Copper Toxicity and Prediction Models of Copper Content in Leafy Vegetables
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Preparation
2.2. Plant Materials
2.3. Soil Property Analysis
2.4. Chemical Analysis
2.5. Statistical Analysis
3. Results
3.1. The Effect of Copper Toxicity on Vegetable Growth
3.2. Copper Concentrations in Four Vegetables
3.3. Regression Models for Crop Copper Concentrations
4. Discussion
4.1. The Development of Copper Prediction Models for Vegetables
4.2. Influence on Copper Prediction Models
4.3. The Four Tested Leafy Vegetables Cultivated in Copper-Contaminated Soil May Not Pose a Significant Risk to Human Health
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Vu, C.T.; Lin, C.; Shern, C.-C.; Yeh, G.; Le, V.G.; Tran, H.T. Contamination, ecological risk and source apportionment of heavy metals in sediments and water of a contaminated river in Taiwan. Ecol. Indic. 2017, 82, 32–42. [Google Scholar] [CrossRef]
- Adrees, M.; Ali, S.; Rizwan, M.; Ibrahim, M.; Abbas, F.; Farid, M.; Zia-ur-Rehman, M.; Irshad, M.K.; Bharwana, S.A. The effect of excess copper on growth and physiology of important food crops: A review. Environ. Sci. Pollut. Res. 2015, 22, 8148–8162. [Google Scholar] [CrossRef] [PubMed]
- Schutzendubel, A.; Polle, A. Plant responses to abiotic stresses: Heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 2002, 53, 1351–1365. [Google Scholar] [CrossRef] [PubMed]
- Bouazizi, H.; Jouili, H.; Geitmann, A.; El Ferjani, E. Copper toxicity in expanding leaves of Phaseolus vulgaris L.: Antioxidant enzyme response and nutrient element uptake. Ecotoxicol. Environ. Saf. 2010, 73, 1304–1308. [Google Scholar] [CrossRef]
- Quartacci, M.F.; Pinzino, C.; Sgherri, C.L.; Dalla Vecchia, F.; Navari-Izzo, F. Growth in excess copper induces changes in the lipid composition and fluidity of PSII-Enriched membranes in wheat. Physiol. Plant. 2000, 108, 87–93. [Google Scholar] [CrossRef]
- Xu, J.; Yang, L.; Wang, Z.; Dong, G.; Huang, J.; Wang, Y. Toxicity of copper on rice growth and accumulation of copper in rice grain in copper contaminated soil. Chemosphere 2006, 62, 602–607. [Google Scholar] [CrossRef]
- Singh, D.; Nath, K.; Sharma, Y.K. Response of wheat seed germination and seedling growth under copper stress. J. Environ. Biol. 2007, 28, 409. [Google Scholar]
- Ali, S.; Shahbaz, M.; Shahzad, A.N.; Khan, H.A.A.; Anees, M.; Haider, M.S.; Fatima, A. Impact of copper toxicity on stone-head cabbage (Brassica oleracea var. capitata) in hydroponics. PeerJ 2015, 3, 1119. [Google Scholar] [CrossRef]
- Oteef, M.D.Y.; Fawy, K.F.; Abd-Rabboh, H.S.M.; Idris, A.M.J.E.M. Assessment. Levels of zinc, copper, cadmium, and lead in fruits and vegetables grown and consumed in Aseer Region, Saudi Arabia. Environ. Monit. Assess. 2015, 187, 676. [Google Scholar] [CrossRef]
- De Conti, L.; Ceretta, C.A.; Tiecher, T.L.; da Silva, L.O.S.; Tassinari, A.; Somavilla, L.M.; Mimmo, T.; Cesco, S.; Brunetto, G. Growth and chemical changes in the rhizosphere of black oat (Avena strigosa) grown in soils contaminated with copper. Ecotoxicol. Environ. Saf. 2018, 163, 19–27. [Google Scholar] [CrossRef]
- Reboredo, F.H.; Pelica, J.; Lidon, F.C.; Ramalho, J.C.; Pessoa, M.F.; Calvão, T.; Simões, M.; Guerra, M.J.E.M. Heavy metal content of edible plants collected close to an area of intense mining activity (Southern Portugal). Environ. Monit. Assess. 2018, 190, 484. [Google Scholar] [CrossRef] [PubMed]
- Hseu, Z.-Y.; Su, S.-W.; Lai, H.-Y.; Guo, H.-Y.; Chen, T.-C.; Chen, Z.-S. Remediation techniques and heavy metal uptake by different rice varieties in metal-contaminated soils of Taiwan: New aspects for food safety regulation and sustainable agriculture. Soil Sci. Plant Nutr. 2010, 56, 31–52. [Google Scholar] [CrossRef] [Green Version]
- Kananke, T.; Wansapala, J.; Gunaratne, A.J.E.M. Assessment. Detection of Ni, Cd, and Cu in green leafy vegetables collected from different cultivation areas in and around Colombo District, Sri Lanka. Environ. Monit. Assess. 2016, 188, 187. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Katnoria, J.K.; Nagpal, A.K.J.S. Heavy metals in vegetables: Screening health risks involved in cultivation along wastewater drain and irrigating with wastewater. SpringerPlus 2016, 5, 488. [Google Scholar] [CrossRef]
- Rahmdel, S.; Rezaei, M.; Ekhlasi, J.; Zarei, S.H.; Akhlaghi, M.; Abdollahzadeh, S.M.; Sefidkar, R.; Mazloomi, S.M.J.E.M. Assessment. Heavy metals (Pb, Cd, Cu, Zn, Ni, Co) in leafy vegetables collected from production sites: Their potential health risk to the general population in Shiraz, Iran. Environ. Monit. Assess. 2018, 190, 650. [Google Scholar] [CrossRef]
- Qureshi, A.S.; Hussain, M.I.; Ismail, S.; Khan, Q.M. Evaluating heavy metal accumulation and potential health risks in vegetables irrigated with treated wastewater. Chemosphere 2016, 163, 54–61. [Google Scholar] [CrossRef]
- Hou, S.; Zheng, N.; Tang, L.; Ji, X. Effects of cadmium and copper mixtures to carrot and pakchoi under greenhouse cultivation condition. Ecotoxicol. Environ. Saf. 2018, 159, 172–181. [Google Scholar] [CrossRef]
- Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M.B.; Scheckel, K. Remediation of heavy metal(loid)s contaminated soils—To mobilize or to immobilize. J. Hazard. Mater. 2014, 266, 141–166. [Google Scholar] [CrossRef]
- Kim, R.-Y.; Yoon, J.-K.; Kim, T.-S.; Yang, J.E.; Owens, G.; Kim, K.-R. Bioavailability of heavy metals in soils: Definitions and practical implementation—A critical review. Environ. Geochem. Health 2015, 37, 1041–1061. [Google Scholar] [CrossRef]
- Janssen, R.P.T.; Posthuma, L.; Baerselman, R.; Den Hollander, H.A.; Van Veen, R.P.M.; Peijnenburg, W.J.G.M. Equilibrium partitioning of heavy metals in dutch field soils. II. Prediction of metal accumulation in earthworms. Environ. Toxicol. Chem. 1997, 16, 2479–2488. [Google Scholar] [CrossRef]
- Sahito, O.M.; Afridi, H.I.; Kazi, T.G.; Baig, J.A. Evaluation of heavy metal bioavailability in soil amended with poultry manure using single and BCR sequential extractions. Int. J. Environ. Anal. Chem. 2015, 95, 1066–1079. [Google Scholar] [CrossRef]
- Chojnacka, K.; Chojnacki, A.; Górecka, H.; Górecki, H. Bioavailability of heavy metals from polluted soils to plants. Sci. Total Environ. 2005, 337, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.-H.; Shan, X.-Q.; Zhang, S.; Wen, B. A comparison of the rhizosphere-based method with DTPA, EDTA, CaCl2, and NaNO3 extraction methods for prediction of bioavailability of metals in soil to barley. Environ. Pollut. 2005, 137, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Aten, C. Comparison and evaluation of extraction media and their suitability in a simple model to predict the biological relevance of heavy metal concentrations in contaminated soils. Int. J. Environ. Anal. Chem. 1993, 51, 25–46. [Google Scholar] [CrossRef]
- Norvell, W.A. Comparison of chelating agents as extractants for metals in diverse soil materials. Soil Sci. Soc. Am. J. 1984, 48, 1285–1292. [Google Scholar] [CrossRef]
- Basta, N.T.; Ryan, J.A.; Chaney, R.L. Trace element chemistry in residual-treated soil: Key concepts and metal bioavailability. J. Environ. Qual. 2005, 34, 49–63. [Google Scholar] [CrossRef]
- Chaignon, V.; Sanchez-Neira, I.; Herrmann, P.; Jaillard, B.; Hinsinger, P. Copper bioavailability and extractability as related to chemical properties of contaminated soils from a vine-growing area. Environ. Pollut. 2003, 123, 229–238. [Google Scholar] [CrossRef]
- Lin, Y.-W.; Liu, T.-S.; Guo, H.-Y.; Chiang, C.-M.; Tang, H.-J.; Chen, H.-T.; Chen, J.-H. Relationships between Cd concentrations in different vegetables and those in arable soils, and food safety evaluation of vegetables in Taiwan. Soil Sci. Plant Nutr. 2015, 61, 983–998. [Google Scholar] [CrossRef] [Green Version]
- Ashworth, J.; Keyes, D.; Kirk, R.; Lessard, R. Standard procedure in the hydrometer method for particle size analysis. Commun. Soil Sci. Plant Anal. 2001, 32, 633–642. [Google Scholar] [CrossRef]
- Koroleff, F. Direct spectrophotometric determination of ammonia in precipitation. Tellus 1966, 18, 562–565. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-F.; Liang, H.-M.; Yang, S.-Y.; Boch, A.; Clemens, S.; Chen, C.-C.; Wu, J.-F.; Huang, J.-L.; Yeh, K.-C. Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytol. 2009, 182, 392–404. [Google Scholar] [CrossRef] [PubMed]
- Michaud, A.M.; Bravin, M.N.; Galleguillos, M.; Hinsinger, P. Copper uptake and phytotoxicity as assessed in situ for durum wheat (Triticum turgidum durum L.) cultivated in Cu-contaminated, former vineyard soils. Plant Soil 2007, 298, 99–111. [Google Scholar] [CrossRef]
- Gaetke, L.M.; Chow-Johnson, H.S.; Chow, C.K. Copper: Toxicological relevance and mechanisms. Arch. Toxicol. 2014, 88, 1929–1938. [Google Scholar] [CrossRef] [PubMed]
- Soriano-Disla, J.M.; Gómez, I.; Navarro-Pedreño, J.; Lag-Brotons, A. Evaluation of single chemical extractants for the prediction of heavy metal uptake by barley in soils amended with polluted sewage sludge. Plant Soil 2009, 327, 303–314. [Google Scholar] [CrossRef]
- Garrett, R.G.; I. MacLaurin, A.; Gawalko, E.J.; Tkachuk, R.; Hall, G.E.M. A prediction model for estimating the cadmium content of durum wheat from soil chemistry. J. Geochem. Explor. 1998, 64, 101–110. [Google Scholar] [CrossRef]
- Zogaj, M.; Düring, R.-A. Plant uptake of metals, transfer factors and prediction model for two contaminated regions of Kosovo. J. Plant Nutr. Soil Sci. 2016, 179, 630–640. [Google Scholar] [CrossRef]
- Takeda, A.; Tsukada, H.; Takaku, Y.; Hisamatsu, S.; Inaba, J.; Nanzyo, M. Extractability of major and trace elements from agricultural soils using chemical extraction methods: Application for phytoavailability assessment. Soil Sci. Plant Nutr. 2006, 52, 406–417. [Google Scholar] [CrossRef]
- Zhang, M.-K.; Liu, Z.Y.; Wang, H. Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Commun. Soil Sci. Plant Anal. 2010, 41, 820–831. [Google Scholar] [CrossRef]
- Hammer, D.; Keller, C. Changes in the rhizosphere of metal-accumulating plants evidenced by chemical extractants. J. Environ. Qual. 2002, 31, 1561–1569. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Norvell, W.A. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J. 1978, 42, 421–428. [Google Scholar] [CrossRef]
- Novozamsky, I.; Lexmond, T.M.; Houba, V.J.G. A single extraction procedure of soil for evaluation of uptake of some heavy-metals by plants. Int. J. Environ. Anal. Chem. 1993, 51, 47–58. [Google Scholar] [CrossRef]
- Adegbe, A.A.; Eneji, I.S.; Aboiyar, T.; Wuana, R.A. Modelling of heavy metals concentration in maize (Zea may L.) grown in artificially contaminated soil. Asian J. Phys. Chem. Sci. 2018, 5, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Singh, J.; Kumar, P. Heavy metal uptake by water lettuce (Pistia stratiotes L.) from paper mill effluent (PME): Experimental and prediction modeling studies. Environ. Sci. Pollut. Res. Int. 2019, 26, 14400–14413. [Google Scholar] [CrossRef] [PubMed]
- Zia, A.; van den Berg, L.; Ahmad, M.N.; Riaz, M.; Zia, D.; Ashmore, M. Controls on accumulation and soil solution partitioning of heavy metals across upland sites in United Kingdom (UK). J. Environ. Manag. 2018, 222, 260–267. [Google Scholar] [CrossRef] [PubMed]
- Eid, E.M.; Alrumman, S.A.; Farahat, E.A.; El-Bebany, A.F. Prediction models for evaluating the uptake of heavy metals by cucumbers (Cucumis sativus L.) grown in agricultural soils amended with sewage sludge. Environ. Monit. Assess. 2018, 190, 501. [Google Scholar] [CrossRef]
- Dai, Y.; Nasir, M.; Zhang, Y.; Lv, J. Establishment of a model to assess soil cadmium uptake by Brassica Chinensis. Soil Sci. Soc. Am. J. 2019, 83, 380–387. [Google Scholar] [CrossRef]
- Buss, W.; Kammann, C.; Koyro, H.-W. Biochar reduces copper toxicity in Chenopodium quinoa Willd. in a sandy soil. J. Environ. Qual. 2012, 41, 1157–1165. [Google Scholar] [CrossRef]
- Silva Gonzaga, M.I.; Oliveira da Silva, P.S.; Carlos de Jesus Santos, J.; Ganassali de Oliveira Junior, L.F. Biochar increases plant water use efficiency and biomass production while reducing Cu concentration in Brassica juncea L. in a Cu-contaminated soil. Ecotoxicol. Environ. Saf. 2019, 183, 109557. [Google Scholar] [CrossRef]
- Brown, S.L.; Chaney, R.L.; Angle, J.S.; Ryan, J.A. The phytoavailability of cadmium to lettuce in long-term biosolids-amended soils. J. Environ. Qual. 1998, 27, 1071–1078. [Google Scholar] [CrossRef]
- Hsu, J.-H.; Lo, S.-L. Effect of composting on characterization and leaching of copper, manganese, and zinc from swine manure. Environ. Pollut. 2001, 114, 119–127. [Google Scholar] [CrossRef]
- Mantovi, P.; Bonazzi, G.; Maestri, E.; Marmiroli, N. Accumulation of copper and zinc from liquid manure in agricultural soils and crop plants. Plant Soil 2003, 250, 249–257. [Google Scholar] [CrossRef]
- Xiong, X.; Yanxia, L.; Wei, L.; Chunye, L.; Wei, H.; Ming, Y. Copper content in animal manures and potential risk of soil copper pollution with animal manure use in agriculture. Resour. Conserv. Recycl. 2010, 54, 985–990. [Google Scholar] [CrossRef]
- Pankotai, M.G.; Fodor, P. The copper level dependence in vegetable crops at pesticide treatment. J. Environ. Sci. Health Part B 1996, 31, 621–626. [Google Scholar] [CrossRef]
- Senkondo, Y.H.; Tack, F.M.G.; Semu, E. Copper accumulations in soils, coffee, banana, and bean plants following copper-based fungicides in coffee farms in Arusha and Kilimanjaro regions, Tanzania. Commun. Soil Sci. Plant Anal. 2014, 45, 2032–2045. [Google Scholar] [CrossRef]
- Araya, M.; McGoldrick, M.C.; Klevay, L.M.; Strain, J.J.; Robson, P.; Nielsen, F.; Olivares, M.; Pizarro, F.; Johnson, L.; Poirier, K.A. Determination of an Acute No-Observed-Adverse-Effect Level (NOAEL) for Copper in Water. Regul. Toxicol. Pharmacol. 2001, 34, 137–145. [Google Scholar] [CrossRef]
- Pratt, W.B.; Omdahl, J.L.; Sorenson, J.R.J. Lack of effects of copper gluconate supplementation. Am. J. Clin. Nutr. 1985, 42, 681–682. [Google Scholar] [CrossRef]
- Turnlund, J.R.; Keen, C.L.; Smith, R.G. Copper status and urinary and salivary copper in young men at three levels of dietary copper. Am. J. Clin. Nutr. 1990, 51, 658–664. [Google Scholar] [CrossRef]
- EFSA. Tolerable Upper Intake Levels for Vitamins and Minerals. Available online: http://www.efsa.europa.eu/sites/default/files/efsa_rep/blobserver_assets/ndatolerableuil.pdf (accessed on 7 October 2019).
- Oustriere, N.; Marchand, L.; Galland, W.; Gabbon, L.; Lottier, N.; Motelica, M.; Mench, M. Influence of biochars, compost and iron grit, alone and in combination, on copper solubility and phytotoxicity in a Cu-contaminated soil from a wood preservation site. Sci. Total Environ. 2016, 566, 816–825. [Google Scholar] [CrossRef]
- Ali, M.B.; Hahn, E.-J.; Paek, K.-Y. Effects of light intensities on antioxidant enzymes and malondialdehyde content during short-term acclimatization on micropropagated Phalaenopsis plantlet. Environ. Exp. Bot. 2005, 54, 109–120. [Google Scholar] [CrossRef]
Soil Property | Value |
---|---|
Texture | silty clay |
Sand (%) | 5.42 |
Silt (%) | 52.6 |
Clay (%) | 41.98 |
pH | 5.84 |
OM (w/w%) | 3.9 |
CEC (cmol·kg−1) | 133 |
Copper in soil (mg·kg−1) | 24.1 |
Soil Copper Concentration Level (mg·kg−1) * | |||||
---|---|---|---|---|---|
Number of Trials | 1 | 2 | 3 | 4 | 5 |
1 | 17 ± 0.8 | 78 ± 0.6 | 272 ± 2.2 | 340 ± 0.1 | 479 ± 2.6 |
2 | 12 ± 0.3 | 81 ± 0.5 | 294 ± 3.9 | 352 ± 4.6 | 518 ± 2.3 |
3 | 23 ± 0.7 | 80 ± 1.6 | 251 ± 25.4 | 296 ± 19.2 | 409 ± 7.8 |
4 | 30 ± 0.5 | 86 ± 4.0 | 296 ± 1.9 | 367 ± 8.2 | 484 ± 10.6 |
Multiple Regression Analysis | R2adj.a | p Value b | R2cor.c |
---|---|---|---|
Log(Cuwater spinach) = 0.325 *** Log(Cuaqua regia) + 1.888 *** | 0.455 | <0.001 | 0.3360 |
Log(Cuwater spinach) = 0.305 *** Log(CuNaNO3) – 1.123 *** Log (CuHCl) + 0.978 ** Log(CuEDTA) + 3.29 *** | 0.797 | <0.001 | 0.8144 |
Log(Cuamaranth) = 0.972 *** Log(Cuaqua regia) – 1.605 *** | 0.881 | <0.001 | 0.7474 |
Log(Cuamaranth) = 0.822 *** Log(CuHCl) – 0.512 * | 0.902 | <0.001 | 0.7889 |
Log(Cuamaranth) = −0.487 Log(CuEDTA) + 1.309 *** Log(CuHCl) – 0.496 * | 0.905 | <0.001 | 0.8135 |
Log(Cupakchoi) = 1.253 *** Log(Cuaqua regia) – 2.836 *** | 0.892 | <0.001 | 0.6115 |
Log(Cupakchoi) = 1.027 *** Log(CuEDTA) – 1.327 *** | 0.895 | <0.001 | 0.5747 |
Log(Cugarland chrysanthemum) = 0.77 *** Log(Cuaqua regia) – 0.673 | 0.739 | <0.001 | 0.6602 |
Log(Cugarland chrysanthemum) = 0.669 *** Log(CuHCl) + 0.124 | 0.756 | <0.001 | 0.7239 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiou, W.-Y.; Hsu, F.-C. Copper Toxicity and Prediction Models of Copper Content in Leafy Vegetables. Sustainability 2019, 11, 6215. https://doi.org/10.3390/su11226215
Chiou W-Y, Hsu F-C. Copper Toxicity and Prediction Models of Copper Content in Leafy Vegetables. Sustainability. 2019; 11(22):6215. https://doi.org/10.3390/su11226215
Chicago/Turabian StyleChiou, Wei-Yang, and Fu-Chiun Hsu. 2019. "Copper Toxicity and Prediction Models of Copper Content in Leafy Vegetables" Sustainability 11, no. 22: 6215. https://doi.org/10.3390/su11226215
APA StyleChiou, W. -Y., & Hsu, F. -C. (2019). Copper Toxicity and Prediction Models of Copper Content in Leafy Vegetables. Sustainability, 11(22), 6215. https://doi.org/10.3390/su11226215