Monetary Policy, Industry Heterogeneity and Systemic Risk—Based on a High Dimensional Network Analysis
Abstract
:1. Introduction
- Using the LVDN tool based on GDFM, we expand on the current literature on measuring the systemic risk at the institutional level to focus on the industry level. We found that several industries including the energy, materials, industrial, and financial sectors are the top contributors to systemic risk due to their high levels of risk out-degree. Consumer, healthcare, IT, telecommunications, and utility industries are more susceptible to systemic risk due to their high levels of risk in-degree. This not only enables investors to better allocate portfolios across sectors to reduce risk exposure, but also helps regulators to target the most systemically important sectors, and monitor risk in the whole market.
- We found that the total connectedness of LVDNs increases significantly when the stability of the system exhibits distress. An increase in cross-industry connectedness caused the high systemic risk level during the 2008 global crisis and the 2015–2016 Stock Market Disaster in China. This suggests that regulatory commissions should focus on cross-industry connectedness and increase the coordination of their supervisory responsibilities.
- This paper revealed that monetary policy not only directly affects systemic risk but also indirectly affects the effect of the industry’s leverage ratio. Industry heterogeneity variables have significant impacts on systemic risk, but their effect on the systemic risk sensitivity is more pronounced than their effect on the systemic risk contribution.
2. Methodology
2.1. Measurement of Systemic Risk
2.2. Variable Description
2.3. Panel Regression Model
3. Empirical Analysis
3.1. Data Description
3.2. Analysis of the Generalized Dynamic Factor Model (GDFM)
3.3. Network Analysis
3.4. Regression Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Battiston, S.; Gatti, D.D.; Gallegati, M.; Greenwald, B.; Stiglitz, J.E. Default cascades: When does risk diversification increase stability? J. Financ. Stab. 2012, 8, 138–149. [Google Scholar] [CrossRef] [Green Version]
- Chiu, W.C.; Peña, J.I.; Wang, C.W. Industry characteristics and financial risk contagion. J. Bank. Financ. 2015, 50, 411–427. [Google Scholar] [CrossRef]
- Zhu, B.; Mao, H.; Huang, Y.; Lin, R.; Niu, F. Do China’s Non-Financial Firms Affect Systemic Risk? Emerg. Mark. Financ. Trade 2019. [Google Scholar] [CrossRef]
- Matsuyama, K. Credit traps and credit cycles. Am. Econ. Rev. 2007, 97, 503–516. [Google Scholar] [CrossRef]
- Hazama, M.; Uesugi, I. Measuring the systemic risk in interfirm transaction networks. J. Econ. Behav. Organ. 2017, 137, 259–281. [Google Scholar] [CrossRef] [Green Version]
- Kwon, O.; Yun, S.G.; Han, S.H.; Chung, Y.H.; Lee, D.H. Network topology and systemically important firms in the interfirm credit network. Comput. Econ. 2018, 51, 847–864. [Google Scholar] [CrossRef]
- Brunnermeier, M.K. Deciphering the liquidity and credit crunch 2007–2008. J. Econ. Perspect. 2009, 23, 77–100. [Google Scholar] [CrossRef]
- Beck, T.; Demirgüç-Kunt, A.; Maksimovic, V. Financial and legal constraints to growth: Does firm size matter? J. Financ. 2005, 60, 137–177. [Google Scholar] [CrossRef]
- Benoit, S.; Colliard, J.E.; Hurlin, C.; Pérignon, C. Where the risks lie: A survey on systemic risk. Rev. Financ. 2017, 21, 109–152. [Google Scholar] [CrossRef]
- Bisias, D.; Flood, M.; Lo, A.W.; Valavanis, S. A survey of systemic risk analytics. Annu. Rev. Financ. Econ. 2012, 4, 255–296. [Google Scholar] [CrossRef]
- Glasserman, P.; Young, H.P. How likely is contagion in financial networks? J. Bank. Financ. 2015, 50, 383–399. [Google Scholar] [CrossRef]
- Kahou, M.E.; Lehar, A. Macroprudential policy: A review. J. Financ. Stab. 2017, 29, 92–105. [Google Scholar] [CrossRef] [Green Version]
- Ewing, B.T.; Forbes, S.M.; Payne, J.E. The effects of macroeconomic shocks on sector-specific returns. Appl. Econ. 2003, 35, 201–207. [Google Scholar] [CrossRef]
- Hung, J. Deregulation and liberalization of the Chinese stock market and the improvement of market efficiency. Quart. Rev. Econ. Financ. 2009, 49, 843–857. [Google Scholar] [CrossRef]
- Patro, D.K.; Qi, M.; Sun, X. A simple indicator of systemic risk. J. Financ. Stab. 2013, 9, 105–116. [Google Scholar] [CrossRef]
- Kritzman, M.; Li, Y.; Page, S.; Rigobon, R. Principal components as a measure of systemic risk. J. Portf. Manag. 2011, 37, 112–126. [Google Scholar] [CrossRef]
- Billio, M.; Getmansky, M.; Lo, A.W.; Pelizzon, L. Econometric measures of connectedness and systemic risk in the finance and insurance sectors. J. Financ. Econ. 2012, 104, 535–559. [Google Scholar] [CrossRef]
- Li, Z.; Dong, H.; Huang, Z. Asymmetric effects on risks of Virtual Financial Assets (VFAs) in different regimes: A case of bitcoin. Quant. Financ. Econ. 2018, 2, 860–883. [Google Scholar] [CrossRef]
- Frahm, G. How often is the financial market going to collapse? Quant. Financ. Econ. 2018, 2, 590–614. [Google Scholar] [CrossRef]
- Zhou, C. Are banks too big to fail? Measuring systemic importance of financial institutions. Int. J. Cent. Bank. 2010, 6, 205–250. [Google Scholar] [CrossRef]
- Banulescu, G.D.; Dumitrescu, E.I. Which are the SIFIs? A component expected shortfall approach to systemic risk. J. Bank. Financ. 2015, 50, 575–588. [Google Scholar] [CrossRef]
- Adrian, T.; Brunnermeier, M.K. CoVaR. Am. Econ. Rev. 2016, 106, 1705–1741. [Google Scholar] [CrossRef]
- Acharya, V.; Engle, R.; Richardson, M. Capital shortfall: A new approach to ranking and regulating systemic risks. Am. Econ. Rev. 2012, 102, 59–64. [Google Scholar] [CrossRef]
- Brownlees, C.T.; Engle, R.F. SRISK: A conditional capital shortfall measure of systemic risk. Rev. Financ. Stud. 2017, 30, 48–79. [Google Scholar] [CrossRef]
- Diebold, F.X.; Yılmaz, K. On the network topology of variance decompositions: Measuring the connectedness of financial firms. J. Econom. 2014, 182, 119–134. [Google Scholar] [CrossRef] [Green Version]
- Hautsch, N.; Schaumburg, J.; Schienle, M. Financial network systemic risk contributions. Rev. Financ. 2015, 19, 685–738. [Google Scholar] [CrossRef]
- Anufriev, M.; Panchenko, V. Connecting the dots: Econometric methods for uncovering networks with an application to the Australian financial institutions. J. Bank. Financ. 2015, 61, S241–S255. [Google Scholar] [CrossRef]
- Barigozzi, M.; Hallin, M. A network analysis of the volatility of high dimensional financial series. J. R. Stat. Soc. C 2017, 66, 581–605. [Google Scholar] [CrossRef]
- Chan-Lau, J.A. Systemic centrality and systemic communities in financial networks. Quant. Financ. Econ. 2018, 2, 468–496. [Google Scholar] [CrossRef]
- Dičpinigaitienė, V.; Novickytė, L. Application of systemic risk measurement methods: A systematic review and meta-analysis using a network approach. Quant. Financ. Econ. 2018, 2, 798–820. [Google Scholar] [CrossRef]
- Qian, Y.; Härdle, W.K.; Chen, C. Industry Interdependency Dynamics in a Network Context. SSRN 2017. [Google Scholar] [CrossRef] [Green Version]
- Reinhart, C.M.; Rogoff, K.S. The aftermath of financial crises. Am. Econ. Rev. 2009, 99, 466–472. [Google Scholar] [CrossRef]
- Taylor, J.B. Getting Off Track: How Government Actions and Interventions Caused, Prolonged, and Worsened the Financial Crisis; Hoover Institution Press: Stanford, CA, USA, 2009. [Google Scholar]
- Hallin, M.; Liška, R. Determining the number of factors in the general dynamic factor model. J. Am. Stat. Assoc. 2007, 102, 603–617. [Google Scholar] [CrossRef]
- Forni, M.; Hallin, M.; Lippi, M.; Zaffaroni, P. Dynamic factor models with infinite-dimensional factor spaces: One-sided representations. J. Econom. 2015, 185, 359–371. [Google Scholar] [CrossRef] [Green Version]
- Hoberg, G.; Phillips, G. Product market synergies and competition in mergers and acquisitions: A text-based analysis. Rev. Financ. Stud. 2010, 23, 3773–3811. [Google Scholar] [CrossRef]
- Delis, M.D.; Kouretas, G.P. Interest rates and bank risk-taking. J. Bank. Financ. 2011, 35, 840–855. [Google Scholar] [CrossRef] [Green Version]
- Li, F. Endogeneity in CEO power: A survey and experiment. Invest. Anal. J. 2016, 45, 149–162. [Google Scholar] [CrossRef]
- Hansen, L.P. Large sample properties of generalized method of moments estimators. Econom. J. Econom. Soc. 1982, 1029–1054. [Google Scholar] [CrossRef]
- Kiviet, J.F. On bias, inconsistency, and efficiency of various estimators in dynamic panel data models. J. Econom. 1995, 68, 53–78. [Google Scholar] [CrossRef]
- Judson, R.A.; Owen, A.L. Estimating dynamic panel data models: A guide for macroeconomists. Econ. Lett. 1999, 65, 9–15. [Google Scholar] [CrossRef]
- Härdle, W.K.; Wang, W.; Yu, L. Tenet: Tail-event driven network risk. J. Econom. 2016, 192, 499–513. [Google Scholar] [CrossRef]
- Berger, A.N.; Udell, G.F. A more complete conceptual framework for SME finance. J. Bank. Financ. 2006, 30, 2945–2966. [Google Scholar] [CrossRef]
- Dell’Ariccia, G.; Igan, D.; Laeven, L.; Tong, H. Policies for Macrofinancial Stability: Dealing with Credit Booms and Busts. In Financial Crises: Causes, Consequences, and Policy Responses; International Monetary Fund: Washington, DC, USA, 2014; pp. 325–364. [Google Scholar]
Variables | Mean | Standard Deviation | Min | 1st Quartile | Median | 3rd Quartile | Max |
---|---|---|---|---|---|---|---|
TC | 10.052 | 6.613 | 4.987 | 9.678 | 10.068 | 14.763 | 26.556 |
9.840 | 4.975 | 0.732 | 5.885 | 9.385 | 17.951 | 29.873 | |
10.245 | 9.917 | 0.000 | 3.414 | 9.948 | 16.951 | 47.591 | |
RATE | 2.500 | 0.646 | 1.500 | 2.250 | 3.000 | 3.000 | 3.500 |
RATER | 0.183 | 0.195 | 0.150 | 0.170 | 0.180 | 0.200 | 0.215 |
LEV | 0.523 | 0.236 | 0.034 | 0.401 | 0.558 | 0.699 | 0.966 |
MB | 2.279 | 3.745 | 0.039 | 0.454 | 0.969 | 1.970 | 21.916 |
ROA | 0.101 | 0.295 | −1.060 | 0.011 | 0.043 | 0.115 | 4.659 |
COST | 10.472 | 0.921 | 7.888 | 9.887 | 10.319 | 10.837 | 13.358 |
CASH | 0.272 | 0.727 | 0.000 | 0.043 | 0.107 | 0.238 | 8.226 |
SIZE | 10.108 | 0.962 | 7.897 | 9.492 | 9.912 | 10.496 | 13.346 |
GDP | 0.085 | 0.017 | 0.0620 | 0.071 | 0.078 | 0.101 | 0.122 |
Sector | Stage 1 (2008) | Stage 2 (2009–2014) | Stage 3 (2015–2016) | |||
---|---|---|---|---|---|---|
Energy | 17.727 | 47.591 | 3.195 | 5.569 | 16.481 | 31.013 |
Materials | 20.306 | 29.318 | 4.702 | 4.884 | 20.445 | 24.696 |
Industrial | 24.570 | 27.630 | 3.982 | 4.446 | 16.353 | 17.904 |
Optional consumer | 28.770 | 19.995 | 4.097 | 2.995 | 18.786 | 16.198 |
Major consumer | 26.240 | 25.539 | 4.072 | 3.204 | 19.258 | 14.583 |
Healthcare | 27.591 | 19.484 | 4.796 | 4.007 | 19.981 | 16.395 |
Financials | 19.776 | 36.607 | 5.694 | 6.475 | 18.246 | 25.516 |
IT | 26.331 | 17.942 | 4.476 | 4.658 | 19.208 | 12.499 |
Telecommunications | 29.873 | 11.363 | 4.787 | 5.174 | 20.968 | 14.197 |
Utilities | 29.547 | 15.546 | 4.849 | 3.458 | 16.068 | 12.301 |
TC | 26.556 | 4.632 | 18.671 |
Variable | System Risk Sensitivity | System Risk Contribution | ||||
---|---|---|---|---|---|---|
Model | (1) | (2) | (3) | (4) | (5) | (6) |
RATE | −1.1070 ** (0.012) | −0.7745 * (0.072) | ||||
RR | −0.9231 ** (0.023) | −0.7693 ** (0.024) | ||||
LEV | 3.1309 ** (0.031) | 11.3338 * (0.071) | 9.8376 ** (0.046) | 8.4922 *** (0.006) | 4.4370 ** (0.047) | 6.3611 ** (0.016) |
RATE × LEV | −1.2265 ** (0.031) | −1.5642 * (0.055) | ||||
RR × LEV | −0.0407* (0.057) | −0.0672 * (0.059) | ||||
BM | 0.2637 * (0.049) | 0.1621 (0.190) | −0.0969 (0.254) | 0.9427 ** (0.045) | 0.8274 * (0.094) | 0.7044 ** (0.046) |
ROA | −2.1702 * (0.046) | −2.1140 * (0.057) | −1.749 * (0.093) | −2.5477 ** (0.029) | −2.9085 ** (0.035) | −3.0833 ** (0.027) |
COST | −0.0612 (0.709) | 0.0445 (0.787) | −0.0630 (0.237) | −0.0895 (0.114) | −0.0614 (0.982) | −0.0815 (0.496) |
CASH | −0.0993 (0.209) | −0.0981 (0.212) | 0.0957 (0.176) | −0.0821 (0.920) | −0.1248 (0.523) | −0.0631 (0.961) |
SIZE | −0.6389 (0.439) | −0.5500 (0.504) | −0.4512 (0.583) | −0.4484 ** (0.044) | −0.4248 * (0.053) | −0.2057 * (0.097) |
GDP | −4.8514 *** (0.000) | −5.4806 *** (0.000) | −3.956 *** (0.004) | −4.3967 *** (0.008) | −5.0943 ** (0.024) | −3.3957 ** (0.048) |
_CONS | 18.9773 (0.007) | 31.2809 (0.000) | 14.3496 (0.000) | 20.8910 (0.000) | 30.5027 (0.009) | 19.4404 (0.000) |
N | 360 | 360 | 360 | 360 | 360 | 360 |
Variable | System Risk Sensitivity | System Risk Contribution | ||||
---|---|---|---|---|---|---|
Model | (1) | (2) | (3) | (4) | (5) | (6) |
0.1925 *** (0.004) | 0.1875 *** (0.008) | 0.1350 *** (0.000) | 0.5806 *** (0.000) | 0.5217 *** (0.000) | 0.4753 *** (0.000) | |
RATE | −3.1672 *** (0.008) | −3.7020 *** (0.008) | ||||
RR | −1.1028 ** (0.036) | −1.1517 ** (0.036) | ||||
LEV | 3.360 ** (0.040) | 10.0586 ** (0.039) | 9.3548 *** (0.009) | 8.8306 ** (0.016) | 9.3422 *** (0.009) | 8.9068 *** (0.005) |
RATE × LEV | −0.3219 ** (0.032) | −0.1806 * (0.054) | ||||
RR × LEV | −0.0312 ** (0.049) | −0.0330 * (0.066) | ||||
BM | 0.2634 * (0.059) | 0.1752 (0.289) | 0.5760 (0.178) | 1.0753 ** (0.045) | 1.092 * (0.078) | 1.034 ** (0.045) |
ROA | −1.9500 ** (0.044) | −1.8701 * (0.065) | −2.0333 * (0.076) | −1.3203 ** (0.048) | −1.6542 ** (0.047) | −2.2654 * (0.075) |
COST | 0.0862 (0.798) | −0.0355 (0.443) | 0.0795 (0.432) | −0.0652 (0.5706) | 0.0935 (0.988) | 0.0877 (0.727) |
CASH | −0.0911 (0.256) | 0.0050 (0.722) | −0.7503 (0.489) | 0.3560 (0.490) | 0.3003 (0.980) | 0.5637 (0.606) |
SIZE | −0.7369 (0.576) | 0.5596 (0.837) | 0.4594 (0.576) | −0.5107 ** (0.036) | −0.5086 ** (0.033) | −0.4980 * (0.054) |
GDP | −4.963 *** (0.000) | −6.5806 *** (0.000) | −5.3675 *** (0.001) | −7.0302 *** (0.000) | −7.2611 *** (0.006) | −6.3186 *** (0.003) |
_CONS | 28.9306 *** (0.000) | 17.2583 *** (0.000) | 15.2951 *** (0.003) | 25.0008 *** (0.000) | 22.5635 *** (0.000) | 20.0768 *** (0.000) |
N | 360 | 360 | 360 | 360 | 360 | 360 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Y.; Huang, Z.; Drakeford, B.M. Monetary Policy, Industry Heterogeneity and Systemic Risk—Based on a High Dimensional Network Analysis. Sustainability 2019, 11, 6222. https://doi.org/10.3390/su11226222
Su Y, Huang Z, Drakeford BM. Monetary Policy, Industry Heterogeneity and Systemic Risk—Based on a High Dimensional Network Analysis. Sustainability. 2019; 11(22):6222. https://doi.org/10.3390/su11226222
Chicago/Turabian StyleSu, Yaya, Zhehao Huang, and Benjamin M. Drakeford. 2019. "Monetary Policy, Industry Heterogeneity and Systemic Risk—Based on a High Dimensional Network Analysis" Sustainability 11, no. 22: 6222. https://doi.org/10.3390/su11226222
APA StyleSu, Y., Huang, Z., & Drakeford, B. M. (2019). Monetary Policy, Industry Heterogeneity and Systemic Risk—Based on a High Dimensional Network Analysis. Sustainability, 11(22), 6222. https://doi.org/10.3390/su11226222