Precipitation Forecasting Using Multilayer Neural Network and Support Vector Machine Optimization Based on Flow Regime Algorithm Taking into Account Uncertainties of Soft Computing Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Support Vector Machine
2.2. Multilayer Perceptron (MLP)
2.3. Decision Tree Model
2.4. Flow Regime Optimization Algorithm
2.5. Construction of Hybrid Models (ANN–Flow Regime Optimization Algorithm (FRA) and SVM–FRA)
- The input data are identified.
- The data are normalized.
- The training phase is completed.
- The criterion of stopping the modeling process is controlled. If satisfactory, go to step 10; otherwise, go to step 5.
- The parameters of the multilayer neural network, including weight, bias, number of neurons and hidden layers, as well as the support vector model, are defined as the initial population of fluid particles. The above parameters are considered as decision variables in the flow regime algorithm.
- The objective function is computed for the fluid particle population members. The present study considers the RMSE value as the objective function. Then, the best particle or optimal global solution is determined with the best objective function.
- The two random particles of J and K are determined, and the STF value is calculated.
- Particle movement is based on control of the STF value, and Equations (9)–(11) are used for the particle movement.
- The maximum number of iterations is controlled. If satisfied, the algorithm is stopped and goes to step 3; otherwise, it goes to step 5.
- The test phase is performed, and the output is provided, which is the monthly precipitation value.
3. Case Study
- Input of precipitation forecasting models is the average temperature based on various time delays from 1 to 12 months.
- Input of precipitation forecasting models is the average precipitation based on various time delays from 1 to 12 months.
- Input of precipitation forecasting models is the average temperature and precipitation based on various time delays from 1 to 12 months.
4. Results and Discussion
4.1. Sensitivity Analysis of FRA Parameters
4.2. Selection of Input Model Parameters
4.3. Comparison of Results of Different Scenarios
4.4. Hydrological Analysis of Results
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ehteram, M.; Binti Koting, S.; Afan, H.A.; Mohd, N.S.; Malek, M.A.; Ahmed, A.N.; El-shafie, A.H.; Onn, C.C.; Lai, S.H.; El-Shafie, A. New Evolutionary Algorithm for Optimizing Hydropower Generation Considering Multireservoir Systems. Appl. Sci. 2019, 9, 2280. [Google Scholar] [CrossRef]
- Ehteram, M.; Singh, V.P.; Ferdowsi, A.; Mousavi, S.F.; Farzin, S.; Karami, H.; Mohd, N.S.; Afan, H.A.; Lai, S.H.; Kisi, O.; et al. An improved model based on the support vector machine and cuckoo algorithm for simulating reference evapotranspiration. PLoS ONE 2019, 14, e0217499. [Google Scholar] [CrossRef] [PubMed]
- Pradhan, A.M.S.; Lee, S.-R.; Kim, Y.-T. A shallow slide prediction model combining rainfall threshold warnings and shallow slide susceptibility in Busan, Korea. Landslides 2018, 16, 647–659. [Google Scholar] [CrossRef]
- Lian, C.Y.; Huang, Y.F.; Ng, J.L.; Mirzaei, M.; Koo, C.H.; Tan, K.W. A proposed hybrid rainfall simulation model: Bootstrap aggregated classification tree–artificial neural network (BACT-ANN) for the Langat River Basin, Malaysia. J. Water Clim. Chang. 2019, jwc2019, 294. [Google Scholar] [CrossRef]
- Ghimire, S.; Deo, R.C.; Downs, N.J.; Raj, N. Global solar radiation prediction by ANN integrated with European Centre for medium range weather forecast fields in solar rich cities of Queensland Australia. J. Clean. Prod. 2019, 216, 288–310. [Google Scholar] [CrossRef]
- Kisi, O.; Cimen, M. Precipitation forecasting by using wavelet-support vector machine conjunction model. Eng. Appl. Artif. Intell. 2012, 25, 783–792. [Google Scholar] [CrossRef]
- Venkata Ramana, R.; Krishna, B.; Kumar, S.R.; Pandey, N.G. Monthly Rainfall Prediction Using Wavelet Neural Network Analysis. Water Resour. Manag. 2013, 27, 3697–3711. [Google Scholar] [CrossRef]
- Shamshirband, S.; Gocic, M.; Petkovic, D.; Saboohi, H.; Herawan, T.; Mat Kiah, M.L.; Akib, S. Soft-Computing Methodologies for Precipitation Estimation: A Case Study. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 8, 1–6. [Google Scholar] [CrossRef]
- Kisi, O.; Sanikhani, H. Prediction of long-term monthly precipitation using several soft computing methods without climatic data. Int. J. Clim. 2015, 35, 4139–4150. [Google Scholar] [CrossRef]
- Shenify, M.; Danesh, A.S.; Gocić, M.; Taher, R.S.; Abdul Wahab, A.W.; Gani, A.; Shamshirband, S.; Petković, D. Precipitation Estimation Using Support Vector Machine with Discrete Wavelet Transform. Water Resour. Manag. 2015, 30, 641–652. [Google Scholar] [CrossRef]
- Arab Amiri, M.; Amerian, Y.; Mesgari, M.S. Spatial and temporal monthly precipitation forecasting using wavelet transform and neural networks, Qara-Qum catchment, Iran. Arab. J. Geosci. 2016, 9. [Google Scholar] [CrossRef]
- Du, J.; Liu, Y.; Yu, Y.; Yan, W. A Prediction of Precipitation Data Based on Support Vector Machine and Particle Swarm Optimization (PSO-SVM) Algorithms. Algorithms 2017, 10, 57. [Google Scholar] [CrossRef]
- Mirabbasi, R.; Kisi, O.; Sanikhani, H.; Gajbhiye Meshram, S. Monthly long-term rainfall estimation in Central India using M5Tree, MARS, LSSVR, ANN and GEP models. Neural Comput. Appl. 2019, 31, 6843–6862. [Google Scholar] [CrossRef]
- Danandeh Mehr, A.; Nourani, V.; Karimi Khosrowshahi, V.; Ghorbani, M.A. A hybrid support vector regression–firefly model for monthly rainfall forecasting. Int. J. Environ. Sci. Technol. 2018, 16, 335–346. [Google Scholar] [CrossRef]
- Azad, A.; Manoochehri, M.; Kashi, H.; Farzin, S.; Karami, H.; Nourani, V.; Shiri, J. Comparative evaluation of intelligent algorithms to improve adaptive neuro-fuzzy inference system performance in precipitation modelling. J. Hydrol. 2019, 571, 214–224. [Google Scholar] [CrossRef]
- Kumar, D.; Singh, A.; Samui, P.; Jha, R.K. Forecasting monthly precipitation using sequential modelling. Hydrol. Sci. J. 2019, 64, 690–700. [Google Scholar] [CrossRef]
- Nourani, V.; Tajbakhsh, A.D.; Molajou, A. Data mining based on wavelet and decision tree for rainfall-runoff simulation. Hydrol. Res. 2018, 50, 75–84. [Google Scholar] [CrossRef]
- Hossain, I.; Rasel, H.M.; Imteaz, M.A.; Mekanik, F. Long-term seasonal rainfall forecasting using linear and non-linear modelling approaches: A case study for Western Australia. Meteorol. Atmos. Phys. 2019, 1–11. [Google Scholar] [CrossRef]
- Ehteram, M.; Karami, H.; Mousavi, S.F.; Farzin, S.; Celeste, A.B.; Shafie, A.-E. Reservoir Operation by a New Evolutionary Algorithm: Kidney Algorithm. Water Resour. Manag. 2018, 32, 4681–4706. [Google Scholar] [CrossRef]
- Ethteram, M.; Mousavi, S.F.; Karami, H.; Farzin, S.; Deo, R.; Othman, F.B.; Chau, K.-w.; Sarkamaryan, S.; Singh, V.P.; El-Shafie, A. Bat algorithm for dam–reservoir operation. Environ. Earth Sci. 2018, 77, 510. [Google Scholar] [CrossRef]
- Ehteram, M.; Singh, P.V.; Karami, H.; Hosseini, K.; Dianatikhah, M.; Hossain, M.; Ming Fai, C.; El-Shafie, A. Irrigation Management Based on Reservoir Operation with an Improved Weed Algorithm. Water 2018, 10, 1267. [Google Scholar] [CrossRef]
- Poornima, S.; Pushpalatha, M. Prediction of Rainfall Using Intensified LSTM Based Recurrent Neural Network with Weighted Linear Units. Atmosphere (Basel) 2019, 10, 668. [Google Scholar] [CrossRef]
- Min, M.; Bai, C.; Guo, J.; Sun, F.; Liu, C.; Wang, F.; Xu, H.; Tang, S.; Li, B.; Di, D.; et al. Estimating Summertime Precipitation from Himawari-8 and Global Forecast System Based on Machine Learning. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2557–2570. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.E.; Nikolopoulos, E.I.; Anagnostou, E.N. Machine Learning-based Blending of Satellite and Reanalysis Precipitation Datasets: A Multi-regional Tropical Complex Terrain Evaluation. J. Hydrometeorol. 2019, 20, 2147–2161. [Google Scholar] [CrossRef]
- Yadav, P.; Sagar, A. Rainfall Prediction Using Artificial Neural Network (ANN) for tarai Region of Uttarakhand. Curr. J. Appl. Sci. Technol. 2019, 33, 1–7. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.E.; Nikolopoulos, E.I.; Anagnostou, E.N.; Quintana-Seguí, P.; Barella-Ortiz, A. A nonparametric statistical technique for combining global precipitation datasets: Development and hydrological evaluation over the Iberian Peninsula. Hydrol. Earth Syst. Sci. 2018, 22, 1371–1389. [Google Scholar] [CrossRef]
- Chen, H.; Chandrasekar, V.; Tan, H.; Cifelli, R. Rainfall Estimation From Ground Radar and TRMM Precipitation Radar Using Hybrid Deep Neural Networks. Geophys. Res. Lett. 2019, 46, 10669–10678. [Google Scholar] [CrossRef]
- Pham, Q.; Yang, T.-C.; Kuo, C.-M.; Tseng, H.-W.; Yu, P.-S. Combing Random Forest and Least Square Support Vector Regression for Improving Extreme Rainfall Downscaling. Water 2019, 11, 451. [Google Scholar] [CrossRef]
- Moosavi, V. Prediction of Rainfall as One of the Main Variables in Several Natural Disasters. Adv. Nat. Technol. Hazards Res. 2018, 48, 165–203. [Google Scholar]
- Tahani, M.; Babayan, N. Flow Regime Algorithm (FRA): A physics-based meta-heuristics algorithm. Knowl. Inf. Syst. 2018, 60, 1001–1038. [Google Scholar] [CrossRef]
Population | Number of Iteration |
100 | 200 |
200 | 400 |
300 | 600 |
400 | 800 |
Population | Number of Iteration |
100 | 200 |
200 | 400 |
300 | 600 |
400 | 800 |
Population | Number of Iteration |
100 | 200 |
200 | 400 |
300 | 600 |
400 | 800 |
Population | Number of Iteration |
100 | 200 |
200 | 400 |
300 | 600 |
400 | 800 |
(a) | ||
Selected Parameters for Three Components | Input Parameters | Scenario |
T (t-1), T (t-2), T (t-3), T (t-4), T (t-5), T (t-6) | T (t-1)……. (t-12) | 1 |
R (t-1), R (t-2), R (t-3), R (t-4), R (t-5), R (t-6) | R (t-1)……. (t-12) | 2 |
R (t-1), R (t-2), T (t-1), R (t-3), T (t-2) | T (t-1)……. (t-12) And R (t-1)……. (t-12) | 3 |
(b) | ||
Parameter | Rainfall (mm) | Temperature (°C) |
Training | ||
Minimum | 10 | −3 |
Maximum | 70 | 27 |
Average | 35.2 | 19 |
Testing | ||
Minimum | 12 | −2 |
Maximum | 65 | 26 |
Average | 34.90 | 21 |
Train | |||
---|---|---|---|
Scenario (1) | |||
Scenario | MLP–FRA | SVM-FRA | M5T |
MAE | 1.230 | 1.432 | 1.512 |
RSR | 0.24 | 0.35 | 0.37 |
NSE | 0.78 | 0.72 | 0.70 |
Scenario (2) | |||
MAE | 1.002 | 1.212 | 1.456 |
RSR | 0.21 | 0.29 | 0.34 |
NSE | 0.83 | 0.80 | 0.72 |
Scenario (3) | |||
MAE | 0.912 | 1.004 | 0.988 |
RSR | 0.12 | 0.20 | 0.27 |
NSE | 0.93 | 0.88 | 0.85 |
Test | |||
Scenario (1) | |||
MAE | 1.334 | 1.445 | 1.612 |
RSR | 0.29 | 0.37 | 0.39 |
NSE | 0.76 | 0.70 | 0.68 |
Scenario (2) | |||
MAE | 1.112 | 1.219 | 1.545 |
RSR | 0.25 | 0.31 | 0.38 |
NSE | 0.80 | 079 | 0.75 |
Scenario (3) | |||
MAE | 0.941 | 1.114 | 1.547 |
RSR | 0.14 | 0.25 | 0.42 |
NSE | 0.92 | 0.86 | 0.74 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banadkooki, F.B.; Ehteram, M.; Ahmed, A.N.; Fai, C.M.; Afan, H.A.; Ridwam, W.M.; Sefelnasr, A.; El-Shafie, A. Precipitation Forecasting Using Multilayer Neural Network and Support Vector Machine Optimization Based on Flow Regime Algorithm Taking into Account Uncertainties of Soft Computing Models. Sustainability 2019, 11, 6681. https://doi.org/10.3390/su11236681
Banadkooki FB, Ehteram M, Ahmed AN, Fai CM, Afan HA, Ridwam WM, Sefelnasr A, El-Shafie A. Precipitation Forecasting Using Multilayer Neural Network and Support Vector Machine Optimization Based on Flow Regime Algorithm Taking into Account Uncertainties of Soft Computing Models. Sustainability. 2019; 11(23):6681. https://doi.org/10.3390/su11236681
Chicago/Turabian StyleBanadkooki, Fatemeh Barzegari, Mohammad Ehteram, Ali Najah Ahmed, Chow Ming Fai, Haitham Abdulmohsin Afan, Wani M. Ridwam, Ahmed Sefelnasr, and Ahmed El-Shafie. 2019. "Precipitation Forecasting Using Multilayer Neural Network and Support Vector Machine Optimization Based on Flow Regime Algorithm Taking into Account Uncertainties of Soft Computing Models" Sustainability 11, no. 23: 6681. https://doi.org/10.3390/su11236681
APA StyleBanadkooki, F. B., Ehteram, M., Ahmed, A. N., Fai, C. M., Afan, H. A., Ridwam, W. M., Sefelnasr, A., & El-Shafie, A. (2019). Precipitation Forecasting Using Multilayer Neural Network and Support Vector Machine Optimization Based on Flow Regime Algorithm Taking into Account Uncertainties of Soft Computing Models. Sustainability, 11(23), 6681. https://doi.org/10.3390/su11236681