Exploring the Environmental Performance of Urban Symbiosis for Vertical Hydroponic Farming
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Case Study
2.2. Life Cycle Assessment Method
2.3. Scenarios
2.3.1. Baseline (Current Production System)
2.3.2. Symbiotic Scenarios
3. Results and Analysis
3.1. Growing Media
3.2. Fertilizers
3.3. Influence of Methodology
3.4. Energy
4. Discussion
4.1. Urban Symbiosis
4.1.1. Residual Products for Growing Media
4.1.2. Fertilizer
4.1.3. Energy
4.2. Extending the Synergies
4.3. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Despommier, D. The Rise of Vertical Farms. Sci. Am. 2009, 301, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, B.; Hauschild, M.; Fernández, J.; Birkved, M. Testing the environmental performance of urban agriculture as a food supply in northern climates. J. Clean. Prod. 2016, 135, 984–994. [Google Scholar] [CrossRef]
- Eigenbrod, C.; Gruda, N. Urban vegetable for food security in cities. A review. Agron. Sustain. Dev. 2015, 35, 483–498. [Google Scholar] [CrossRef]
- Thomaier, S.; Specht, K.; Henckel, D.; Dierich, A.; Siebert, R.; Freisinger, U.B.; Sawicka, M. Farming in and on urban buildings: Present practice and specific novelties of Zero-Acreage Farming (ZFarming). Renew. Agric. Food Syst. 2014, 30, 43–54. [Google Scholar] [CrossRef]
- Cockrall-King, J. Food and The City: Urban. Agriculture and the New Food Revolution; Prometheus Books: New York, NY, USA, 2012. [Google Scholar]
- Kozai, T.; Niu, G. Chapter 1—Introduction. In Plant Factory, Kozai, T., Niu, G., Takagaki, M., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 3–5. [Google Scholar] [CrossRef]
- Kozai, T. Resource use efficiency of closed plant production system with artificial light: Concept, estimation and application to plant factory. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2013, 89, 447–461. [Google Scholar] [CrossRef] [PubMed]
- Graamans, L.; Baeza, E.; van den Dobbelsteen, A.; Tsafaras, I.; Stanghellini, C. Plant factories versus greenhouses: Comparison of resource use efficiency. Agric. Syst. 2018, 160, 31–43. [Google Scholar] [CrossRef]
- Molin, E.; Martin, M. Assessing the Energy and Environmental Performance of Vertical Hydroponic Farming, IVL Research Report; C299. IVL; Swedish Environmental Research Institute: Stockholm, Sweden, 2018. [Google Scholar]
- Chance, E.; Ashton, W.; Pereira, J.; Mulrow, J.; Norberto, J.; Derrible, S.; Guilbert, S. The Plant—An experiment in urban food sustainability. Environ. Progr. Sustain. Energy 2018, 37, 82–90. [Google Scholar] [CrossRef]
- Grönska. Grönska Stadsodling 365. Available online: http://www.gronska.se (accessed on 11 November 2018).
- AeroFarms. AeroFarms. Available online: www.aerofarms.com (accessed on 8 September 2018).
- Eaves, J.; Eaves, S. Comparing the Profitability of a Greenhouse to a Vertical Farm in Quebec. Can. J. Agric. Econ./Revue Canadienne D’agroeconomie 2018, 66, 43–54. [Google Scholar] [CrossRef]
- Benke, K.; Tomkins, B. Future food-production systems: Vertical farming and controlled-environment agriculture. Sustain. Sci. Pract. Policy 2017, 13, 13–26. [Google Scholar] [CrossRef]
- Romeo, D.; Vea, E.B.; Thomsen, M. Environmental Impacts of Urban Hydroponics in Europe: A Case Study in Lyon. Procedia CIRP 2018, 69, 540–545. [Google Scholar] [CrossRef]
- Kulak, M.; Graves, A.; Chatterton, J. Reducing greenhouse gas emissions with urban agriculture: A Life Cycle Assessment perspective. Landsc. Urban Plan. 2013, 111, 68–78. [Google Scholar] [CrossRef]
- Sanjuan-Delmás, D.; Llorach-Massana, P.; Nadal, A.; Ercilla-Montserrat, M.; Muñoz, P.; Montero, J.I.; Josa, A.; Gabarrell, X.; Rieradevall, J. Environmental assessment of an integrated rooftop greenhouse for food production in cities. J. Clean. Prod. 2018, 177, 326–337. [Google Scholar] [CrossRef]
- Llorach-Massana, P.; Muñoz, P.; Riera, M.R.; Gabarrell, X.; Rieradevall, J.; Montero, J.I.; Villalba, G. N2O emissions from protected soilless crops for more precise food and urban agriculture life cycle assessments. J. Clean. Prod. 2017, 149, 1118–1126. [Google Scholar] [CrossRef]
- Martin, M.; Harris, S. Prospecting the sustainability implications of an emerging industrial symbiosis network. Resour. Conserv. Recycl. 2018, 138, 246–256. [Google Scholar] [CrossRef]
- Sanyé-Mengual, E.; Martinez-Blanco, J.; Finkbeiner, M.; Cerdà, M.; Camargo, M.; Ometto, A.R.; Velásquez, L.S.; Villada, G.; Niza, S.; Pina, A.; et al. Urban horticulture in retail parks: Environmental assessment of the potential implementation of rooftop greenhouses in European and South American cities. J. Clean. Prod. 2018, 172, 3081–3091. [Google Scholar] [CrossRef]
- Dorr, E.; Sanyé-Mengual, E.; Gabrielle, B.; Grard, B.J.P.; Aubry, C. Proper selection of substrates and crops enhances the sustainability of Paris rooftop garden. Agron. Sustain. Develop. 2017, 37. [Google Scholar] [CrossRef]
- Gentry, M. Local heat, local food: Integrating vertical hydroponic farming with district heating in Sweden. Energy 2019, 174, 191–197. [Google Scholar] [CrossRef]
- Marchi, B.; Zanoni, S.; Pasetti, M. Industrial Symbiosis for Greener Horticulture Practices: The CO2 Enrichment from Energy Intensive Industrial Processes. Procedia CIRP 2018, 69, 562–567. [Google Scholar] [CrossRef]
- Chertow, M.R. Industrial symbiosis: Literature and taxonomy. Ann. Rev. Energy Environ. 2000, 25, 313–337. [Google Scholar] [CrossRef]
- S.A.W. The Structure, Function, and Evolution of a Regional Industrial Ecosystem. J. Ind. Ecol. 2009, 13, 228–246. [Google Scholar] [CrossRef]
- Lombardi, D.R.; Laybourn, P. Redefining Industrial Symbiosis. J. Ind. Ecol. 2012, 16, 28–37. [Google Scholar] [CrossRef]
- Martin, M.; Eklund, M. Improving the environmental performance of biofuels with industrial symbiosis. Biomass Bioenerg. 2011, 35, 1747–1755. [Google Scholar] [CrossRef]
- Mirata, M.; Carlsson, P.; Harris, S.; Martin, M.; Fornell, R.; Hackl, R.; Källqvist, T.; Dalväg, E.; Broberg, S. International and Swedish State of Play in Industrial Symbiosis: A Review with Proposals to Scale up Industrial Symbiosis in Sweden; Linköping University: Linköping, Sweden, 2018. [Google Scholar]
- Fisher, S.; Karunanithi, A. Contemporary comparative LCA of commercial farming and urban agriculture for selected fresh vegetables consumed in Denver, Colorado. In Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector, San Francisco, CA, USA, 8–10 October 2014. [Google Scholar]
- Dias, G.M.; Ayer, N.W.; Khosla, S.; Van Acker, R.; Young, S.B.; Whitney, S.; Hendricks, P. Life cycle perspectives on the sustainability of Ontario greenhouse tomato production: Benchmarking and improvement opportunities. J. Clean. Prod. 2017, 140, 831–839. [Google Scholar] [CrossRef]
- Martin, M.; Molin, E. Environmental Assessment of an Urban Vertical Hydroponic Farming System in Sweden. Sustainability 2019, 11, 4124. [Google Scholar] [CrossRef]
- Martin, M.; Svensson, N.; Eklund, M. Who gets the benefits? An approach for assessing the environmental performance of industrial symbiosis. J. Clean. Prod. 2015, 98, 263–271. [Google Scholar] [CrossRef]
- Guinée, J.B. Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002. [Google Scholar]
- Ecoinvent. Ecoinvent version 3.4; Ecoinvent: Zurich, Switzerland, 2017. [Google Scholar]
- Martin, M. Evaluating the environmental performance of producing soil and surfaces through industrial symbiosis. J. Ind. Ecol. 2019. [Google Scholar] [CrossRef]
- Johannes, E.; Martin, M. Potential for Urban. Symbiosis with Vertical Hydroponic Farming; IVL Swedish Environmental Research Institute: Stockholm, Sweden, 2018. [Google Scholar]
- Gasum. Biofertilizer From Biogas Digestate. Discussions on the Nutrient Content; Gasum: Espoo, Finland, 2018. [Google Scholar]
- Martin, M.; Wetterlund, E.; Hackl, R.; Holmgren, K.M.; Peck, P. Assessing the aggregated environmental benefits from by-product and utility synergies in the Swedish biofuel industry. Biofuels 2017, 1, 1–16. [Google Scholar] [CrossRef]
- Strandmark, E. Biogödsel Som Kvävekälla i Hydroponisk Tomatproduktion; SLU, Sveriges lantbruksuniversitet; Fakulteten för landskapsarkitektur, trädgårds-och växtproduktionsvetenskap, Institutionen för biosystem och teknologi: Uppsala, Sweeden, 2019. [Google Scholar]
- Martin, M. Potential of biogas expansion in Sweden: Identifying the gap between potential studies and producer perspectives. Biofuels 2015, 6, 233–240. [Google Scholar] [CrossRef]
- Martin, M.; Parsapour, A. Upcycling wastes with biogas production: An exergy and economic analysis. In Proceedings of the Venice Symposium 2012, Fourth International Symposium on Energy from Biomass and Waste, Venice, Italy, 12–15 November 2012. [Google Scholar]
- Martin, M. Quantifying the environmental performance of an industrial symbiosis network of biofuel producers. J. Clean. Prod. 2015, 102, 202–212. [Google Scholar] [CrossRef]
- Velenturf, A.P.M.; Jensen, P.D. Promoting Industrial Symbiosis: Using the Concept of Proximity to Explore Social Network Development. J. Ind. Ecol. 2016, 20, 700–709. [Google Scholar] [CrossRef] [Green Version]
- Barrett, G.E.; Alexander, P.D.; Robinson, J.S.; Bragg, N.C. Achieving environmentally sustainable growing media for soilless plant cultivation systems—A review. Sci. Hortic. 2016, 212, 220–234. [Google Scholar] [CrossRef] [Green Version]
- Chrysargyris, A.; Stavrinides, M.; Moustakas, K.; Tzortzakis, N. Utilization of paper waste as growing media for potted ornamental plants. Clean Technol. Environ. Policy 2018. [Google Scholar] [CrossRef]
- Christoulaki, M.; Gouma, S.; Manios, T.; Tzortzakis, N. Deployment of Sawdust as Substrate Medium in Hydroponically Grown Lettuce. J. Plant. Nutr. 2014, 37, 1304–1315. [Google Scholar] [CrossRef]
- Verhagen, J.B.G.M.; Boon, H.T.M. Classification of Growing Media on Their Environmental Profile; Food and Agrigultural Organisation (FAO): Rome, Italy, 2008; pp. 231–238. [Google Scholar]
- Chong, C. Experiences with Wastes and Composts in Nursery Substrates. Am. Soc. Horic. Sci. 2005, 15, 739. [Google Scholar] [CrossRef]
- Martin, M. Assessing the Environmental Implications of a Regional Industrial Symbiosis Network for Innovative Products. IVL Research Report C297.; Swedish Environmental Research Institute: Stockholm, Sweden, 2018. [Google Scholar]
- Blonck. Development of Life Cycle Assessment (LCA) standard for growing media sector in Europe. Available online: http://www.blonkconsultants.nl/2019/04/30/development-of-life-cycle-assessment-lca-standard-for-growing-media-sector-in-europe/?lang=en (accessed on 4 April 2019).
- Enweremadu, C.C.; Waheed, M.A.; Adekunle, A.A.; Adeala, A. The Energy Potential of Brewer’s Spent Grain for Breweries in Nigeria. J. Eng. Appl. Sci. 2008, 3, 175–177. [Google Scholar]
- Santos, M.; Jiménez, J.J.; Bartolomé, B.; Gómez-Cordovés, C.; del Nozal, M.J. Variability of brewer’s spent grain within a brewery. Food Chem. 2003, 80, 17–21. [Google Scholar] [CrossRef]
- Surindra, S. Potential of domestic biogas digester slurry in vermitechnology. Bioresour. Technol. 2010, 101, 5419–5425. [Google Scholar] [CrossRef]
- Meier, M.S.; Stoessel, F.; Jungbluth, N.; Juraske, R.; Schader, C.; Stolze, M. Environmental impacts of organic and conventional agricultural products–Are the differences captured by life cycle assessment? J. Environ. Manag. 2015, 149, 193–208. [Google Scholar] [CrossRef]
- Brännvall, E.; Zamora, C.B.; Sjöblom, R.; Kumpiene, J. Effect of industrial residue combinations on availability of elements. J. Hazardous Mater. 2014, 276, 171–181. [Google Scholar] [CrossRef]
- Vaneeckhaute, C.; Meers, E.; Michels, E.; Ghekiere, G.; Accoe, F.; Tack, F.M.G. Closing the nutrient cycle by using bio-digestion waste derivatives as synthetic fertilizer substitutes: A field experiment. Biomass Bioenerg. 2013, 55, 175–189. [Google Scholar] [CrossRef] [Green Version]
- Vaneeckhaute, C.; Meers, E.; Michels, E.; Buysse, J.; Tack, F.M.G. Ecological and economic benefits of the application of bio-based mineral fertilizers in modern agriculture. Biomass Bioenerg. 2013, 49, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Olsson, L.; Fallde, M. Waste(d) potential: A socio-technical analysis of biogas production and use in Sweden. J. Clean. Prod. 2014. [Google Scholar] [CrossRef] [Green Version]
- Hussin, N.S.M.; Amin, N.A.M.; Safar, M.J.A.; Majid, M.S.A.; Nasir, N.F.M. Smart hydroponic system with hybrid power source. J. Telecommun. Electron. Comput. Eng. 2018, 10, 35–39. [Google Scholar]
- Siregar, S.; Sari, M.I.; Jauhari, R. Automation system hydroponic using smart solar power plant unit. J. Teknol. 2016, 78, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Ureña-Sánchez, R.; Callejón-Ferre, Á.J.; Pérez-Alonso, J.; Carreño-Ortega, Á. Greenhouse tomato production with electricity generation by roof-mounted flexible solar panels. Sci. Agric. 2012, 69, 233–239. [Google Scholar] [CrossRef]
- Ainsworth, P.; İbanoğlu, Ş.; Plunkett, A.; İbanoğlu, E.; Stojceska, V. Effect of brewers spent grain addition and screw speed on the selected physical and nutritional properties of an extruded snack. J. Food Eng. 2007, 81, 702–709. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Dragone, G.; Roberto, I.C. Brewers’ spent grain: Generation, characteristics and potential applications. J. Cereal Sci. 2006, 43, 1–14. [Google Scholar] [CrossRef]
- Chertow, M.; Park, J. Scholarship and Practice in Industrial Symbiosis: 1989–2014. In Taking Stock of Industrial Ecology; Clift, R., Druckman, A., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 87–116. [Google Scholar] [CrossRef] [Green Version]
- Walls, J.L.; Paquin, R.L. Organizational Perspectives of Industrial Symbiosis:A Review and Synthesis. Organ. Environ. 2015, 28, 32–53. [Google Scholar] [CrossRef]
- Martin, M.; Svensson, N.; Eklund, M.; Fonseca, J. Production synergies in the current biofuel industry: Opportunities for development. Biofuels Future Sci. 2012, 545–554. [Google Scholar] [CrossRef]
- Zhu, J.; Ruth, M. The development of regional collaboration for resource efficiency: A network perspective on industrial symbiosis. Comput. Environ. Urban. Syst. 2014, 44, 37–46. [Google Scholar] [CrossRef]
- Mirata, M.; Hamilton, I. Organizational and Institutional Influences on Industrial Symbiosis: The case of Econova and its Synergistic Partnerhips; Linköping University Research Report; Linköping University: Linköping, Sweeden, 2018. [Google Scholar]
- Harris, S.; Mirata, M.; Broberg, S.; Carlsson, P.; Martin, M. A Roadmap for Increased Uptake of Industrial Symbiosis in Sweden; IVL: Stockholm, Sweden, 2018; Volume 2018, p. 20. [Google Scholar]
- Laybourn, P.; Lombardi, R. The Role of Audited Benefits in Industrial Symbiosis: The UK. National Industrial Symbiosis Programme. Meas. Control 2007, 40, 244. [Google Scholar] [CrossRef] [Green Version]
- Golev, A.; Corder, G.D.; Giurco, D.P. Barriers to Industrial Symbiosis: Insights from the Use of a Maturity Grid. J. Ind. Ecol. 2015, 19, 141–153. [Google Scholar] [CrossRef]
- Wolf, A.; Eklund, M.; Soderstrom, M. Towards cooperation in industrial symbiosis: Considering the importance of the human dimension. Prog. Ind. Ecol. Int. J. 2005, 2, 185–199. [Google Scholar] [CrossRef]
- Chertow, M.R. “Uncovering” industrial symbiosis. J. Ind. Ecol. 2007, 11, 11–30. [Google Scholar] [CrossRef]
- Martin, M. Valorization of By-Products and Raw Material Inputs in the Biofuel Industry; Report from an f3 project; The Swedish Knowledge Centre for Renewable Transportation Fuels: Göteborg, Sweden, 2013. [Google Scholar]
Main Category | Process/Flow | Amount | Unit | Transport (km) | Lifetime (Years) |
---|---|---|---|---|---|
Infrastructure | Steel Structure | 242 | kg | 100 | 30 |
LEDs | 8640 | units | 100 | 15 | |
Trays (PET) | 36 | kg | 100 | 15 | |
Tubing/Other Plastics | 10 | kg | 100 | 5 | |
Pumps | 2 | units | 100 | 10 | |
Heater and Other Electronics | 3 | units | 100 | 10 | |
Raw materials | Paper Pot | 223 | kg | 100 | - |
Seeds | 6 | kg | 100 | - | |
Growing Medium (Soil) | 12,350 | kg | 50 | - | |
Nitrogen (N) | 10 | kg | 100 | - | |
Phosphate (P) | 12 | kg | 100 | - | |
Potassium (K) | 14 | kg | 100 | - | |
Paper | 449 | kg | 100 | - | |
Wrapping Paper | 38 | kg | 50 | - | |
Label | 480 | m2 | 50 | - | |
Water | 144,890 | liters | - | - | |
Energy Inputs | Lighting | 26,490 | kWh | - | - |
Ventilation | 490 | kWh | - | - | |
Heating and Electronics | 3290 | kWh | - | - | |
Pumps | 2190 | kWh | - | - | |
Outputs | Plants | 60,000 | plants | 1390 | - |
Baseline | Circular A | Circular B | Circular C | Circular D | |
Growing Medium | Conv. Soil | Paper and Compost | BSG, Paper, Compost | Paper and Compost | BSG, Paper, Compost |
Fertilizer | Conv. Fertilizers | Conv. Fertilizers | Conv. Fertilizers | Biofertilizer + Conv. Fertilizer | Biofertilizer + Conv. Fertilizer |
GHG | Acid. | Eutrop. | Human Tox. | Abiotic Res. Dep. | |
---|---|---|---|---|---|
(kg CO2-eq) | (kg SO2-eq) | (kg PO4-eq) | (kg 1,4 DCB-eq) | (MJ eq.) | |
Baseline | 5241 | 15.16 | 204.8 | 6458 | 32,261 |
Circular A | 2089 | 13.77 | 204.4 | 6338 | 29,100 |
Circular B | 2179 | 14.38 | 204.7 | 6373 | 29,945 |
Circular C | 2000 | 13.30 | 204.2 | 6291 | 28,655 |
Circular D | 2090 | 13.91 | 204.6 | 6326 | 29,501 |
GHG | Acid. | Eutrop. | Human Tox. | Abiotic. Res. Dep. | |
---|---|---|---|---|---|
(kg CO2-eq) | (kg SO2-eq) | (kg PO4-eq) | (kg 1,4 DCB-eq) | (MJ eq.) | |
Baseline | 3087 | 1.30 | 0.44 | 101 | 2173 |
Circular A | 21.7 | 0.11 | 0.03 | 9 | 322 |
Circular B | 63.9 | 0.39 | 0.20 | 25 | 683 |
Circular C | 21.7 | 0.11 | 0.03 | 9 | 322 |
Circular D | 63.9 | 0.39 | 0.20 | 25 | 683 |
F.U. | Electricity Mix | Baseline | Circular A | Circular B | Circular C | Circular D |
---|---|---|---|---|---|---|
Annual Impact (kg CO2-eq/year)) | Nordic Mix | 7219 | 3985 | 4005 | 3850 | 3870 |
Swedish Mix | 5241 | 2089 | 2179 | 2000 | 2090 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, M.; Poulikidou, S.; Molin, E. Exploring the Environmental Performance of Urban Symbiosis for Vertical Hydroponic Farming. Sustainability 2019, 11, 6724. https://doi.org/10.3390/su11236724
Martin M, Poulikidou S, Molin E. Exploring the Environmental Performance of Urban Symbiosis for Vertical Hydroponic Farming. Sustainability. 2019; 11(23):6724. https://doi.org/10.3390/su11236724
Chicago/Turabian StyleMartin, Michael, Sofia Poulikidou, and Elvira Molin. 2019. "Exploring the Environmental Performance of Urban Symbiosis for Vertical Hydroponic Farming" Sustainability 11, no. 23: 6724. https://doi.org/10.3390/su11236724
APA StyleMartin, M., Poulikidou, S., & Molin, E. (2019). Exploring the Environmental Performance of Urban Symbiosis for Vertical Hydroponic Farming. Sustainability, 11(23), 6724. https://doi.org/10.3390/su11236724