Factors Contributing to the Relationship between Driving Mileage and Crash Frequency of Older Drivers
Abstract
:1. Introduction
2. Method
2.1. Study Area and Data
2.2. Statistical Analyses
3. Analysis and Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- National Highway Traffic Safety Administration. Traffic Safety Fact 2018: 2016 Data; National Highway Traffic Safety Administration: Washington, DC, USA, 2018. [Google Scholar]
- Cioca, L.I.; Ivascu, L. Risk indicators and road accident analysis for the Period 2012–2016. Sustainability 2017, 9, 1530. [Google Scholar] [CrossRef]
- Li, G.; Braver, E.R.; Chen, L.H. Fragility versus excessive crash involvement as determinants of high death rates per vehicle mile of travel among older drivers. Accid. Anal. Prev. 2003, 35, 227–235. [Google Scholar] [CrossRef]
- Massie, D.L.; Green, P.E.; Campbell, K.L. Crash involvement rates by driver gender and the role of average annual mileage. Accid. Anal. Prev. 1997, 29, 675–685. [Google Scholar] [CrossRef]
- Janke, M.K. Accident, mileage, and the exaggeration of risk. Accid. Anal. Prev. 1991, 23, 183–188. [Google Scholar] [CrossRef]
- Alvarez, F.J.; Fierro, I. Older drivers, medical condition, medical impairment and crash risk. Accid. Anal. Prev. 2008, 40, 55–60. [Google Scholar] [CrossRef]
- Hanson, T.R.; Hildebrand, E.D. Area rural older drivers subject to low-mileage bias? Accid. Anal. Prev. 2011, 43, 1872–1877. [Google Scholar] [CrossRef]
- Langford, J.; Methorst, R.; Hakamies-Blomqvist, L. Older drivers do not have a high crash risk: A replication of low mileage bias. Accid. Anal. Prev. 2006, 38, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Langford, J.; Koppel, S.; McCarthey, D.; Srinivasan, S. In defence of the low-mileage bias. Accid. Anal. Prev. 2008, 40, 1996–1999. [Google Scholar] [CrossRef] [PubMed]
- Landford, J.; Charlton, J.L.; Koppei, S.; Myers, A.; Tuokko, H.; Marshall, S. Findings from the Candrive/Ozcandrive study; Low-mileage older drivers, crash risk and reduced fitness to drive. Accid. Anal. Prev. 2013, 61, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Staplin, L.; Gish, K.W.; Joyce, J. Low mileage bias and related policy implications-A cautionary note. Accid. Anal. Prev. 2008, 40, 1249–1252. [Google Scholar] [CrossRef]
- Antin, J.F.; Guo, F.; Fang, Y.; Dingus, T.A.; Perez, M.A.; Hankey, J.M. A validation of the low mileage bias using naturalistic driving study data. J. Safety Res. 2017, 63, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Molnar, L.J.; Eby, D.W.; Bogard, S.E.; Leblanc, D.J.; Zakrajsek, J.S. Using naturalistic driving data to better understand the driving exposure and patterns of older drivers. Traffic Inj. Prev. 2018, 19, S83–S88. [Google Scholar] [CrossRef] [PubMed]
- Regev, S.; Rolison, J.J.; Moutari, S. Crash risk by driver age, gender, and time of day using a new exposure methodology. J. Saf. Res. 2018, 66, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Rolison, J.J.; Moutari, S. Risk-Exposure density and mileage bias in crash risk for older drivers. Am. J. Epidemiol. 2018, 187, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Dumbaugh, E.; Zhang, Y. The relationship between community design and crashes involving older drivers and pedestrians. J. Plan. Educ. Res. 2013, 33, 83–95. [Google Scholar] [CrossRef]
- Lee, D.; Guldmann, J.M.; Von Rabenau, B. Interactions between the built and socio-economic environment and driver demographics: Spatial econometric models of car crashes in the Columbus Metropolitan Area. Int. J. Urban Sci. 2018, 22, 17–37. [Google Scholar] [CrossRef]
- Levine, N.; Kim, K. The location of motor vehicle crashes in Honolulu: A methodology for geocoding intersections. Comput. Environ. Urban. Syst. 1998, 22, 557–576. [Google Scholar] [CrossRef]
- Fridstrom, L.; Ingebrigten, S. An aggregate accident model based on pooled, regional time-series data. Accid. Anal. Prev. 1991, 23, 363–378. [Google Scholar] [CrossRef]
- Pawlovich, D.M.; Souleyrette, R.R.; Strauss, T. A Methodology for Studying Crash Dependence on Demographic and Socioeconomic data. In Proceedings of the Conference: Crossroads 2000, Iowa State University Ames, IA, USA, 19–20 August 1998; pp. 209–215. [Google Scholar]
- Noland, R.; Oh, L. The effect of infrastructure and demographic change on traffic-related fatalities and crashes: A case study of Illinois county-level data. Accid. Anal. Prev. 2004, 36, 525–532. [Google Scholar] [CrossRef]
- Hadayeghi, A.; Shalaby, A.S.; Persaud, B.N. Micro-Level accident prediction models for evaluating the safety of urban transportation systems. Transp. Res. Rec. 2003, 1840, 87–95. [Google Scholar] [CrossRef]
- Guevara, F.L.; Washington, S.; Oh, J. Forecasting crashes at the planning level: Simultaneous negative binomial crash model applied in Tucson, Arizona. Transp. Res. Rec. 2004, 1897, 191–199. [Google Scholar] [CrossRef]
- Kim, K.; Brunner, M.; Yamashita, E.Y. Influence of land use, population, employment and economic activity on accidents. Transp. Res. Rec. 2006, 1953, 56–64. [Google Scholar] [CrossRef]
- Dumbaugh, E.; Li, W. Designing for the safety for pedestrians, cyclists, and motorists in urban environments. J. Am. Plann. Assoc. 2010, 77, 69–88. [Google Scholar] [CrossRef]
- Hadayeghi, A.; Shalaby, A.; Persaud, B. Development of planning-Level transportation safety models using full bayesian semiparrametric additive techniques. J. Transp. Saf. Secur. 2010, 2, 45–68. [Google Scholar] [CrossRef]
- Guo, Y.; Osama, A.; Sayed, T. A cross-Comparison of different techniques for modeling macro-Level cyclist crashes. Accid. Anal. Prev. 2018, 113, 38–46. [Google Scholar] [CrossRef] [PubMed]
- International Transport Forum. Available online: https://www.itf-oecd.org/content/publication-0 (accessed on 20 March 2019).
- American Automobile Association: Older Driver Fact Sheet. Available online: http://newsroom.aaa.com/wp-content/uploads/2012/11/SmartFeatures-FactSheet.pdf (accessed on 20 March 2019).
- Cheng, Z.; Zu, Z.; Lu, J. Traffic crash evolution characteristic analysis and spatiotemporal hotspot identification of urban road intersections. Sustainability 2019, 11, 160. [Google Scholar] [CrossRef]
- Graham, D.J.; Glaister, S. Spatial variation in road pedestrian casualties: The role of urban scale, density and land-Use mix. Urban Stud. 2003, 40, 1591–1607. [Google Scholar] [CrossRef]
- Wedagama, D.M.P.; Bird, R.N.; Metcalfe, A.V. The influence of urban land-Use on non-Motorised trasport casulaties. Accid. Anal. Prev. 2006, 38, 1049–1057. [Google Scholar] [CrossRef]
- Dumbaugh, E.; Rae, R. Safe urban form: Revisiting the relationship between community design and traffic safety. J. Am. Plann. Assoc. 2009, 75, 309–329. [Google Scholar] [CrossRef]
- Bindra, B.; Ivan, N.J.; Jonsson, T. Predicting segment-Intersection crashes with land development data. Transp. Res. Rec. 2009, 2102, 9–17. [Google Scholar] [CrossRef]
- Pulugurtha, S.S.; Sambhara, V.R. Pedestrian crash estimation models for signalized intersections. Accid. Anal. Prev. 2011, 43, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Pulugurtha, S.S.; Duddu, V.R.; Kotagiri, Y. Traffic analysis zone level crash estimation models based on land use characteristics. Accid. Anal. Prev. 2012, 50, 678–687. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, C.; Abdel-Aty, M.; Choi, K. Macroscopic spatial analysis of pedestrian and bicycle crashes. Accid. Anal. Prev. 2011, 45, 382–391. [Google Scholar] [CrossRef] [PubMed]
- Quddus, M.A. Modeling area-Wide count outcomes with spatial correlation and heterogeneity: An analysis of London crash data. Accid. Anal. Prev. 2008, 40, 1486–1497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, P.; Huang, H. Modeling crash spatial heterogeneity: Random parameter versus geographically weighting. Accid. Anal. Prev. 2015, 75, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Lee, D. CARBayes: An R package for Bayesian spatial modeling with conditional autoregressive priors. J. Stat. Softw. 2013, 55, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Besag, J.; York, J.; Molli, E.A. Bayesian image restoration with two applications in spatial statistics. Annu. Inst. Stat. Math. 1991, 43, 1–59. [Google Scholar] [CrossRef]
- Pljakic, M.; Jovanovic, D.; Matovic, B.; Micicc, S. Macro-Level accident modeling in Novi Sad: A spatial regression approach. Accid. Anal. Prev. 2019, 132, 105259. [Google Scholar] [CrossRef]
- Wen, H.; Zhang, X.; Zeng, Q.; Lee, J.; Yuan, Q. Investigating Spatial Autocorrelation and Spillover Effects in Freeway Crash-Frequency Data. Int. J. Environ. Res. Public Health 2019, 16, 219. [Google Scholar] [CrossRef] [Green Version]
- Shope, J.T. Influences on youthful driving behavior and their potential for guiding interventions to reduce crashes. Inj. Prev. 2006, 12, i9–i14. [Google Scholar] [CrossRef]
- Clifton, K.J.; Fults, K.K. An examination of the environmental attributes associated with pedestrian-Vehicular crashes near public schools. Accid. Anal. Prev. 2007, 39, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Wier, M.; Weintraub, J.; Humphreys, E.H.; Seto, E.; Bhatia, R. An area-Level model of vehicle-Pedestrian injury collisions with implications for land use and transportation planning. Accid. Anal. Prev. 2009, 41, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Kang, C. The S+5Ds: Spatial access to pedestrian environments and walking in Seoul, Korea. Cities 2018, 77, 130–141. [Google Scholar]
- Shi, L.; Huseynova, N.; Yang, B.; Li, C.; Gao, L. A cask evaluation model to assess safety in Chinese rural roads. Sustainability 2018, 10, 3864. [Google Scholar] [CrossRef] [Green Version]
- Blanco, M.; Atwood, J.; Russell, S.; Trimble, T.; McClafferty, J.; Perez, M. Automated Vehicle Crash Rate Comparison Using Naturalistic Data 2016; Virginia Tech Transportation Institute: Blacksburg, VA, USA, 2016. [Google Scholar]
- Li, Y.; Xiong, W.; Wang, X. Does polycentric and compact development alleviate urban traffic congestion? A case study of 98 Chinese cities. Cities 2019, 88, 100–111. [Google Scholar] [CrossRef]
Category | Variable Name | Source |
---|---|---|
Crash Data | YDriver, MDriver, ODriver, Y06, Y07, Y08, Y09, Y10, and Y11 | Ohio Department of Public Safety (ODPS) |
Socio-Economic Factors | Popdensity, NHH, Empoff, HSchool, P1524, P5064, and Over65 | Mid-Ohio Regional Planning Commission (MORPC) and U.S. Census of Population and Housing |
Land-Use Factors | Residential and Commercial | County Auditors’ parcel-level data. |
Public Transit and Traffic Flow Factors | Busstop, VMT, Road, and ASpeed, | Ohio Department of Transportation (ODOT), Central Ohio Transit Authority (COTA) and the Delaware Area Transit Authority (DATA) |
Variable | Description | Mean | SD | Minimum | Maximum |
---|---|---|---|---|---|
YDriver | Number of crashes caused by young drivers over the period 2006–2011 per TAZ | 29.15 | 36.75 | 0 | 515 |
MDriver | Number of crashes caused by drivers aged 24–64 over the period 2006–2011 per TAZ | 54.58 | 66.32 | 0 | 509 |
ODriver | Number of crashes caused by older drivers (65 +) over the period 2006–2011 per TAZ | 6 | 7.5 | 0 | 64 |
Popdensity | Population Density (population/acre) | 3.53 | 4.8 | 0 | 47.04 |
NHH | Number of households per TAZ | 363.7 | 441.99 | 0 | 3248 |
Empoff | Office employment per TAZ | 189.9 | 573.05 | 0 | 7729 |
HSchool | High school enrollment 2010 per TAZ | 53.33 | 244.65 | 0 | 3103 |
P1524 | Proportion of population between 15 and 24 years per TAZ | 0.14 | 0.1 | 0 | 1 |
P5064 | Proportion of population between 50 and 64 years per TAZ | 0.2 | 0.07 | 0 | 1 |
Over 65 | Proportion of population over 65 + years per TAZ | 0.12 | 0.09 | 0 | 1 |
Residential | Proportion of residential land use per TAZ | 0.3 | 0.27 | 0 | 0.96 |
Commercial | Proportion of commercial land use per TAZ | 0.12 | 0.19 | 0 | 0.98 |
Busstop | Number of bus stops per TAZ | 2.38 | 4.41 | 0 | 32 |
VMT | Vehicle miles per travel rate per weekday per TAZ | 19.77 | 11.18 | 0 | 210.89 |
Road | Length of road (mile) per TAZ | 4.55 | 4.73 | 0 | 43.14 |
Distance_C | Distance from the center of Columbus (mile) per TAZ | 13.65 | 9.58 | 0.07 | 44.47 |
ASpeed | Average Speed of roads per TAZ | 35.66 | 8.79 | 0 | 59.49 |
Y06 | Number of crashes in 2006 per TAZ | 13.3 | 17.7 | 0 | 151 |
Y07 | Number of crashes in 2007 per TAZ | 12.1 | 17.7 | 0 | 186 |
Y08 | Number of crashes in 2008 per TAZ | 16.5 | 17.7 | 0 | 192 |
Y09 | Number of crashes in 2009 per TAZ | 16 | 18 | 0 | 168 |
Y10 | Number of crashes in 2010 per TAZ | 15 | 20.18 | 0 | 138 |
Y11 | Number of crashes in 2011 per TAZ | 15 | 18.86 | 0 | 159 |
Group | Crash Frequency | % |
---|---|---|
Young driver | 52,093 | 32.3 |
Matured driver | 98,526 | 61.0 |
Senior driver | 10,882 | 6.7 |
Total | 161,501 | 100.0 |
Group | Age Group | Moran’s I | p-Value |
---|---|---|---|
1 | 16 < age ≤ 24 | 0.36 | <0.0001 |
2 | 24 < age ≤ 64 | 0.33 | <0.0001 |
3 | Over 65 | 0.31 | <0.0001 |
Parameter | Description | Young Drivers | Mature Drivers | Senior Drivers |
---|---|---|---|---|
Intercept | 3.14 (<0.0001) *** | 3.715 (<0.0001) *** | 1.774 (<0.0001) *** | |
Popdensity | Population Density (population /Acre) | - - | 0.011 (0.017) ** | - - |
NHH | Number of Households | 3 × 10−6 (<0.0001) *** | - - | - - |
Empoff | Office Employment | 0.0001 (0.005) *** | 0.0001 (<0.0001) *** | 0.0001 (0.0755) * |
HSchool | High School Enrolment 2010 | 0.0003 (<0.0001) *** | - - | - - |
P1524 | Proportion of population between 15 and 24 | 0.786 (<0.0001) *** | - - | - - |
P5064 | Proportion of population between 50 and 64 | –1.335 (<0.0001) *** | –1.138 (<0.0001) *** | - - |
Over65 | Proportion of population over 65 | - - | - - | 1.548 (<0.0001) *** |
Commercial | Proportion of commercial land use | 0.178 (0.0770) * | 0.409 (<0.0001) *** | 0.41 (<0.0001) *** |
Busstop | Number of bus stop | - - | - - | 0.021 (<0.0001) *** |
VMT | Vehicle miles per travel rate per weekday | –0.001 (<0.0001) *** | –0.001 (0.0061) *** | –0.001 (<0.0001) *** |
Road | Length of road (miles) | 0.042 (<0.0001) *** | 0.04 (<0.0001) *** | 0.031 (<0.0001) *** |
Distance_C | Distance from the center of Columbus (miles) | –0.007 (<0.0001) *** | –0.015 (<0.0001) *** | - - |
ASpeed | Average Speed of roads | –0.022 (<0.0001) *** | –0.015 (< 0.0001) *** | –0.032 (<0.0001) *** |
Y06 | Crashes occurred in 2006 | 0.029 (<0.0001) *** | 0.027 (<0.0001) *** | 0.03 (<0.0001) *** |
Y07 | Crashes occurred in 2007 | 0.014 (<0.0001) *** | 0.019 (<0.0001) *** | 0.007 (0.0046) *** |
Number of observations | 1805 | 1805 | 1805 | |
Number of parameters | 12 | 10 | 9 | |
DF | 1792 | 1794 | 1795 | |
0.67 | 0.64 | 0.68 | ||
Chi-squared goodness of fit test | 0.844 | 0.954 | 0.384 | |
Mean Pearson Chi-Square (value/DF) | 0.966 | 0.944 | 1.01 |
Name | Young Drivers | Mature Drivers | Senior Drivers | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | SD | 2.5% | 97.5% | Mean | SD | 2.5% | 97.5% | Mean | SD | 2.5% | 97.5% | |
Intercept | 2.557 | 0.386 | 1.219 | 2.871 | 3.443 | 0.592 | 1.11 | 3.816 | 1.722 | 0.209 | 0.966 | 1.966 |
Popdensity | - | - | - | - | 0.018 | 0.017 | 0.004 | 0.082 | - | - | - | - |
NHH | 4.38 × 10−4 | 1.40 × 10−4 | 2.71 × 10−4 | 9.23 × 10−4 | - | - | - | - | - | - | - | - |
Empoff | 9.68 × 10−5 | 3.79 × 10−5 | 4.63 × 10−5 | 1.76 × 10−4 | 1.52 × 10−4 | 5.42 × 10−5 | 7.19 × 10−5 | 3.08 × 10−4 | 6.02 × 10−4 | 4.02 × 10−5 | 6.24 × 10−6 | 1.56 × 10−4 |
HSchool | 2.81 × 10−4 | 6.23 × 10−5 | 1.64 × 10−4 | 3.90 × 10−4 | - | - | - | - | - | - | - | - |
P1524 | 0.839 | 0.204 | 0.502 | 1.249 | - | - | - | - | - | - | - | - |
P5064 | −0.9 | 0.336 | −1.472 | 0.064 | −0.696 | 0.348 | −1.121 | 0.13 | - | - | - | - |
Over65 | - | - | - | - | - | - | - | - | 1.38 | 0.317 | 0.396 | 1.808 |
Commercial | 0.323 | 0.11 | 0.131 | 0.529 | 0.433 | 0.131 | 0.218 | 0.787 | 0.43 | 0.114 | 0.181 | 0.626 |
Busstop | - | - | - | - | - | - | - | - | 0.022 | 0.006 | 0.012 | 0.038 |
VMT | −6.2 × 10−4 | 3.2 × 10−5 | −0.001 | 3.49 × 10−4 | −5.69 × 10−4 | 5.68 × 10−4 | −0.001 | 0.001 | −0.001 | 4.01 × 10−4 | −0.002 | −5.37 × 10−4 |
Road | 0.028 | 0.006 | 0.013 | 0.038 | 0.04 | 0.004 | 0.032 | 0.048 | 0.031 | 0.005 | 0.021 | 0.04 |
Distance_C | −0.005 | 0.002 | −0.009 | −5.14 × 10−4 | −0.014 | 0.002 | −0.018 | −0.01 | - | - | - | - |
ASpeed | −0.009 | 0.007 | −0.015 | 0.017 | −0.011 | 0.012 | −0.019 | 0.037 | −0.03 | 0.005 | −0.036 | −0.009 |
Y06 | 0.027 | 0.003 | 0.023 | 0.033 | 0.028 | 0.003 | 0.023 | 0.036 | 0.03 | 0.003 | 0.025 | 0.036 |
Y07 | 0.015 | 0.002 | 0.01 | 0.02 | 0.018 | 0.002 | 0.013 | 0.023 | 0.007 | 0.003 | 0.002 | 0.012 |
SD of SC | 0.29 | 0.24 | 0.25 | |||||||||
SD of UH | 0.81 | 0.82 | 0.86 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.; Guldmann, J.-M.; Choi, C. Factors Contributing to the Relationship between Driving Mileage and Crash Frequency of Older Drivers. Sustainability 2019, 11, 6643. https://doi.org/10.3390/su11236643
Lee D, Guldmann J-M, Choi C. Factors Contributing to the Relationship between Driving Mileage and Crash Frequency of Older Drivers. Sustainability. 2019; 11(23):6643. https://doi.org/10.3390/su11236643
Chicago/Turabian StyleLee, Dongkwan, Jean-Michel Guldmann, and Choongik Choi. 2019. "Factors Contributing to the Relationship between Driving Mileage and Crash Frequency of Older Drivers" Sustainability 11, no. 23: 6643. https://doi.org/10.3390/su11236643
APA StyleLee, D., Guldmann, J.-M., & Choi, C. (2019). Factors Contributing to the Relationship between Driving Mileage and Crash Frequency of Older Drivers. Sustainability, 11(23), 6643. https://doi.org/10.3390/su11236643