Cumulative Environmental Effects of Hydropower Stations Based on the Water Footprint Method—Yalong River Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. EWF of Hydropower Stations
2.2.2. PWF of Hydropower Stations
2.2.3. Monthly Blue Water Scarcity
3. Results and Discussion
3.1. WF of Hydropower Stations
3.1.1. EWF of Different Phases
3.1.2. PWF of Hydropower Stations
3.2. Analysis of Influencing Factors
3.3. Monthly Blue Water Scarcity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jiang, T.; Shen, Z.; Liu, Y.; Hou, Y. Carbon Footprint Assessment of Four Normal Size Hydropower Stations in China. Sustainability 2018, 10, 2018. [Google Scholar] [CrossRef]
- Li, X.-Z.; Chen, Z.-J.; Fan, X.-C.; Cheng, Z.-J. Hydropower development situation and prospects in China. Renew. Sustain. Energy Rev. 2018, 82, 232–239. [Google Scholar] [CrossRef]
- Auestad, I.; Nilsen, Y.; Rydgren, K. Environmental Restoration in Hydropower Development—Lessons from Norway. Sustainability 2018, 10, 3358. [Google Scholar] [CrossRef]
- Lindström, A.; Ruud, A. Whose Hydropower? From Conflictual Management into an Era of Reconciling Environmental Concerns; A Retake of Hydropower Governance towards Win-Win Solutions? Sustainability 2017, 9, 1262. [Google Scholar] [CrossRef]
- Tang, X.; Li, Q.; Wu, M.; Tang, W.; Jin, F.; Haynes, J.; Scholz, M. Ecological Environment Protection in Chinese Rural Hydropower Development Practices: A Review. Water Air Soil Pollut. 2012, 223, 3033–3048. [Google Scholar] [CrossRef]
- Fan, H.; He, D.; Wang, H. Environmental consequences of damming the mainstream Lancang-Mekong River: A review. Earth Sci. Rev. 2015, 146, 77–91. [Google Scholar] [CrossRef]
- Xingang, Z.; Lu, L.; Xiaomeng, L.; Jieyu, W.; Pingkuo, L. A critical-analysis on the development of China hydropower. Renew. Energy 2012. [Google Scholar] [CrossRef]
- Magilligan, F.J.; Nislow, K.H.J.G. Changes in hydrologic regime by dams. Geomorphology 2005, 71, 61–78. [Google Scholar] [CrossRef]
- Ligon, F.K.; Dietrich, W.E.; Trush, W.J.J.B. Downstream ecological effects of dams: A geomorphic perspective. BioScience 1995, 45, 183–192. [Google Scholar] [CrossRef]
- Renã-Fãlt, B.M.; Jansson, R.; Nilsson, C. Effects of hydropower generation and opportunities for environmental flow management in Swedish riverine ecosystems. Freshw. Biol. 2010, 55, 49–67. [Google Scholar] [CrossRef]
- Niu, S.; Insley, M. On the economics of ramping rate restrictions at hydro power plants: Balancing profitability and environmental costs. Energy Econ. 2013, 39, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Fu, B.; Wang, Y.K.; Xu, P.; Yan, K.; Li, M. Value of ecosystem hydropower service and its impact on the payment for ecosystem services. Sci. Total Environ. 2014, 472, 338–346. [Google Scholar] [CrossRef] [PubMed]
- Kataria, M. Willingness to pay for environmental improvements in hydropower regulated rivers. Energy Econ. 2009, 31, 69–76. [Google Scholar] [CrossRef]
- Liu, J.; Zang, C.; Tian, S.; Liu, J.; Yang, H.; Jia, S.; You, L.; Liu, B.; Zhang, M. Water conservancy projects in China: Achievements, challenges and way forward. Global Environ. Change Human Policy Dimens. 2013, 23, 633–643. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Ge, W.; Li, Z.; Wu, Z.; Zhang, H.; Li, J.; Pan, Y. Improved Set Pair Analysis and Its Application to Environmental Impact Evaluation of Dam Break. Water 2019, 11, 821. [Google Scholar] [CrossRef]
- Li, Z.; Li, W.; Ge, W. Weight analysis of influencing factors of dam break risk consequences. Nat. Hazards Earth Syst. Sci. 2018, 18, 3355–3362. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, S.; Louw, K.; Neville, K. In Proceedings of the IHA World Congress Bulletin, International Institute for Sustainable Development (IISD) and International Hydropower Association (IHA). Iguaçu, Brazil, 13–17 June 2011; Issue 1, Volume 139, No. 5. Available online: www.iisd.ca/ymb/hydro/iha2011 (accessed on 25 October 2019).
- Liu, J.; Zhao, D.; Gerbens-Leenes, P.W.; Guan, D. China’s rising hydropower demand challenges water sector. Sci. Rep. 2015, 5, 11446. [Google Scholar] [CrossRef]
- Zhuo, L.; Hoekstra, A.Y.; Wu, P.; Zhao, X.J.S. Monthly blue water footprint caps in a river basin to achieve sustainable water consumption: The role of reservoirs. Water Manag. 2019, 650, 891–899. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. Virtual water trade: A quantification of virtual water flows between nations in relation to international crop trade. Water Sci. Technol. 2003, 49, 203–209. [Google Scholar] [CrossRef]
- Bakken, T.H.; Killingtveit, A.; Engeland, K.; Alfredsen, K.; Harby, A. Water consumption from hydropower plants—Review of published estimates and an assessment of the concept. Hydrol. Earth Syst. Sci. 2013, 17, 3983–4000. [Google Scholar] [CrossRef]
- Pfister, S.; Saner, D.; Koehler, A. The environmental relevance of freshwater consumption in global power production. Int. J. Life Cycle Assess. 2011, 16, 580–591. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, M.M.; Hoekstra, A.Y. The blue water footprint of electricity from hydropower. Hydrol. Earth Syst. Sci. 2012, 16, 179–187. [Google Scholar] [CrossRef] [Green Version]
- Herath, I.; Deurer, M.; Horne, D.; Singh, R.; Clothier, B. The water footprint of hydroelectricity: A methodological comparison from a case study in New Zealand. J. Clean. Prod. 2011, 19, 1582–1589. [Google Scholar] [CrossRef]
- Xie, X.; Jiang, X.; Zhang, T.; Huang, Z. Regional water footprints assessment for hydroelectricity generation in China. Renew. Energy 2019, 138, 316–325. [Google Scholar] [CrossRef]
- Gerbens-Leenes, P.W.; Hoekstra, A.Y.; van der Meer, T. The water footprint of energy from biomass: A quantitative assessment and consequences of an increasing share of bio-energy in energy supply. Ecol. Econ. 2009, 68, 1052–1060. [Google Scholar] [CrossRef]
- Gleick, P.H. Water and Energy. Annu. Rev. Energy Environ. 1994, 19, 267–299. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Mekonnen, M.M.; Chapagain, A.K.; Mathews, R.E.; Richter, B.D. Global monthly water scarcity: Blue water footprints versus blue water availability. PLoS ONE 2012, 7, e32688. [Google Scholar] [CrossRef]
- Zeng, Z.; Liu, J.; Koeneman, P.H.; Zarate, E.; Hoekstra, A.Y. Assessing water footprint at river basin level: a case study for the Heihe River Basin in northwest China. Hydrol. Earth Syst. Sci. 2012, 16, 2771–2781. [Google Scholar] [CrossRef] [Green Version]
- Schyns, J.F.; Hoekstra, A.Y. The added value of water footprint assessment for national water policy: A case study for Morocco. PLoS ONE 2014, 9, e99705. [Google Scholar] [CrossRef]
- Mekonnen, M.; Pahlow, M.; Aldaya, M.; Zarate, E.; Hoekstra, A. Sustainability, Efficiency and Equitability of Water Consumption and Pollution in Latin America and the Caribbean. Sustainability 2015, 7, 2086–2112. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Lei, X.; Wen, X.; Fang, G.; Tan, Q.; Tian, Y.; Wang, C.; Wang, H. Effects of damming and climatic change on the eco-hydrological system: A case study in the Yalong River, Southwest China. Ecol. Indic. 2018. [Google Scholar] [CrossRef]
- Zhu, Y.; Ji, C.; Zhou, T.; Cao, Y.; Zhang, Y.; Yu, S. Water footprint analysis of generation operation of cascade hydropower stations. Water Resour. Power 2013, 31, 87–90. (In Chinese) [Google Scholar]
- He, Y.; Ji, C.; Shi, P. Calculation analysis and discussion of blue water footprint for hydropower station. Water Resour. Power 2015, 33, 37–41. (In Chinese) [Google Scholar]
- Yuan, X.; Lu, Y.; He, K. Research on water footprint of hydropower in middle-lower reaches of Lancangjing River. Water Resour. Power 2018, 36, 37–39. (In Chinese) [Google Scholar]
Hydropower Station | Reservoir Water Surface Area/ha | Evaporation | Installed Capacity/MW | Annual Generation Capacity/108 Kwh | Product WF/m3GJ−1 | |
---|---|---|---|---|---|---|
mm yr−1 | m3 yr−1 | |||||
Muluo | 870 | 903.97 | 786455.64 | 160 | 7.16 | 0.31 |
Renda | 10190 | 903.97 | 9208853.16 | 400 | 18.15 | 1.41 |
Linda | 870 | 903.97 | 786455.64 | 144 | 6.59 | 0.33 |
Lean | 870 | 903.97 | 786455.64 | 99 | 4.52 | 0.48 |
Xinlong | 10190 | 903.97 | 9208853.16 | 220 | 10.11 | 2.53 |
Gongke | 10190 | 1046.27 | 10658457.12 | 400 | 17.16 | 1.73 |
Jiaxi | 10190 | 1046.27 | 10658457.12 | 360 | 16.19 | 1.83 |
Lianghekou | 109020 | 1046.27 | 114064355.4 | 3000 | 108.9 | 2.91 |
Yagen I | 14690 | 1046.27 | 15369706.3 | 214 | 9.51 | 4.49 |
Yagen II | 10190 | 1046.27 | 10658457.12 | 990 | 44.33 | 0.67 |
Lenggu | 10190 | 1046.27 | 10658457.12 | 2718 | 124.68 | 0.24 |
Mengdigou | 14690 | 905.11 | 13296065.9 | 2200 | 89.30 | 0.41 |
Yangfanggou | 10190 | 905.11 | 9220446.08 | 1500 | 69.43 | 0.37 |
Kala | 10190 | 905.11 | 9220446.08 | 1000 | 51.64 | 0.50 |
Jinping I | 82550 | 905.11 | 74716830.5 | 3600 | 180.90 | 1.15 |
Jinping II | 870 | 905.11 | 787445.7 | 4800 | 258.80 | 0.01 |
Guandi | 14690 | 905.11 | 13296065.9 | 2400 | 99.50 | 0.37 |
Ertan | 100600 | 1454.43 | 146315658 | 3300 | 176.70 | 2.30 |
Tongzilin | 5600 | 1454.43 | 8144808 | 600 | 30.20 | 0.75 |
<100% | 100%–150% | 150%–200% | >200% |
---|---|---|---|
low blue water scarcity | moderate blue water scarcity | significant blue water scarcity | severe blue water scarcity |
PWF/m3GJ−1 | Study Area | Spatial Scale | Number of Hydropower Stations | Source | ||
---|---|---|---|---|---|---|
Min | Max | Average | ||||
0.01 | 56.00 | 1.50 | California, State | Provincial-level | / | Gleick (1994) [27] |
0.75 | 5.01 | 8.86 | North Island of New Zealand | National-level | 9 | Herath (2011) [24] |
0.80 | 32.48 | 2.17 | South Island of New Zealand | 8 | Herath (2011) [24] | |
0.28 | 166.67 | 6.94 | Global | Global-level | / | Pfister (2011) [22] |
0.30 | 846.00 | 68.00 | Global | Global-level | 35 | Mekonnen (2012) [23] |
0.40 | 3.58 | 1.51 | Jinsha River Basin, China | Basin-level | 6 | ZHU Yanxia (2013) [33] |
0.001 | 4234 | 3.60 | China | National-level | 209 | Junguo Liu (2015) [18] |
/ | / | 6.75 | China | National-level | 283 | HE Yang (2015) [34] |
1.15 | 5.35 | 2.23 | Lancang River Basin, China | Basin-level | 8 | YUAN XU (2018) [35] |
0.01 | 2.91 | 1.13 | Yalong River Basin, China | Basin-level | 19 | This study |
Primary Energy Carriers | Average Product WF/m3GJ−1 |
---|---|
Crude coal a | 0.20 |
Crude oil a | 1.10 |
Natural gas a | 0.10 |
Biomass b | 72.00 |
Hydropower c | 1.20 |
Nuclear energy a | 0.10 |
Wind energy a | 0 |
Solar thermal energy a | 0.30 |
Month | Agricultural Sector | Industrial Sector | Residents’ Living Sector | Eco-Environment Sector | Established Phase I | Ongoing Phase II | Proposed Phase III | Planning Phase IV |
---|---|---|---|---|---|---|---|---|
1 | 2.62 | 0.32 | 0.11 | 0.10 | 0.20 | 0.10 | 0.05 | 0.04 |
2 | 2.62 | 0.32 | 0.11 | 0.11 | 0.20 | 0.10 | 0.05 | 0.04 |
3 | 2.62 | 0.32 | 0.11 | 0.14 | 0.20 | 0.10 | 0.05 | 0.04 |
4 | 2.62 | 0.32 | 0.11 | 0.16 | 0.20 | 0.10 | 0.05 | 0.04 |
5 | 2.62 | 0.32 | 0.11 | 0.17 | 0.20 | 0.10 | 0.05 | 0.04 |
6 | 2.62 | 0.32 | 0.11 | 0.16 | 0.20 | 0.10 | 0.05 | 0.04 |
7 | 3.71 | 0.32 | 0.11 | 0.17 | 0.20 | 0.10 | 0.05 | 0.04 |
8 | 4.09 | 0.32 | 0.11 | 0.17 | 0.20 | 0.10 | 0.05 | 0.04 |
9 | 4.05 | 0.32 | 0.11 | 0.15 | 0.20 | 0.10 | 0.05 | 0.04 |
10 | 3.91 | 0.32 | 0.11 | 0.13 | 0.20 | 0.10 | 0.05 | 0.04 |
11 | 2.80 | 0.32 | 0.11 | 0.11 | 0.20 | 0.10 | 0.05 | 0.04 |
12 | 2.62 | 0.32 | 0.11 | 0.10 | 0.20 | 0.10 | 0.05 | 0.04 |
Month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | |||||||||||||
2006 | 26.70 | 24.19 | 21.73 | 19.19 | 22.85 | 58.90 | 77.49 | 46.60 | 44.50 | 59.43 | 25.66 | 18.43 | |
2015 | 46.73 | 44.13 | 57.11 | 46.73 | 32.97 | 53.03 | 69.72 | 88.64 | 202.87 | 100.51 | 48.58 | 24.89 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, L.; Jia, B.; Wu, S.; Wu, X.; Xu, P.; Dai, J.; Wang, F.; Ma, L. Cumulative Environmental Effects of Hydropower Stations Based on the Water Footprint Method—Yalong River Basin, China. Sustainability 2019, 11, 5958. https://doi.org/10.3390/su11215958
Yu L, Jia B, Wu S, Wu X, Xu P, Dai J, Wang F, Ma L. Cumulative Environmental Effects of Hydropower Stations Based on the Water Footprint Method—Yalong River Basin, China. Sustainability. 2019; 11(21):5958. https://doi.org/10.3390/su11215958
Chicago/Turabian StyleYu, Lei, Benyou Jia, Shiqiang Wu, Xiufeng Wu, Peng Xu, Jiangyu Dai, Fangfang Wang, and Liming Ma. 2019. "Cumulative Environmental Effects of Hydropower Stations Based on the Water Footprint Method—Yalong River Basin, China" Sustainability 11, no. 21: 5958. https://doi.org/10.3390/su11215958
APA StyleYu, L., Jia, B., Wu, S., Wu, X., Xu, P., Dai, J., Wang, F., & Ma, L. (2019). Cumulative Environmental Effects of Hydropower Stations Based on the Water Footprint Method—Yalong River Basin, China. Sustainability, 11(21), 5958. https://doi.org/10.3390/su11215958