Halophyte Common Ice Plants: A Future Solution to Arable Land Salinization
Abstract
:1. Introduction
2. Wild Plant
2.1. Origin and Diffusion
2.2. Ecology and Morphology
2.3. Physiology
3. Nursery Production
Seed Germination
4. Crop Production
4.1. Light Requirement
4.2. PGPR (Plant Growth-Promoting Rhizobacteria) Promotion
5. Crop and Salt Stress Regulation
6. Secondary Metabolites
7. Phytoremediation Ability
8. Human Health
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Development Report: Agriculture for Development; World Bank: Washington, DC, USA, 2008.
- Nikalje, G.C.; Srivastava, A.K.; Pandey, G.K.; Suprasanna, P. Halophytes in biosaline agriculture: Mechanism, utilization, and value addition. Land Degrad. Dev. 2018, 29, 1081–1095. [Google Scholar] [CrossRef]
- Duarte, B.; Sleimi, N.; CaA§ador, I. Biophysical and biochemical constraints imposed by salt stress: Learning from halophytes. Front. Plant Sci. 2014, 5, 746. [Google Scholar] [CrossRef] [PubMed]
- Atzori, G.; De Vos, A.C.; van Rijsselberghe, M.; Vignolini, P.; Rozema, J.; Mancuso, S.; Van Bodegom, P.M. Effects of increased seawater salinity irrigation on growth and quality of the edible halophyte Mesembryanthemum crystallinum L. under field conditions. Agric. Water Manag. 2017, 187, 37–46. [Google Scholar] [CrossRef]
- Barreira, L.; Resek, E.; Rodrigues, M.J.; Rocha, M.I.; Pereira, H.; Bandarra, N.; Da Silva, M.M.; Varela, J.; Custodio, L. Halophytes: Gourmet food with nutritional health benefits? J. Food Compos. Anal. 2017, 59, 35–42. [Google Scholar] [CrossRef]
- Colmer, T.D.; Flowers, T.J. Flooding tolerance in halophytes. New Phytol. 2008, 179, 964–974. [Google Scholar] [CrossRef]
- Shabala, S.; Bose, J.; Hedrich, R. Salt bladders: Do they matter? Trends Plant Sci. 2014, 19, 687–691. [Google Scholar] [CrossRef]
- Panta, S.; Flowers, T.; Lane, P.; Doyle, R.; Haros, G.; Shabala, S. Halophyte agriculture: Success stories. Environ. Exp. Bot. 2014, 107, 71–83. [Google Scholar] [CrossRef]
- Hollington, P.A.; Hussain, Z.; Kahlown, M.A.; Abdullah, M. Success stories in saline agriculture in Pakistan: From research to production and development. In Proceedings of the BAC Saline Agriculture Conference, Pakinstan, 19–23 March 2001; Available online: https://www.researchgate.net/publication/242320341_Success_stories_in_saline_agriculture_in_Pakistan_from_research_to_produc-_tion_and_development (accessed on 30 October 2019).
- Loconsole, D.; Cristiano, G.; De Lucia, B. Glassworts: From Wild Salt Marsh Species to Sustainable Edible Crops. Agriculture 2019, 9, 14. [Google Scholar] [CrossRef]
- Ksouri, R.; Ksouri, W.M.; Jallali, I.; Debez, A.; Magné, C.; Hiroko, I.; Abdelly, C. Medicinal halophytes: Potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit. Rev. Biotechnol. 2012, 32, 289–326. [Google Scholar] [CrossRef]
- Flowers, T.J.; Muscolo, A. Introduction to the special issue: Halophytes in a changing world. AoB Plants 2015, 7. [Google Scholar] [CrossRef]
- Lieth, U.; Menzel, U. Halophyte Database Vers. 2. In Halophytes Uses in Different Climates, Ecological and Ecophysiological Studies; Backhuys Publishers: Leiden, The Netherlands, 1999; Volume 2, pp. 159–258. [Google Scholar]
- You, X.D.; Park, J.E.; Takase, M.; Wada, T.; Tojo, M. First report of Pythium aphanidermatum causing root rot on common ice plant (Mesembryanthemum crystallinum). New Dis. Rep. 2015, 32, 36. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, P.; Tian, H.; Jiang, H.; Wang, Y.; Yan, C. Identification of interior salt-tolerant bacteria from ice plant Mesembryanthemum crystallinum and evaluation of their promoting effects. Symbiosis 2018, 76, 243–252. [Google Scholar] [CrossRef]
- United States Department of Agriculture, Agricultural Research Service. Germplasm Resources Information Network (GRIN); United States Department of Agriculture, Agricultural Research Service: Columbus, OH, USA, 1994.
- Gutterman, Y. Annual Rhythm and Position Effect in the Germinability of Mesembry Anthemum Nodiflorum. Isr. J. Bot. 1980, 29, 93–97. [Google Scholar]
- Sigg, J. Native plant survivors in San Francisco parks: Mesembryanthemum and Erysimum franciscanum. Calif. Nativ. Plant Soc. 1981, 9, 15. [Google Scholar]
- Winter, K.; Smith, J.A.C. An introduction to Crassulacean acid metabolism. In Crassulacean Acid Metabolism: Biochemistry, Ecophysiology and Evolution; Springer: Basel, Switzerland, 1996. [Google Scholar]
- Baroni, E.; Zanetti, S.B. Guida Botanica d’Italia; Zanichelli: Bologna, Italy, 1955. [Google Scholar]
- Pignatti, S. Flora d’Italia; Edagricole: Bologna, Italy, 1982. [Google Scholar]
- Adams, P.; Nelson, D.E.; Yamada, S.; Chmara, W.; Jensen, R.G.; Bohnert, H.J.; Griffiths, H. Growth and development of Mesembryanthemum crystallinum (Aizoaceae). New Phytol. 1998, 138, 171–190. [Google Scholar] [CrossRef]
- Wendelberger, K.S.; Richards, J.H. Halophytes can salinize soil when competing with glycophytes, intensifying effects of sea level rise in coastal communities. Oecologia 2017, 184, 729–737. [Google Scholar] [CrossRef]
- Bohnert, H.J.; Nelson, D.E.; Jensen, R.G. Adaptations to Environmental Stresses. Plant Cell 1995, 7, 1099–1111. [Google Scholar] [CrossRef]
- Abd El-Gawad, A.M.; Shehata, H.S. Ecology and development of Mesembryanthemum crystallinum L. in the Deltaic Mediterranean coast of Egypt. Egypt. J. Basic Appl. Sci. 2014, 1, 29–37. [Google Scholar] [CrossRef]
- Tembo-Phiri, C. Edible Fynbos Plants: A Soil Types and Irrigation Regime Investigation on Tetragonia decumbens and Mesembryanthemum crystallinum. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South African, 2019. [Google Scholar]
- Mesembryanthemum crystallinum Text available under a CC-BY-SA Creative Commons Attribution License. 14 November 2005. Available online: www.llifle.com (accessed on 16 July 2019).
- Manning, J. Field Guide to Fynbos; Penguin Random House Struik (Pty) Ltd.: Cape Town, South Africa, 2013; ISBN 9781431702299. [Google Scholar]
- Snijman, D.A. Plants of the Greater Cape Floristic Region, Vol 2: The Extra Cape Flora; Strelitzia: South African National Biodiversity Institute: Pretoria, South Africa, 2013; Volume 30. [Google Scholar]
- Wang, C.Q.; Zhao, J.Q.; Chen, M.; Wang, B.S. Identification of betacyanin and effects of environmental factors on its accumulation in halophyte Suaeda salsa. J. Plant Physiol. Mol. Biol. 2006, 32, 195–201. [Google Scholar]
- Winter, K.; Foster, J.G.; Edwards, G.E.; Holtum, J.A.M. Intracellular Localization of Enzymes of Carbon Metabolism in Mesembryanthemum crystallinum Exhibiting C(3) Photosynthetic Characteristics or Performing Crassulacean Acid Metabolism. Plant Physiol. 1982, 69, 300–307. [Google Scholar] [CrossRef]
- Bohnert, H.J.; Cushman, J.C. The Ice Plant Cometh: Lessons in Abiotic Stress Tolerance. J. Plant Growth Regul. 2000, 19, 334–346. [Google Scholar] [CrossRef]
- Winter, K.; Holtum, J.A.M. Environment or development? Lifetime net CO2 exchange and control of the expression of Crassulacean acid metabolism in Mesembryanthemum crystallinum. Plant Physiol. 2007, 143, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Kluge, M.; Ting, I.P. Crassulacean Acid Metabolism; Springer: Berlin, Germany, 1978. [Google Scholar]
- Winter, K.; Gademann, R. Daily Changes in CO(2) and Water Vapor Exchange, Chlorophyll Fluorescence, and Leaf Water Relations in the Halophyte Mesembryanthemum crystallinum during the Induction of Crassulacean Acid Metabolism in Response to High NaCl Salinity. Plant Physiol. 1991, 95, 768–776. [Google Scholar] [CrossRef] [PubMed]
- Bose, J.; Rodrigo-Moreno, A.; Shabala, S. ROS homeostasis in halophytes in the context of salinity stress tolerance. J. Exp. Bot. 2014, 65, 1241–1257. [Google Scholar] [CrossRef]
- Bartels, D.; Sunkar, R. Drought and Salt Tolerance in Plants. Crit. Rev. Plant Sci. 2005, 24, 23–58. [Google Scholar] [CrossRef]
- Atia, A.; Rabhi, M.; Debez, A.; Abdelly, C.; Gouia, H.; Haouari, C.C.; Smaoui, A. Ecophysiological aspects in 105 plants species of saline and arid environments in Tunisia. J. Arid Land 2014, 6, 762–770. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Qin, L.; Chong, E.L.C.; Choong, T.-W.; Lee, S.K. Plant Growth and Photosynthetic Characteristics of Mesembryanthemum crystallinum Grown Aeroponically under Different Blue- and Red-LEDs. Front. Plant Sci. 2017, 8, 1–13. [Google Scholar] [CrossRef]
- Winter, K.; Holtum, J.A.M. Facultative crassulacean acid metabolism (CAM) plants: Powerful tools for unravelling the functional elements of CAM photosynthesis. J. Exp. Bot. 2014, 65, 3425–3441. [Google Scholar] [CrossRef]
- Ogburn, R.M.; Edwards, E.J. The Ecological Water-Use Strategies of Succulent Plants. Adv. Bot. Res. 2010, 55, 179–225. [Google Scholar]
- Hoagland, D.R.; Arnon, D.I. The Water-Culture Method for Growing Plants without Soil; UC College of Agriculture, Agricultural Experiment Station: Berkeley, CA, USA, 1938; Volume 347, pp. 1–39. [Google Scholar]
- Chiang, C.-P.; Yim, W.C.; Sun, Y.-H.; Ohnishi, M.; Mimura, T.; Cushman, J.C.; Yen, H.E. Identification of Ice Plant (Mesembryanthemum crystallinum L.) MicroRNAs Using RNA-Seq and Their Putative Roles in High Salinity Responses in Seedlings. Front. Plant Sci. 2016, 7, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Visscher, A.M.; Yeo, M.; Gomez Barreiro, P.; Stuppy, W.; Latorre Frances, A.; Di Sacco, A.; Seal, C.E.; Pritchard, H.W. Dry heat exposure increases hydrogen peroxide levels and breaks physiological seed coat-imposed dormancy in Mesembryanthemum crystallinum (Aizoaceae) seeds. Environ. Exp. Bot. 2018, 155, 272–280. [Google Scholar] [CrossRef]
- Paul, M.J.; Cockburn, W. Pinitol, a Compatible Solute in Mesembryanthemum crystallinum L. J. Exp. Bot. 1989, 40, 1093–1098. [Google Scholar] [CrossRef]
- Vernon, D.M.; Bohnert, H.J. A novel methyl transferase induced by osmotic stress in the facultative halophyte Mesembryanthemum crystallinum. EMBO J. 1992, 11, 2077–2085. [Google Scholar] [CrossRef]
- Rammesmayer, G.; Pichorner, H.; Adams, P.; Jensen, R.G.; Bohnert, H.J. Characterization of IMT1, myo-Inositol O-methyltransferase, from Mesembryanthemum crystallinum. Arch. Biochem. Biophys. 1995, 322, 183–188. [Google Scholar] [CrossRef] [PubMed]
- Ishitani, M.; Majumder, A.L.; Bornhouser, A.; Michalowski, C.B.; Jensen, R.G.; Bohnert, H.J. Coordinate transcriptional induction of myo-inositol metabolism during environmental stress. Plant J. 1996, 9, 537–548. [Google Scholar] [CrossRef]
- Bohnert, H.J.; Jensen, R.G. Strategies for engineering water-stress tolerance in plants. Trends Biotechnol. 1996, 14, 89–97. [Google Scholar] [CrossRef]
- Vernon, D.M.; Ostrem, J.A.; Schmitt, J.M.; Bohnert, H.J. PEPCase Transcript Levels in Mesembryanthemum crystallinum Decline Rapidly upon Relief from Salt Stress. Plant Physiol. 1988, 86, 1002–1004. [Google Scholar] [CrossRef]
- Loconsole, D.; Cocetta, G.; Santoro, P.; Ferrante, A. Optimization of LED Lighting and Quality Evaluation of Romaine Lettuce Grown in An Innovative Indoor Cultivation System. Sustainability 2019, 11, 841. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, H.M.; Kim, H.M.; Jeong, B.R.; Lee, H.-J.; Kim, H.-J.; Hwang, S.J. Ice plant growth and phytochemical concentrations are affected by light quality and intensity of monochromatic light-emitting diodes. Hortic. Environ. Biotechnol. 2018, 59, 529–536. [Google Scholar] [CrossRef]
- Weeplian, T.; Yen, T.-B.; Ho, Y.-S. Growth, Development, and Chemical Constituents of Edible Ice Plant (Mesembryanthemum crystallinum L.) Produced under Combinations of Light-emitting Diode Lights. HortScience 2018, 53, 865–874. [Google Scholar] [CrossRef]
- Hogewoning, S.W.; Trouwborst, G.; Maljaars, H.; Poorter, H.; Van Ieperen, W.; Harbinson, J. Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J. Exp. Bot. 2010, 61, 3107–3117. [Google Scholar] [CrossRef] [PubMed]
- Johkan, M.; Shoji, K.; Goto, F.; Hashida, S.-N.; Yoshihara, T. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 2010, 45, 1809–1814. [Google Scholar] [CrossRef]
- Shengxin, C.; Chunxia, L.; Xuyang, Y.; Song, C.; Xuelei, J.; Xiaoying, L.; Zhigang, X.; Rongzhan, G. Morphological, Photosynthetic, and Physiological Responses of Rapeseed Leaf to Different Combinations of Red and Blue Lights at the Rosette Stage. Front. Plant Sci. 2016, 7, 1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Lu, W.; Tong, Y.; Yang, Q. Leaf Morphology, Photosynthetic Performance, Chlorophyll Fluorescence, Stomatal Development of Lettuce (Lactuca sativa L.) Exposed to Different Ratios of Red Light to Blue Light. Front. Plant Sci. 2016, 7, 250. [Google Scholar] [CrossRef] [PubMed]
- Terfa, M.T.; Solhaug, K.A.; Gislerød, H.R.; Olsen, J.E.; Torre, S. A high proportion of blue light increases the photosynthesis capacity and leaf formation rate of Rosa × hybrida but does not affect time to flower opening. Physiol. Plant. 2013, 148, 146–159. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, R.; Ohashi-Kaneko, K.; Fujiwara, K.; Kurata, K. Effects of blue light deficiency on acclimation of light energy partitioning in PSII and CO2 assimilation capacity to high irradiance in spinach leaves. Plant Cell Physiol. 2008, 49, 664–670. [Google Scholar] [CrossRef]
- Hernandez, R.; Kubota, C. Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environ. Exp. Bot. 2016, 121, 66–74. [Google Scholar] [CrossRef]
- Jha, Y.; Subramanian, R.B. PGPR regulate caspase-like activity, programmed cell death, and antioxidant enzyme activity in paddy under salinity. Physiol. Mol. Biol. Plants 2014, 20, 201–207. [Google Scholar] [CrossRef]
- Singh, R.P.; Jha, P.N. The Multifarious PGPR Serratia marcescens CDP-13 Augments Induced Systemic Resistance and Enhanced Salinity Tolerance of Wheat (Triticum aestivum L.). PLoS ONE 2016, 11, e0155026. [Google Scholar] [CrossRef]
- Mahmood, A.; Amaya, R.; Turgay, O.C.; Yaprak, A.E.; Taniguchi, T.; Kataoka, R. High salt tolerant plant growth promoting rhizobacteria from the common ice-plant Mesembryanthemum crystallinum L. Rhizosphere 2019, 9, 10–17. [Google Scholar] [CrossRef]
- Luttge, U.; Fischer, E.; Steudle, E. Membrane potentials and salt distribution in epidermal bladders and photosynthetic tissue of Mesembryanthemum crystallinum L. Plant Cell Environ. 1978, 1, 121–129. [Google Scholar] [CrossRef]
- Lüttge, U. The role of crassulacean acid metabolism (CAM) in the adaptation of plants to salinity. New Phytol. 1993, 125, 59–71. [Google Scholar] [CrossRef]
- Adams, P.; Thomas, J.C.; Vernon, D.M.; Bohnert, H.J.; Jensen, R.G. Distinct Cellular and Organismic Responses to Salt Stress. Plant Cell Physiol. 1992, 33, 1215–1223. [Google Scholar]
- Barkla, B.J.; Vera-Estrella, R.; Camacho-Emiterio, J.; Pantoja, O. Na+/H+ exchange in the halophyte Mesembryanthemum crystallinum is associated with cellular sites of Na+ storage. Funct. Plant Biol. 2002, 29, 1017–1024. [Google Scholar] [CrossRef]
- Agarie, S.; Shimoda, T.; Shimizu, Y.; Baumann, K.; Sunagawa, H.; Kondo, A.; Ueno, O.; Nakahara, T.; Nose, A.; Cushman, J.C. Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. J. Exp. Bot. 2007, 58, 1957–1967. [Google Scholar] [CrossRef] [PubMed]
- Wagner, G.J.; Wang, E.; Shepherd, R.W. New approaches for studying and exploiting an old protuberance, the plant trichome. Ann. Bot. 2004, 93, 3–11. [Google Scholar] [CrossRef]
- Vogt, T.; Ibdah, M.; Schmidt, J.; Wray, V.; Nimtz, M.; Strack, D. Light-induced betacyanin and flavonol accumulation in bladder cells of Mesembryanthemum crystallinum. Phytochemistry 1999, 52, 583–592. [Google Scholar] [CrossRef]
- Bohnert, H.J.; Ayoubi, P.; Borchert, C.; Bressan, R.A.; Burnap, R.L.; Cushman, J.C.; Cushman, M.A.; Deyholos, M.; Fischer, R.; Galbraith, D.W.; et al. A genomics approach towards salt stress tolerance. Plant Physiol. Biochem. 2001, 39, 295–311. [Google Scholar] [CrossRef]
- Kozai, T.; Koto, H.; Nakayama, C.; Nozue, M.; Nishina, H.; Taniguchi, A.; Takachuzi, M.; Murase, H.; Sugimoto, K. Cultivation of Ice Plant; Nam, S.Y., So, C.H., Cho, G.H., Eds.; Industrial of agriculture; RGB Press: Seoul, Korea, 2011; pp. 135–143. [Google Scholar]
- Zeevaart, J.A.D.; Creelman, R.A. Metabolism and Physiology of Abscisic Acid. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1988, 39, 439–473. [Google Scholar] [CrossRef]
- Skriver, K.; Mundy, J. Gene expression in response to abscisic acid and osmotic stress. Plant Cell 1990, 2, 503–512. [Google Scholar]
- McAinsh, M.R.; Brownlee, C.; Hetherington, A.M. Abscisic acid-induced elevation of guard cell cytosolic Ca2+ precedes stomatal closure. Nature 1990, 343, 186–188. [Google Scholar] [CrossRef] [Green Version]
- Thomas, J.C.; McElwain, E.F.; Bohnert, H.J. Convergent Induction of Osmotic Stress-Responses. Plant Physiol. 1992, 100, 416–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Davies, W.J. Abscisic acid produced in dehydrating roots may enable the plant to measure the water status of the soil. Plant Cell Environ. 1989, 12, 73–81. [Google Scholar] [CrossRef]
- Bernier, G.; Havelange, A.; Houssa, C.; Petitjean, A.; Lejeune, P. Physiological Signals That Induce Flowering. Plant Cell 1993, 5, 1147–1155. [Google Scholar] [CrossRef] [PubMed]
- Machackova, I.; Krekule, J.; Eder, J.; Seidlova, F.; Strnad, M. Cytokinins in photoperiodic induction of flowering in Chenopodium species. Physiol. Plant. 1993, 87, 160–166. [Google Scholar] [CrossRef]
- Flowers, T.J.; Colmer, T.D. Salinity tolerance in halophytes. New Phytol. 2008, 179, 945–963. [Google Scholar] [CrossRef]
- Herppich, W.B.; Huyskens-Keil, S.; Schreiner, M. Effects of saline irrigation on growth, physiology and quality of Mesembryanthemum crystallinum L., a rare vegetable crop. J. Appl. Bot. Food Qual. 2008, 82, 47–54. [Google Scholar]
- De Villiers, A.J.; van Rooyen, M.W.; Theron, G.K.; Claassens, A.S. Removal of sodium and chloride from a saline soil by Mesembryanthemum barklyi. J. Arid Environ. 1995, 3, 325–330. [Google Scholar] [CrossRef]
- Hegazy, A.K. Plant succession and its optimization on tar-polluted coasts in the Arabian Gulf region. Environ. Conserv. 1997, 24, 149–158. [Google Scholar] [CrossRef]
- Slabbert, R.; Spreeth, M.; Krüger, G.H.J.; Bornman, C.H. Drought tolerance, traditional crops and biotechnology: Breeding towards sustainable development. S. Afr. J. Bot. 2004, 70, 116–123. [Google Scholar] [CrossRef]
- Abanda, P.A.; Compton, J.S.; Hannigan, R.E. Soil nutrient content, above-ground biomass and litter in a semi-arid shrubland, South Africa. Geoderma 2011, 164, 128–137. [Google Scholar] [CrossRef]
- Cecilio Filho, A.B.; Bianco, M.S.; Tardivo, C.F.; Pugina, G.C.M. Agronomic viability of New Zealand spinach and kale intercropping. An. Acad. Bras. Cienc. 2017, 89, 2975–2986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medrano, H.; Flexas, J.; Galmes, J. Variability in water use efficiency at the leaf level among Mediterranean plants with different growth forms. Plant Soil 2009, 317, 17–29. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets—Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef]
- Hanen, F.; Riadh, K.; Samia, O.; Sylvain, G.; Christian, M.; Chedly, A. Interspecific variability of antioxidant activities and phenolic composition in Mesembryanthemum genus. Food Chem. Toxicol. 2009, 47, 2308–2313. [Google Scholar] [CrossRef]
- Falleh, H.; Ksouri, R.; Medini, F.; Guyot, S.; Abdelly, C.; Magne, C. Antioxidant activity and phenolic composition of the medicinal and edible halophyte Mesembryanthemum edule L. Ind. Crop Prod. 2011, 34, 1066–1071. [Google Scholar] [CrossRef]
- Shyu, Y.-S.; Lin, J.-T.; Chang, Y.-T.; Chiang, C.-J.; Yang, D.-J. Evaluation of antioxidant ability of ethanolic extract from dill (Anethum graveolens L.) flower. Food Chem. 2009, 115, 515–521. [Google Scholar] [CrossRef]
- Van der Watt, E.; Pretorius, J.C. Purification and identification of active antibacterial components in Carpobrotus edulis L. J. Ethnopharmacol. 2001, 76, 87–91. [Google Scholar] [CrossRef]
- Bouftira, I.; Abdelly, C.; Sfar, S. Identification of a naturally occurring 2, 6-bis (1.1-dimethylethyl)-4- methylphenol from purple leaves of the halophyte plant Mesembryanthemum crystallinum. Afr. J. Biotechnol. 2007, 6, 1136–1139. [Google Scholar]
- Mabry, T.J. Betalains. In Encyclopedia of Plant Physiology; Bell, E.A., Charlwood, B.V., Eds.; Springer: Berlin, Germany, 1980; Volume 8, pp. 513–533. [Google Scholar]
- Lee, B.-H.; Lee, C.-C.; Wu, S.-C. Ice plant (Mesembryanthemum crystallinum) improves hyperglycaemia and memory impairments in a Wistar rat model of streptozotocin-induced diabetes. J. Sci. Food Agric. 2014, 94, 2266–2273. [Google Scholar] [CrossRef]
- Pitt, J.; Thorner, M.; Brautigan, D.; Larner, J.; Klein, W.L. Protection against the synaptic targeting and toxicity of Alzheimer’s-associated Aβ oligomers by insulin mimetic chiro-inositols. FASEB J. 2013, 27, 199–207. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Fernandez, D.; Wang, D.D.; Chen, Y.J.; Dai, G.H. Biological control mechanisms of D-pinitol against powdery mildew in cucumber. Physiol. Mol. Plant Pathol. 2014, 88, 52–60. [Google Scholar] [CrossRef]
- Keshtehgar, A.; Rigi, K.; Vazirimehr, M. Effects of salt stress in crop plants. Int. J. Agric. Crop Sci. 2013, 5, 2863–2867. [Google Scholar]
- Palma, F.; Carvajal, F.; Lluch, C.; Jamilena, M.; Garrido, D. Changes in carbohydrate content in zucchini fruit (Cucurbita pepo L.) under low temperature stress. Plant Sci. 2014, 217–218, 78–86. [Google Scholar] [CrossRef]
- Parida, A.K.; Das, A.B. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Saf. 2005, 60, 324–349. [Google Scholar] [CrossRef]
- Sakata, K.; Kawasaki, H.; Suzuki, T.; Ito, K.; Negishi, O.; Tsuno, T.; Tsuno, H.; Yamazaki, Y.; Ishida, N. Inositols affect the mating circadian rhythm of Drosophila melanogaster. Front. Pharmacol. 2015, 6, 111. [Google Scholar] [CrossRef]
- Ashraf, M.Y.; Ashraf, M.; Sarwar, G. Physiological Approaches to Improving Plant Salt Tolerance. In Crops: Growth, Quality and Biotechnology; Dris, R., Ed.; WFL Publisher: Helsinki, Finland, 2005; pp. 1206–1227. [Google Scholar]
- Rabhi, M.; Talbi, O.; Atia, A.; Abdelly, C.; Smaoui, A. Selection of a halophyte that could be used in the bioreclamation of salt-affected soils in arid and semi-arid regions. In Biosaline Agriculture and High Salinity Tolerance; Birkhäuser Basel: Basel, Switzerland, 2008; pp. 241–246. [Google Scholar]
- Ashraf, M.Y.; Ashraf, M.; Mahmood, K.; Akhter, J.; Hussain, F.; Arshad, M. Phytoremediation of saline soils for sustainable agricultural productivity. In Plant Adaptation and Phytoremediation; Ashraf, M., Ozturk, M., Ahmad, M.S.A., Eds.; Springer: Berlin, Germany, 2010; pp. 335–3355. [Google Scholar]
- Rabhi, M.; Hafsi, C.; Lakhdar, A.; Hajji, S.; Barhoumi, Z.; Hamrouni, M.H.; Abdelly, C.; Smaoui, A. Evaluation of the capacity of three halophytes to desalinize their rhizosphere as grown on saline soils under nonleaching conditions. Afr. J. Ecol. 2009, 47, 463–468. [Google Scholar] [CrossRef]
- Ravindran, K.C.; Venkatesan, K.; Balakrishnan, V.; Chellappan, K.P.; Balasubramanian, T. Restoration of saline land by halophytes for Indian soils. Soil Biol. Biochem. 2007, 39, 2661–2664. [Google Scholar] [CrossRef]
- Salt, D.E.; Smith, R.D.; Raskin, I. Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1998, 49, 643–668. [Google Scholar] [CrossRef]
- Gul, B.; Khan, M.A.; Weber, D.J. Effect of salinity and planting density on physiological responses of Allenrolfea occidentalis. West. N. Am. Nat. 2000, 60, 188–197. [Google Scholar]
- Jithesh, M.N.; Prashanth, S.R.; Sivaprakash, K.R.; Parida, A.K. Antioxidative response mechanisms in halophytes: Their role in stress defence. J. Genet. 2006, 85, 237–254. [Google Scholar] [CrossRef] [PubMed]
- Ghnaya, T.; Nouairi, I.; Slama, I.; Messedi, D.; Grignon, C.; Abdelly, C.; Ghorbel, M.H. Cadmium effects on growth and mineral nutrition of two halophytes: Sesuvium portulacastrum and Mesembryanthemum crystallinum. J. Plant Physiol. 2005, 162, 1133–1140. [Google Scholar] [CrossRef] [PubMed]
- Cassaniti, C.; Romano, D. The use of halophytes for Mediterranean landscaping. Proceedings of the European COST Action FA901. Eur. J. Plant Sci. Biotechnol. 2011, 5, 57–63. [Google Scholar]
- Zornoza, P.; Vazquez, S.; Esteban, E.; Fernandez-Pascual, M.; Carpena, R. Cadmium-stress in nodulated white lupin: Strategies to avoid toxicity. Plant Physiol. Biochem. 2002, 40, 1003–1009. [Google Scholar] [CrossRef]
- Sousa, A.I.; Cacador, I.; Lillebo, A.I.; Pardal, M.A. Heavy metal accumulation in Halimione portulacoides: Intra- and extra-cellular metal binding sites. Chemosphere 2008, 70, 850–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghnaya, T.; Zaier, H.; Baioui, R.; Sghaier, S.; Lucchini, G.; Sacchi, G.A.; Lutts, S.; Abdelly, C. Implication of organic acids in the long-distance transport and the accumulation of lead in Sesuvium portulacastrum and Brassica juncea. Chemosphere 2013, 90, 1449–1454. [Google Scholar] [CrossRef]
- Nedjimi, B.; Daoud, Y. Cadmium accumulation in Atriplex halimus subsp. schweinfurthii and its influence on growth, proline, root hydraulic conductivity and nutrient uptake. Flora Morphol. Distrib. Funct. Ecol. Plants 2009, 204, 316–324. [Google Scholar] [CrossRef]
- Zaier, H.; Ghnaya, T.; Lakhdar, A.; Baioui, R.; Ghabriche, R.; Mnasri, M.; Sghair, S.; Lutts, S.; Abdelly, C. Comparative study of Pb-phytoextraction potential in Sesuvium portulacastrum and Brassica juncea: Tolerance and accumulation. J. Hazard. Mater. 2010, 183, 609–615. [Google Scholar] [CrossRef]
- Lefevre, I.; Vogel-Mikus, K.; Jeromel, L.; Vavpetic, P.; Planchon, S.; Arcon, I.; Van Elteren, J.T.; Lepoint, G.; Gobert, S.; Renaut, J.; et al. Differential cadmium and zinc distribution in relation to their physiological impact in the leaves of the accumulating Zygophyllum fabago L. Plant Cell Environ. 2014, 37, 1299–1320. [Google Scholar] [CrossRef]
- Amari, T.; Ghnaya, T.; Debez, A.; Taamali, M.; Ben Youssef, N.; Lucchini, G.; Sacchi, G.A.; Abdelly, C. Comparative Ni tolerance and accumulation potentials between Mesembryanthemum crystallinum (halophyte) and Brassica juncea: Metal accumulation, nutrient status and photosynthetic activity. J. Plant Physiol. 2014, 171, 1634–1644. [Google Scholar] [CrossRef]
- Ksouri, R.; Megdiche, W.; Debez, A.; Falleh, H.; Grignon, C.; Abdelly, C. Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol. Biochem. 2007, 45, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Meot-Duros, L.; Le Floch, G.; Magne, C. Radical scavenging, antioxidant and antimicrobial activities of halophytic species. J. Ethnopharmacol. 2008, 116, 258–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, S.; Kim, S.; Ha, S.; Lee, C.; Nam, S. Biochemical Components and Physiological Activities of Ice Plant (Mesembryanthemum crystallinum). J. Korean Soc. Food Sci. Nutr. 2016, 45, 1732–1739. [Google Scholar] [CrossRef]
- Lee, S.Y.; Choi, H.D.; Yu, S.N.; Kim, S.H.; Park, S.K.; Ahn, S.C. Biological Activities of Mesembryanthemum crystallinum (Ice plant) Extract. J. Life Sci. 2015, 25, 638–645. [Google Scholar] [CrossRef]
- Agarie, S.; Kawaguchi, A.; Kodera, A.; Sunagawa, H.; Kojima, H.; Nose, A.; Nakahara, T. Potential of the Common Ice Plant, Mesembryanthemum crystallinum as a New High-Functional Food as Evaluated by Polyol Accumulation. Plant Prod. Sci. 2009, 12, 37–46. [Google Scholar] [CrossRef]
- Chaieb, M.; Boukhris, M. Flore Succincte et Illustrée des Zones Arides et Sahariennes de Tunisie; Association Pour la Protection de la Nature et de L’environnement: Sfax, Tunisia, 1998. [Google Scholar]
- Rood, B. From the Veldpharmacy; Tafelberg Publishers: Cape Town, South Africa, 1994; p. 72. [Google Scholar]
- Smith, D.H.; Pepin, J.; Stich, A.H.R. Human African trypanosomiasis: An emerging public health crisis. Br. Med. Bull. 1998, 54, 341–355. [Google Scholar] [CrossRef]
- Lin, T.-H.; Tan, T.-W.; Tsai, T.-H.; Chen, C.-C.; Hsieh, T.-F.; Lee, S.-S.; Liu, H.-H.; Chen, W.-C.; Tang, C.-H. D-pinitol Inhibits Prostate Cancer Metastasis through Inhibition of αVβ3 Integrin by Modulating FAK, c-Src and NF-κB Pathways. Int. J. Mol. Sci. 2013, 14, 9790–9802. [Google Scholar] [CrossRef]
- Rengarajan, T.; Nandakumar, N.; Balasubramanian, M.P. D-Pinitol attenuates 7, 12 dimethylbenz [a] anthracene induced hazards through modulating protein bound carbohydrates, adenosine triphosphatases and lysosomal enzymes during experimental mammary carcinogenesis. J. Exp. Ther. Oncol. 2012, 10, 39–49. [Google Scholar]
- Schmid, R.; Van Wyk, B.-E.; Van Oudtshoorn, B.; Gericke, N. Medicinal Plants of South Africa. Taxon 1998, 47, 787. [Google Scholar] [CrossRef]
- Foster, S.; Hobbs, C.; Peterson, R.T. A Field Guide to Western Medicinal Plants and Herbs. In Peterson Field Guide; Mifflin: Boston, MA, USA, 2002. [Google Scholar]
- Roberts, M. Indigenous Healing Plants, Buchu; Briza Publications: Pretoria, South Africa, 1997; pp. 190–192. ISBN 1-86812-317-0. [Google Scholar]
- Ksouri, R.; Megdiche, W.; Falleh, H.; Trabelsi, N.; Boulaaba, M.; Smaoui, A.; Abdelly, C. Influence of biological, environmental and technical factors on phenolic content and antioxidant activities of Tunisian halophytes. C. R. Biol. 2008, 331, 865–873. [Google Scholar] [CrossRef]
- Ibtissem, B.; Abdelly, C.; Sfar, S. Antioxidant and antibacterial properties of Mesembryanthemum crystallinum and Carpobrotus edulis extracts. Adv. Chem. Eng. Sci. 2012, 2, 359–365. [Google Scholar] [CrossRef]
- Raak, C.; Molsberger, F.; Heinrich, U.; Bertram, M.; Ostermann, T. Mesembryanthemum crystallinum L. als dermatologisch wirksame Heilpflanze-erste Ergebnisse aus 3 Pilotstudien. Forsch. Komplement. Res. Complement. Med. 2014, 21, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Deters, A.M.; Meyer, U.; Stintzing, F.C. Time-dependent bioactivity of preparations from cactus pear (Opuntia ficus indica) and ice plant (Mesembryanthemum crystallinum) on human skin fibroblasts and keratinocytes. J. Ethnopharmacol. 2012, 142, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Van der Merwe, K.; De Villiers, J. Strandveldfood: A West Coast Odyssey; Sunbird Publishers: Paternoster, South Africa, 2014. [Google Scholar]
- Black, K. Making KOS: Exploring Indigenous Plant Foods with Loubie Rusch; Table Mountain Fund: Newlands, South Africa, 2015. [Google Scholar]
- Mckeown, S. The Pioneer of Foraging Food has Unveiled a Remarkable New Summer Menu; Tiso Blackstar Group: Johannesburg, South Africa, 2017. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loconsole, D.; Murillo-Amador, B.; Cristiano, G.; De Lucia, B. Halophyte Common Ice Plants: A Future Solution to Arable Land Salinization. Sustainability 2019, 11, 6076. https://doi.org/10.3390/su11216076
Loconsole D, Murillo-Amador B, Cristiano G, De Lucia B. Halophyte Common Ice Plants: A Future Solution to Arable Land Salinization. Sustainability. 2019; 11(21):6076. https://doi.org/10.3390/su11216076
Chicago/Turabian StyleLoconsole, Danilo, Bernardo Murillo-Amador, Giuseppe Cristiano, and Barbara De Lucia. 2019. "Halophyte Common Ice Plants: A Future Solution to Arable Land Salinization" Sustainability 11, no. 21: 6076. https://doi.org/10.3390/su11216076
APA StyleLoconsole, D., Murillo-Amador, B., Cristiano, G., & De Lucia, B. (2019). Halophyte Common Ice Plants: A Future Solution to Arable Land Salinization. Sustainability, 11(21), 6076. https://doi.org/10.3390/su11216076