Pociovălișteanu, D., Borges de Brito, P.R., Borges de Lima, I.E., Eds.; Springer: Berlin, Germany, 2018. [Google Scholar]
- Spash, C.L. Social Ecological Economics. In Routledge Handbook of Ecological Economics; Spash, C.L., Ed.; Routledge: New York, NY, USA, 2017; pp. 3–16. [Google Scholar]
- Cato, M.S. The bioregional economy celebrating the local in production and consumption. In Routledge Handbook of Ecological Economics; Spash, C.L., Ed.; Routledge: New York, NY, USA, 2017; pp. 487–496. [Google Scholar]
- Haberl, H.; Fischer-Kowalski, M.; Krausmann, F.; Weisz, H.; Winiwarter, V. Progress towards sustainability? What the conceptual framework of material and energy flow accounting (MEFA) can offer. Land Use Policy 2004, 21, 199–213. [Google Scholar] [CrossRef]
- Fischer-Kowalski, M.; Haberl, H. Metabolism and Colonization. Modes of Production and the Physical Exchange between Societies and Nature. Innov. Soc. Res. 1993, 6, 415–442. [Google Scholar] [CrossRef]
- Rauschmayer, F.; Omann, I. Needs as a central element of sustainable development. In Routledge Handbook of Ecological Economics; Spash, C.L., Ed.; Routledge: New York, NY, USA, 2017; pp. 246–255. [Google Scholar]
- Folke, C.; Hahn, T.; Olsson, P.; Norberg, J. Adaptive governance of social-ecological systems. Annu. Rev. Environ. Resour. 2005, 30, 441–473. [Google Scholar] [CrossRef]
- Max-Neef, M. Human-Scale Development—Conception, Application and Further Reflection; Apex Press: London, UK, 1991. [Google Scholar]
- Monforti-Ferrario, F.; Pascua, I.P. Energy Use in the EU Food Sector: State of Play and Opportunities for Improvement; Publications Office of the European Union: Luxembourg, Luxembourg, 2015. [Google Scholar]
- Holling, C.S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef]
- Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action; Cambridge University Press: Cambridge, NY, USA, 1990; pp. xviii, 280. [Google Scholar]
- Odum, E.P.; Odum, H. Fundamentals of Ecology; W.B. Saunders Co.: Philadelphia, PA, USA, 1953; p. 387. [Google Scholar]
- Tilly, L.J. The structure and dynamics of Cone Spring. Ecol. Monogr. 1968, 38, 169–197. [Google Scholar] [CrossRef]
- Vernadsky, V.I. The Biosphere; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Walker, B.; Salt, D. Resilience Thinking: Sustaining Ecosystems and People in a Changing World; Island Press: Washington DC, USA, 2012. [Google Scholar]
- Martínez-Fernández, J.; Esteve, M. A critical view of the desertification debate in southeastern Spain. Land Degrad. Dev. 2005, 16, 529–539. [Google Scholar] [CrossRef]
- Bonhommeau, S.; Dubroca, L.; Le Pape, O.; Barde, J.; Kaplan, D.M.; Chassot, E.; Nieblas, A.-E. Eating up the world’s food web and the human trophic level. Proc. Natl. Acad. Sci. USA 2013, 110, 20617–20620. [Google Scholar] [CrossRef]
- Roopnarine, P.D. Humans are apex predators. Proc. Natl. Acad. Sci. USA 2014, 111, E796. [Google Scholar] [CrossRef]
- Goulson, D. An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 2013, 50, 977–987. [Google Scholar] [CrossRef]
- Foster, G.; Dobernig, K.; Gruszka, K.; Schanes, K.; de Schutter, L. Sustainable Consumption and Production (Chapter 5). In Towards a Socio-Ecological Transformation of the Economy; Institute for Ecological Economics, Vienna University of Economics and Business: Vienna, Austria, 2019; pp. 60–73. [Google Scholar]
- Ceaușu, S.; Hofmann, M.; Navarro, L.M.; Carver, S.; Verburg, P.H.; Pereira, H.M. Mapping opportunities and challenges for rewilding in Europe. Conserv. Biol. 2015, 29, 1017–1027. [Google Scholar] [CrossRef] [Green Version]
- Hardin, G. The Tragedy of the Commons. Science 1968, 162, 1243–1248. [Google Scholar] [Green Version]
- Mol, A.P.; Buttel, F.H. The environmental state under pressure: An introduction. In The Environmental State Under Pressure; Emerald Group Publishing Limited: Bingley, UK, 2002; p. 33. [Google Scholar]
- Amblard, L. The potential of collective action for the control of nonpoint source pollution in European rural areas. In Proceedings of the Design and Dynamics of Institutions for Collective Action Conference, Utrecht, The Netherlands, 29 November—1 December 2012. [Google Scholar]
- Poteete, A.R.; Janssen, M.A.; Ostrom, E. Working Together: Collective Action, the Commons, and Multiple Methods in Practice; Princeton University Press: Princeton, NJ, USA, 2010. [Google Scholar]
- Lara, A. Rationality and complexity in the work of Elinor Ostrom. Int. J. Commons 2015, 9, 573–594. [Google Scholar] [CrossRef]
- Van Vliet, J.; de Groot, H.L.; Rietveld, P.; Verburg, P.H. Manifestations and underlying drivers of agricultural land use change in Europe. Landsc. Urban Plan. 2015, 133, 24–36. [Google Scholar] [CrossRef]
- Martín-López, B.; Palomo, I.; García-Llorente, M.; Iniesta-Arandia, I.; Castro, A.J.; Del Amo, D.G.; Gómez-Baggethun, E.; Montes, C. Delineating boundaries of social-ecological systems for landscape planning: A comprehensive spatial approach. Land Use Policy 2017, 66, 90–104. [Google Scholar] [CrossRef]
- Fournier, V. Commoning: On the social organisation of the commons. M@ N@ Gement 2013, 16, 433–453. [Google Scholar] [CrossRef]
- Kircher, M. The Emerging Bioeconomy: Industrial Drivers, Global Impact, and International Strategies. Ind. Biotechnol. 2014, 10, 11–18. [Google Scholar] [CrossRef]
- Kircher, M. The transition to a bio-economy: National perspectives. Biofuelsbioprod. Biorefin. 2012, 6, 240–245. [Google Scholar] [CrossRef]
- Wallerstein, I. World-Systems Analysis; Duke University Press: Durham, NC, USA, 2004; p. 109. [Google Scholar]
- Hornborg, A. Uneven development as a result of the unequal exchange of time and space: Some conceptual issues. J. Fur. Entwickl. 2010, 26, 36–56. [Google Scholar] [CrossRef]
- Liu, J.; Mooney, H.; Hull, V.; Davis, S.J.; Gaskell, J.; Hertel, T.; Lubchenco, J.; Seto, K.C.; Gleick, P.; Kremen, C. Systems integration for global sustainability. Science 2015, 347, 1258832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eakin, H.; Rueda, X.; Mahanti, A. Transforming governance in telecoupled food systems. Ecol. Soc. 2017, 22, art. 32. [Google Scholar] [CrossRef]
- Silva, R.; Batistella, M.; Dou, Y.; Moran, E.; Torres, S.; Liu, J. The Sino-Brazilian telecoupled soybean system and cascading effects for the exporting country. Land 2017, 6, 53. [Google Scholar] [CrossRef]
- Friis, C.; Nielsen, J.Ø. On the system. Boundary choices, implications, and solutions in telecoupling land use change research. Sustainability 2017, 9, 974. [Google Scholar] [CrossRef]
- Coe, N.M.; Kelly, P.F.; Yeung, H.W.-C. Economic Geography: A Contemporary Introduction; Blackwell Oxford: Oxford, UK, 2007; p. 6. [Google Scholar]
- Binder, C.R.; Hinkel, J.; Bots, P.W.; Pahl-Wostl, C. Comparison of frameworks for analyzing social-ecological systems. Ecol. Soc. 2013, 18, 26. [Google Scholar] [CrossRef]
- Ostrom, E. A diagnostic approach for going beyond panaceas. Proc. Natl. Acad. Sci. USA 2007, 104, 15181–15187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epstein, G.; Vogt, J.M.; Mincey, S.K.; Cox, M.; Fischer, B. Missing ecology: Integrating ecological perspectives with the social-ecological system framework. Int. J. Commons 2013, 7, 432–453. [Google Scholar] [CrossRef]
- Vogt, J.M.; Epstein, G.B.; Mincey, S.K.; Fischer, B.C.; McCord, P. Putting the ”E” in SES: Unpacking the ecology in the Ostrom sociale-cological system framework. Ecol. Soc. 2015, 20, 55. [Google Scholar] [CrossRef]
- Godar, J.; Gardner, T. Trade and Land-Use Telecouplings. In Telecoupling; Springer: Berlin, Germany, 2019; pp. 149–175. [Google Scholar]
- Duchin, F. Resources for sustainable economic development: A framework for evaluating infrastructure system alternatives. Sustainability 2017, 9, 2105. [Google Scholar] [CrossRef]
- Courtonne, J.-Y.; Alapetite, J.; Longaretti, P.-Y.; Dupré, D.; Prados, E. Downscaling material flow analysis: The case of the cereal supply chain in France. Ecol. Econ. 2015, 118, 67–80. [Google Scholar] [CrossRef]
- Sun, Z.; Tukker, A.; Behrens, P. Going Global to Local: Connecting Top-Down Accounting and Local Impacts, A Methodological Review of Spatially Explicit Input–Output Approaches. Environ. Sci. Technol. 2018, 53, 1048–1062. [Google Scholar] [CrossRef]
- Chen, G.; Hadjikakou, M.; Wiedmann, T. Urban carbon transformations: Unravelling spatial and inter-sectoral linkages for key city industries based on multi-region input–output analysis. J. Clean. Prod. 2017, 163, 224–240. [Google Scholar] [CrossRef]
- Mustalahti, I. The responsive bioeconomy: The need for inclusion of citizens and environmental capability in the forest based bioeconomy. J. Clean. Prod. 2017, 30, 1e10. [Google Scholar] [CrossRef]
- Kammerlander, M.; de Schutter, L.; Omann, I. The Bioeconomy we need (Manuscript in preparation).
- Chater, N.; Loewenstein, G. The under-appreciated drive for sense-making. J. Econ. Behav. Organ. 2016, 126, 137–154. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.; Rassia, S.; Delioglanis, I. Region-Specific Social Innovation and Community Energy Approaches with an Application Potential in Biogas. In Triggering Sustainable Biogas Energy Communities Through Social Innovation; ISABEL Consortium, 2016. [Google Scholar]
- Harris, P.G. Common but differentiated responsibility: The kyoto protocol and United States policy. N.Y.U Environ. Law J. 1999, 7, 27. [Google Scholar]
- Global Commons Institute. Contraction and Convergence (in the context of climate policy). 1989. Available online: http://www.gci.org.uk/links.html (accessed on 15 September 2019).
- Kitzes, J.; Wackernagel, M.; Loh, J.; Peller, A.; Goldfinger, S.; Cheng, D.; Tea, K. Shrink and share: Humanity’s present and future Ecological Footprint. Philos. Trans. R. Soc. B Biol. Sci. 2007, 363, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Meuleman, L.; Niestroy, I. Common but differentiated governance: A metagovernance approach to make the SDGs work. Sustainability 2015, 7, 12295–12321. [Google Scholar] [CrossRef]
- Steurer, R. Disentangling governance: A synoptic view of regulation by government, business and civil society. Policy Sci. 2013, 46, 387–410. [Google Scholar] [CrossRef]
- Dietz, T.; Börner, J.; Förster, J.; von Braun, J. Governance of the bioeconomy: A global comparative study of national bioeconomy strategies. Sustainability 2018, 10, 3190. [Google Scholar] [CrossRef]
- Marsden, T. Exploring the rural eco-economy: Beyond neoliberalism. Sociol. Rural. 2016, 56, 597–615. [Google Scholar] [CrossRef]
- Alessandrini, M.; Celotti, P.; Dallhammer, E.; Gorny, H.; Gramillano, A.; Schuh, B.; Zingaretti, C. Implementing a Place-Based Approach to EU Industrial Policy Strategy; Commission for Economic Policy, Ed.; European Committee of the Regions, European Union: Brussels, Belgium, 2019. [Google Scholar]
- Queensland Government. Framework for Place-Based Approaches. Supporting our Future State: Advancing Queensland’s Priorities. Available online: https://www.communities.qld.gov.au/community/place-based-approaches/overview (accessed on 15 September 2019).
- Niestroy, I. Sustainable Development Goals at the Subnational Level: Roles and Good Practices for Subnational Governments; The 2014 Regional Sustainable Development Transition Series. SDplanNet Briefing Note; IISD: Winnipeg, Canada, 2014; p. 9. [Google Scholar]
- UN High Level Political Forum. 2017 HLPF Thematic Review of SDG 2: End hunger, achieve food security and improved nutrition, and promote sustainable agriculture. 2017. Available online: https://sustainabledevelopment.un.org/content/documents/14371SDG2_format.revised_FINAL_28_04.pdf (accessed on 17 September 2019).
- UN High Level Political Forum. 2017 HLPF Thematic Review of SDG 1: End Poverty in All its Forms Everywhere. 2017. Available online: https://sustainabledevelopment.un.org/content/documents/14379SDG1format-final_OD.pdf (accessed on 17 September 2019).
- Verones, F.; Moran, D.; Stadler, K.; Kanemoto, K.; Wood, R. Resource footprints and their ecosystem consequences. Sci. Rep. 2017, 7, 40743. [Google Scholar] [CrossRef]
- Kuhmonen, T.; Kuhmonen, I. Rural futures in developed economies: The case of Finland. Technol. Forecast. Soc. Chang. 2015, 101, 366–374. [Google Scholar] [CrossRef]
- Conallin, J.C.; Dickens, C.; Hearne, D.; Allan, C. Stakeholder engagement in environmental water management. In Water for the Environment; Elsevier: Amsterdam, The Netherlands, 2017; pp. 129–150. [Google Scholar]
Author | Concept | Definition |
---|---|---|
Odum and Odum, 1953, Tilly, 1968 | Ecosystems | Biological communities of multiple species in some locale, including the physical and chemical factors and processes that make up their non-living environment, living in symbiosis and competition for resources |
Millennium Ecosystem Assessment, 2005 | Ecosystem Services | Benefits that people obtain from ecosystems. These include provisioning services such as food and water, regulating services such as flood and disease control, cultural services such as spiritual and recreational benefits, and supporting services, such as nutrient cycling |
Berkes and Folke, 1998, Ostrom (2007, 2009) | Social-ecological systems (SES) | Linked systems of people and nature, where social systems and ecosystems co-develop and adapt, emphasizing that humans must be seen as a part of, not apart from, nature |
Rockström et al. 2009 | Planetary Boundaries | Global limits to human perturbation of nine dynamic and interrelated earth-system processes i.e., climate change, biodiversity loss, biogeochemical flows, ocean acidification, land system change, fresh water use, stratospheric ozone depletion, atmospheric aerosol loading, and chemical pollution and release of novel entities, that mark out a ‘safe operating space’ for humanity |
Max-Neef, 1991, 1992 | Fundamental Human Needs | A system of 10 fundamental human needs, i.e., subsistence, protection, affection, understanding, participation, leisure, creation, identity, freedom, and transcendence, that can be sensed as deprivations (poverties) and as drivers of needs satisfaction (development) |
SES Perspective | Systemic Drivers of Resource Use | Environmental Pressures & Impact | Social-Ecological Feedback Loops | Decision Making Context: |
---|---|---|---|---|
Eco-SES (biophysical perspective) | High levels of resource intense satisfiers in high income countries (animal products, bioenergy) | Humans as heterotroph top-predators in the food web, impacting biodiversity and the climate system at multiple levels in the biosphere | Overconsumption of food and energy (overweight, obesity) threatens human health and ecosystem resilience in a growing number of SESs worldwide | Responsible consumption/Physical health: Humans, as heterotroph ecosystem species, need to reduce competition for energy, materials, and nutrients with non-human organisms |
Technology as an artificial enhancer of ecosystem provisioning function, driving scale enlargement and loss in crop diversity (animal feed, biorefinery) | Mechanization, fertilizers (N/P), pesticides, and waste flows, among others, affecting soil functions, bio-diversity, and the climate system | Path dependencies between capital intensive mechanization, industrial scale, and ecosystem degradation, with systemic feedbacks among agriculture, food, biodiversity, and the climate system | Responsible production: Creativity and participation to reduce levels of artificial enhancers (inputs) and waste flows (outputs) as external pressure/stressor of ecosystem functions | |
Soc-SES (social perspective) | Farm-centered governance and self-organisation to sustain multi-functional SES resources as “commons” | Top-down gover-nance (e.g., energy directive) and novel industrial agents change and poten-tially disrupt micro-level governance for social-ecological reproduction | Capitalist and non-capitalist governance structures support and affect reproduction capabilities of SES agents [103], with a distinct difference in SES resilience | Social-ecological reproduction: Agency and shared responsibility to sustain ecosystem functions as a condition for social-ecological reproduction |
Tele-SES (politico-institutional perspective) | Hegemonic trade regimes accumulate cost-efficient biomass commodities at focal-SES | Ecologically unequal exchange among SESs in terms of land use change, water pollution, biodiversity loss & climate change, among others | Environmental degradation increases social vulnerabilities in low income SESs and obstructs autonomy to protect ecosystems. Increased risk of adverse SES feedback loops | Trade and (global) governance/justice: Institutions to prevent unjust impacts of bioeconomy activity among SESs in the global resource use system |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Schutter, L.; Giljum, S.; Häyhä, T.; Bruckner, M.; Naqvi, A.; Omann, I.; Stagl, S. Bioeconomy Transitions through the Lens of Coupled Social-Ecological Systems: A Framework for Place-Based Responsibility in the Global Resource System. Sustainability 2019, 11, 5705. https://doi.org/10.3390/su11205705
de Schutter L, Giljum S, Häyhä T, Bruckner M, Naqvi A, Omann I, Stagl S. Bioeconomy Transitions through the Lens of Coupled Social-Ecological Systems: A Framework for Place-Based Responsibility in the Global Resource System. Sustainability. 2019; 11(20):5705. https://doi.org/10.3390/su11205705
Chicago/Turabian Stylede Schutter, Liesbeth, Stefan Giljum, Tiina Häyhä, Martin Bruckner, Asjad Naqvi, Ines Omann, and Sigrid Stagl. 2019. "Bioeconomy Transitions through the Lens of Coupled Social-Ecological Systems: A Framework for Place-Based Responsibility in the Global Resource System" Sustainability 11, no. 20: 5705. https://doi.org/10.3390/su11205705
APA Stylede Schutter, L., Giljum, S., Häyhä, T., Bruckner, M., Naqvi, A., Omann, I., & Stagl, S. (2019). Bioeconomy Transitions through the Lens of Coupled Social-Ecological Systems: A Framework for Place-Based Responsibility in the Global Resource System. Sustainability, 11(20), 5705. https://doi.org/10.3390/su11205705