The Assessment of Carbon Performance under the Region-Sector Perspective based on the Nonparametric Estimation: A Case Study of the Northern Province in China
Abstract
:1. Introduction
2. Methodology
2.1. SBM DEA Model with Undesirable Output
SBM DEA Model with Undesirable Output
2.2. Global Malmquist-Luenberger Index (GMLI)
3. Case Study
3.1. Research Zone
3.2. Data
4. Results and Discussion
4.1. Results
4.1.1. Regional Perspective
4.1.2. Industrial Perspective
4.1.3. The Dual-Perspective of Region–Sector
4.1.4. Uncertainty Analysis
4.2. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, Y.-J.; Hao, J.-F.; Song, J. The CO2 emission efficiency, reduction potential and spatial clustering in China’s industry: Evidence from the regional level. Appl. Energy 2016, 174, 213–223. [Google Scholar] [CrossRef]
- Kounetas, K. Heterogeneous technologies, strategic groups and environmental efficiency technology gaps for European countries. Energy Policy 2015, 83, 277–287. [Google Scholar] [CrossRef]
- Juudit, O.; Jukka, H.; Seppo, J. New Energy Efficient Housing Has Reduced Carbon Footprints in Outer but Not in Inner Urban Areas. Environ. Sci. Technol. 2015, 49, 9574–9583. [Google Scholar] [Green Version]
- Wang, K.; Yu, S.; Zhang, W. China’s regional energy and environmental efficiency: A DEA window analysis based dynamic evaluation. Math. Comput. Model. 2013, 58, 1117–1127. [Google Scholar] [CrossRef]
- Li, Y.; Sun, L.; Feng, T.; Zhu, C. How to reduce energy intensity in China: A regional comparison perspective. Energy Policy 2013, 61, 513–522. [Google Scholar] [CrossRef]
- Yan, D.; Lei, Y.; Li, L.; Song, W. Carbon emission efficiency and spatial clustering analyses in China’s thermal power industry: Evidence from the provincial level. J. Clean. Prod. 2017, 156, 518–527. [Google Scholar] [CrossRef]
- Yao, X.; Zhou, H.; Zhang, A.; Li, A. Regional energy efficiency, carbon emission performance and technology gaps in China: A meta-frontier non-radial directional distance function analysis. Energy Policy 2015, 84, 142–154. [Google Scholar] [CrossRef]
- Wang, Q.; Chiu, Y.H.; Chiu, C.R. Non-radial metafrontier approach to identify carbon emission performance and intensity. Renew. Sustain. Energy Rev. 2017, 69, 664–672. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, G.; Zhao, Y. An analysis of Chinese provincial carbon dioxide emission efficiencies based on energy consumption structure. Energy Policy 2016, 96, 524–533. [Google Scholar] [CrossRef]
- Shan, Y.; Liu, J.; Liu, Z.; Xu, X.; Shao, S.; Wang, P.; Guan, D. New provincial CO2 emission inventories in China based on apparent energy consumption data and updated emission factors. Appl. Energy 2016, 184, 742–750. [Google Scholar] [CrossRef]
- Chen, S.; Golley, J. ‘Green’ productivity growth in China’s industrial economy. Energy Econ. 2014, 44, 89–98. [Google Scholar] [CrossRef]
- Xin, Y.; Guo, C.; Shuai, S.; Jiang, Z. Total-factor CO2 emission performance of China’s provincial industrial sector: A meta-frontier non-radial Malmquist index approach. Appl. Energy 2016, 184, S0306261916311515. [Google Scholar]
- Sun, J.W. The decrease of CO2 emission intensity is decarbonization at national and global levels. Energy Policy 2005, 33, 975–978. [Google Scholar] [CrossRef]
- Zhu, Z.S.; Liao, H.; Cao, H.S.; Wang, L.; Wei, Y.M.; Yan, J. The differences of carbon intensity reduction rate across 89 countries in recent three decades. Appl. Energy 2014, 113, 808–815. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, L.; Liu, J. Industrial structure, technical progress and carbon intensity in China’s provinces. Renew. Sustain. Energy Rev. 2017, 81. [Google Scholar] [CrossRef]
- Lee, C.-C.; Chang, C.-P. Stochastic convergence of per capita carbon dioxide emissions and multiple structural breaks in OECD countries. Econ. Model. 2009, 26, 1375–1381. [Google Scholar] [CrossRef]
- Jobert, T.; Karanfil, F.; Tykhonenko, A. Convergence of per capita carbon dioxide emissions in the EU: Legend or reality? Energy Econ. 2010, 32, 1364–1373. [Google Scholar] [CrossRef]
- Lin, B.; Li, X. The effect of carbon tax on per capita CO2 emissions. Energy Policy 2011, 39, 5137–5146. [Google Scholar] [CrossRef]
- Lu, M.; Wang, X.; Cang, Y. Carbon Productivity: Findings from Industry Case Studies in Beijing. Energies 2018, 11, 2796. [Google Scholar] [CrossRef]
- Hu, X.; Liu, C. Carbon productivity: A case study in the Australian construction industry. J. Clean. Prod. 2016, 112, 2354–2362. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, Z.; Peng, Z.; Zhou, D. Energy efficiency and production technology heterogeneity in China: A meta-frontier DEA approach. Econ. Model. 2013, 35, 283–289. [Google Scholar] [CrossRef]
- Lin, B.; Du, K. Modeling the dynamics of carbon emission performance in China: A parametric Malmquist index approach. Energy Econ. 2015, 49, 550–557. [Google Scholar] [CrossRef]
- Wang, C.; Zhan, J.; Bai, Y.; Chu, X.; Zhang, F. Measuring carbon emission performance of industrial sectors in the Beijing-Tianjin-Hebei region, China: A stochastic frontier approach. Sci. Total Environ. 2019, 685, 786–794. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Ang, B.W.; Han, J.Y. Total factor carbon emission performance: A Malmquist index analysis. Energy Econ. 2010, 32, 194–201. [Google Scholar] [CrossRef]
- Herrala, R.; Goel, R.K. Global CO2 efficiency: Country-wise estimates using a stochastic cost frontier. Energy Policy 2012, 45, 762–770. [Google Scholar] [CrossRef]
- Dong, F.; Li, X.; Long, R.; Liu, X. Regional carbon emission performance in China according to a stochastic frontier model. Renew. Sustain. Energy Rev. 2013, 28, 525–530. [Google Scholar] [CrossRef]
- Andor, M.; Sommer, S.; Parmeter, C. Combining Uncertainty with Uncertainty to Get Certainty? Efficiency Analysis for Regulation Purposes. Eur. J. Oper. Res. 2019, 274, 240–252. [Google Scholar] [CrossRef]
- Kao, C. Network data envelopment analysis: A review. Eur. J. Oper. Res. 2014, 239, 1–16. [Google Scholar] [CrossRef]
- Thijssen, G.J. Environmental efficiency with multiple environmentally detrimental variables; estimated with SFA and DEA. Eur. J. Oper. Res. 2000, 121, 287–303. [Google Scholar]
- Zhao, L.; Zha, Y.; Zhuang, Y.; Liang, L. Data envelopment analysis for sustainability evaluation in China: Tackling the economic, environmental, and social dimensions. Eur. J. Oper. Res. 2019, 275, 1083–1095. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Z.; Ma, D.; Zhao, P. Measuring Carbon Emissions Performance in 123 Countries: Application of Minimum Distance to the Strong Efficiency Frontier Analysis. Sustainability 2013, 5, 5319–5332. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Su, B.; Zhou, P.; Chiu, C.-R. Measuring total-factor CO2 emission performance and technology gaps using a non-radial directional distance function: A modified approach. Energy Econ. 2016, 56, 475–482. [Google Scholar] [CrossRef]
- Wang, Q.W.; Zhou, P.; Zhou, D.Q. Research on Dynamic Carbon Dioxide Emissions Performance, Regional Disparity and Affecting Factors in China. China Ind. Econ. 2010, 33, 45–54. [Google Scholar]
- Lin, B.; Du, K. Energy and CO2 emissions performance in China’s regional economies: Do market-oriented reforms matter? Energy Policy 2015, 78, 113–124. [Google Scholar] [CrossRef]
- Zhong, J. Biased Technical Change, Factor Substitution, and Carbon Emissions Efficiency in China. Sustainability 2019, 11, 955. [Google Scholar] [CrossRef]
- Wang, S.; Wang, H.; Zhang, L.; Dang, J. Provincial Carbon Emissions Efficiency and Its Influencing Factors in China. Sustainability 2019, 11, 2355. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, C.; Zeng, X.; Jiang, Y.; Liu, W. Carbon emission performance evaluation and allocation in Chinese cities. J. Clean. Prod. 2018, 172, 1254–1272. [Google Scholar] [CrossRef]
- Fei, R.; Lin, B. The integrated efficiency of inputs–outputs and energy—CO2 emissions performance of China’s agricultural sector. Renew. Sustain. Energy Rev. 2017, 75, 668–676. [Google Scholar] [CrossRef]
- Hu, X.; Si, T.; Liu, C. Total factor carbon emission performance measurement and development. J. Clean. Prod. 2017, 142, 2804–2815. [Google Scholar] [CrossRef]
- Ning, Z.; Xiao, W. Dynamic total factor carbon emissions performance changes in the Chinese transportation industry. Appl. Energy 2015, 146, 409–420. [Google Scholar]
- Ning, Z.; Peng, Z.; Kung, C.C. Total-factor carbon emission performance of the Chinese transportation industry: A bootstrapped non-radial Malmquist index analysis. Renew. Sustain. Energy Rev. 2015, 41, 584–593. [Google Scholar]
- Yang, J.; Tang, L.; Mi, Z.; Liu, S.; Li, L.; Zheng, J. Carbon emissions performance in logistics at the city level. J. Clean. Prod. 2019, 231, 1258–1266. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, L.; Liu, J.; Zhang, H. Total-factor carbon emission efficiency of China’s provincial industrial sector and its dynamic evolution. Renew. Sustain. Energy Rev. 2018, 94, 330–339. [Google Scholar] [CrossRef]
- Lee, M.; Zhang, N. Technical efficiency, shadow price of carbon dioxide emissions, and substitutability for energy in the Chinese manufacturing industries. Energy Econ. 2012, 34, 1492–1497. [Google Scholar] [CrossRef]
- Zhang, N.; Choi, Y. Total-factor carbon emission performance of fossil fuel power plants in China: A metafrontier non-radial Malmquist index analysis. Energy Econ. 2013, 40, 549–559. [Google Scholar] [CrossRef]
- Zhang, N.; Choi, Y. A comparative study of dynamic changes in CO2 emission performance of fossil fuel power plants in China and Korea. Energy Policy 2013, 62, 324–332. [Google Scholar] [CrossRef]
- Lin, B.; Chen, X. Evaluating the CO2 Performance of China’s Non-ferrous Metals Industry: A Total Factor Meta-frontier Malmquist Index Perspective. J. Clean. Prod. 2019, 209, 1061–1077. [Google Scholar] [CrossRef]
- Lin, B.; Tan, R. China’s CO2 emissions of a critical sector: Evidence from energy intensive industries. J. Clean. Prod. 2017, 142, 4270–4281. [Google Scholar] [CrossRef]
- Wu, F.; Fan, L.W.; Zhou, P.; Zhou, D.Q. Industrial energy efficiency with CO2 emissions in China: A nonparametric analysis. Energy Policy 2012, 49, 164–172. [Google Scholar] [CrossRef]
- Cheng, Z.; Shi, X. Can Industrial Structural Adjustment Improve the Total-Factor Carbon Emission Performance in China? Int. J. Environ. Res. Public Health 2018, 15, 2291. [Google Scholar] [CrossRef]
- Xie, B.-C.; Duan, N.; Wang, Y.-S. Environmental efficiency and abatement cost of China’s industrial sectors based on a three-stage data envelopment analysis. J. Clean. Prod. 2017, 153, 626–636. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, B.; Liu, Z. Carbon emissions dynamics, efficiency gains, and technological innovation in China’s industrial sectors. Energy 2016, 99, 10–19. [Google Scholar] [CrossRef]
- Yu, S.; Hu, X.; Fan, J.-L.; Cheng, J. Convergence of carbon emissions intensity across Chinese industrial sectors. J. Clean. Prod. 2018, 194, 179–192. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, F.; Ma, X.; He, L. Carbon emissions efficiency in China: Key facts from regional and industrial sector. J. Clean. Prod. 2019, 206, 850–869. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.T.; Zhang, N.; Danao, D.; Zhang, N. Environmental efficiency analysis of transportation system in China: A non-radial DEA approach. Energy Policy 2013, 58, 277–283. [Google Scholar] [CrossRef]
- Zhou, P.; Ang, B.W.; Poh, K.L. Slacks-based efficiency measures for modeling environmental performance. Ecol. Econ. 2007, 60, 111–118. [Google Scholar] [CrossRef]
- Choi, Y.; Ning, Z.; Zhou, P. Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure. Appl. Energy 2012, 98, 198–208. [Google Scholar] [CrossRef]
- Oh, D.H. A global Malmquist-Luenberger productivity index. J. Prod. Anal. 2010, 34, 183–197. [Google Scholar] [CrossRef]
- Xia, K.; Guo, J.-K.; Han, Z.-L.; Dong, M.-R.; Xu, Y. Analysis of the scientific and technological innovation efficiency and regional differences of the land–sea coordination in China’s coastal areas. Ocean Coast. Manag. 2019, 172, 157–165. [Google Scholar]
- Qin, X.; Wang, X.; Xu, Y.; Wei, Y. Exploring Driving Forces of Green Growth: Empirical Analysis on China’s Iron and Steel Industry. Sustainability 2019, 11, 1122. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China (NBSC). China Statistical Yearboo; China Statistics Press: Beijing, China, 2007–2016.
- National Bureau of Statistics of China (NBSC). China Industrial Economic Statistical Yearbook; China Statistics Press: Beijing, China, 2007–2016.
- IPCC. IPCC Guidelines for National Greenhouse Gas Inventories. 2006. Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/ (accessed on 30 October 2018).
Sector Number | Industries |
---|---|
Sector 1 | Mining and Washing of Coal |
Sector 2 | Extraction of Petroleum and Natural Gas |
Sector 3 | Mining and Processing of Metal |
Sector 4 | Mining and Processing of Nonmetal and Other Ores |
Sector 5 | Manufacture of Foods and Manufacture of Tobacco |
Sector 6 | Manufacture of Textile |
Sector 7 | Manufacture of Textile, Wearing Apparel and Accessories, Leather, Fur, Feather and Related Products and Footwear |
Sector 8 | Processing of Timber and Manufacture of Furniture |
Sector 9 | Manufacture of Paper Printing, Culture, Education and Sports Goods |
Sector 10 | Processing of Petroleum, Coking and Processing of Nuclear Fuel |
Sector 11 | Chemical Industry |
Sector 12 | Manufacture of Non-metallic Mineral Products |
Sector 13 | Smelting and Pressing of Metals |
Sector 14 | Manufacture of Metal Products |
Sector 15 | Manufacture of General and Special Purpose Machinery |
Sector 16 | Manufacture of Transport Equipment |
Sector 17 | Manufacture of Electrical Machinery and Apparatus |
Sector 18 | Manufacture of Computers, Communication and Other Electronic Equipment |
Sector 19 | Manufacture of Instrumentation and Cultural Office Machinery |
Sector 20 | Production and Supply of Electric Power and Heat Power |
Sector 21 | Production and Supply of Gas |
Sector 22 | Production and Supply of Water |
Variable | Short | Obs | Mean | Std. Dev | Min | Max |
---|---|---|---|---|---|---|
Capital input (109 Yuan) | K | 1721 | 20.235 | 37.092 | 0.001 | 327.585 |
Labor input (103 persons) | L | 1721 | 130.821 | 372.936 | 0.023 | 4688.464 |
Energy input (103 t) | E | 1721 | 2443.566 | 5922.500 | 0.172 | 52,006.533 |
GDP (109 Yuan) | Y | 1721 | 14.986 | 26.693 | 0.004 | 185.374 |
CO2 (103 t) | C | 1721 | 4987.464 | 12,370.669 | 0.109 | 122,471.301 |
Sector | Jilin | Heilong jiang | Liaoning | Gansu | Inner Mongolia | Ningxia | Xinjiang | Beijing |
---|---|---|---|---|---|---|---|---|
1 | 1.041 | 1.003 | 1.004 | 0.993 | 1.060 | 1.016 | 1.006 | 1.019 |
2 | 1.017 | 1.004 | 1.007 | 1.062 | 1.062 | 1.014 | 1.003 | – |
3 | 1.054 | 1.002 | 1.065 | 0.995 | 1.023 | – | 0.998 | 1.003 |
4 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | – | 1.000 | 1.000 |
5 | 1.077 | 1.011 | 1.026 | 1.011 | 1.005 | 0.998 | 1.005 | 1.049 |
6 | 1.013 | 1.038 | 1.011 | 1.007 | 1.070 | 0.975 | 1.001 | 1.002 |
7 | 1.013 | 0.944 | 1.017 | 1.000 | 1.040 | – | 1.010 | 1.012 |
8 | 1.042 | 0.995 | 1.060 | 1.045 | 1.039 | 1.065 | 1.003 | 1.025 |
9 | 1.015 | 1.001 | 1.055 | 1.001 | 1.074 | 1.002 | 1.015 | 1.045 |
10 | 1.078 | 0.998 | 1.008 | 1.003 | 1.006 | 1.017 | – | – |
11 | 1.031 | 1.025 | 1.053 | 0.998 | 1.079 | 1.002 | 1.001 | 1.077 |
12 | 1.049 | 1.043 | 1.054 | 0.986 | 1.022 | 1.001 | 1.014 | 1.039 |
13 | 1.055 | 1.014 | 1.011 | 0.982 | 1.004 | 1.018 | 1.013 | 0.992 |
14 | 1.018 | 1.010 | 1.049 | 0.991 | 1.102 | 1.048 | 1.028 | 1.036 |
15 | 1.071 | 0.977 | 1.074 | 1.014 | 1.104 | 1.024 | 1.034 | 1.072 |
16 | 1.046 | 0.996 | 1.012 | 1.036 | 1.049 | – | – | 1.066 |
17 | 1.029 | 0.968 | 1.015 | 1.052 | 1.085 | 1.051 | 1.073 | 1.070 |
18 | 1.012 | 1.043 | 1.013 | 0.999 | 1.021 | – | 1.056 | 1.053 |
19 | 1.074 | 0.982 | 1.041 | 1.048 | – | – | – | 1.059 |
20 | 1.030 | 0.960 | 0.985 | 1.007 | 0.988 | 0.980 | 1.022 | 1.056 |
21 | 1.003 | 1.006 | 1.001 | 0.983 | 0.994 | 0.986 | 1.043 | 1.025 |
22 | 1.002 | 1.002 | 1.002 | 1.005 | 1.000 | 1.003 | 1.101 | 1.004 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wang, S.; Wang, X.; Li, W.; Song, J.; Duan, H.; Wang, S. The Assessment of Carbon Performance under the Region-Sector Perspective based on the Nonparametric Estimation: A Case Study of the Northern Province in China. Sustainability 2019, 11, 6031. https://doi.org/10.3390/su11216031
Wang X, Wang S, Wang X, Li W, Song J, Duan H, Wang S. The Assessment of Carbon Performance under the Region-Sector Perspective based on the Nonparametric Estimation: A Case Study of the Northern Province in China. Sustainability. 2019; 11(21):6031. https://doi.org/10.3390/su11216031
Chicago/Turabian StyleWang, Xian’En, Shimeng Wang, Xipan Wang, Wenbo Li, Junnian Song, Haiyan Duan, and Shuo Wang. 2019. "The Assessment of Carbon Performance under the Region-Sector Perspective based on the Nonparametric Estimation: A Case Study of the Northern Province in China" Sustainability 11, no. 21: 6031. https://doi.org/10.3390/su11216031
APA StyleWang, X., Wang, S., Wang, X., Li, W., Song, J., Duan, H., & Wang, S. (2019). The Assessment of Carbon Performance under the Region-Sector Perspective based on the Nonparametric Estimation: A Case Study of the Northern Province in China. Sustainability, 11(21), 6031. https://doi.org/10.3390/su11216031