Technological Challenges of Phosphorus Removal in High-Phosphorus Ores: Sustainability Implications and Possibilities for Greener Ore Processing
Abstract
:1. Introduction
Ore Origin | Fe Content (wt. %) | P Content (wt. %) | P Presentation | Ref |
---|---|---|---|---|
Pilbara region of Western Australia. | 62.1 | 0.126 | apatite | [23,24] |
Brockman Iron Ore Formation, Australia. | >0.1–1.3 | Apatite, vivianite, strengite, wavellite | [25] | |
Iron Quadrangle (Minas Gerais–Brazil) | Wavellite | [26] | ||
Jangada mine, Quadrilátero Ferrífero, Minas Gerais, Brazil | Senegalite, turquoise, apatite, Crandallite, Giniite, Gorceixite, Rockbridgeite, Strengite, Turquoise, Variscite, Wardite, Wavellite, xenotime | [27,28,29,30,31] | ||
Snake River iron-ore deposit, northern Yukon, Canada | 44 * 53.4 ** | 0.34 * 0.39 ** | Apatite, wavellite, collophane | [32] |
West Hubei Province, China | 49.02 | 1.18 | collophanite | [33] |
Wushan, Chongqing China | 1.16 | Apatite, fluorapatite | [21] | |
Wushan Mountain in China | 45.11 | 0.72 | fluorapatite | [34] |
Wushan, Chongqing, China | 49.5 | 0.609 | apatite fluorapatite | [35] |
Changde iron ore, China | 47.79 | 1.12 | Apatite (67.9% P in iron phase, and 9.8% P in silicate phase.) | [36] |
Huimin iron ore (Yunnan Province), China [2.0 × 109 t] | 43.50 Goethite Hematite | 0.85 | amorphous grattarolaite (Fe3PO7) | [37] |
Aswan, Egypt | 0.13–1.49 | hydroxyapatite | [38] | |
Hesse, Germany | Allanpringite | [39] | ||
Chador-malu iron ore, Iran | 57.20 | 0.748% | Apatite | [40] |
Lisakovsk, North Kazakhstan | 48.76 | 0.6–0.8 | No distinct Phosphorus mineral yet identified | [41,42] |
Agbaja iron ore, Nigeria | 54.17 | 2.69 | Traces of phosphates of iron and aluminum | [43] |
Agbaja iron ore, Nigeria | 53.1 | 1.395 | No distinct Phosphorus mineral yet identified | [20] |
Koton-karfe iron ore, Nigeria [4.28 × 108 tons] | 46.91 Goethite (FeO(OH)) Magnetite (Fe3O4), Hematite (Fe2O3) | 0.79 | Berlinite (AlPO4) | [44] |
Moncorvo, Portugal | 0.3–0.7 | Apatite, Lazulite, Rockbridgeite | [45] | |
Grangesberg (trade mark GR 25), Sweden | 60 | 0.88 | Apatite | [46] |
Grangesberg (high phosphorus coarse fines (trade mark: GRF)), Sweden | 62.73 | 0.73 | Apatite | [46] |
Kiruna, Sweden | 58–65 | 0.5–2 | Apatite | [46] |
(Kiruna Ores, Sweden) | [47] | |||
Lappmalmen deposit | 44.2 | 4.30 | Apatite | |
Skarn-Type Ores | 20.4–60.9 | 0.26–6.92 | Apatite | |
Viscaria ore | 37.3–48.4 | 0.26–1.07 | Apatite |
2. Phosphorus in Iron Ores and Theories on Its Existence in Iron Ores (Goethite).
3. Reactivity of Phosphorus towards Some Mineral Surfaces and Factors Exerting Influence(s) on Phosphorus Reactivity
4. Theories on Phosphate Adsorption to Mineral (Iron Oxide) Surfaces
Reported Predominant Species | Condition | Substrate | Ref |
---|---|---|---|
monodentate monoprotonated species, either (FeO),(OH)PO or (FeO)(OH),PO. | pH 1.3 to 13.5 | Goethite | [200] |
three monodentate surface complexes; = FePO4, = FePO4H− and = FePO4H2 | pH 3 to 9 | Goethite | [208] |
monodentate coordinated complexes | pH 1.1 to 13 | Goethite | [201] |
non-protonated bidentate binuclear species (Fe2PO4) | (at pH ≥ 7.5) | ferrihydrite | [207] |
[protonated complexes forming at pH 7.5 could not be determined due to limitations in mid-IR range, FTIR analysis] | (at pH < 7.5) | ||
bidentate non-protonated (FeO)2PO2 and bidentate protonated (FeO)2(OH)PO complexes | at pH 4.5 | Goethite | [174] |
bidentate nonprotonated (FeO)2PO2, and an extra unidentified species at low concentration | at pH 7.5 and 9 | ||
change from monodentate complexation to bidentate complexation with increasing surface phosphate coverage. | pH 3.5 to 8.0 | Goethite | [209] |
protonated bidentate species (FeO)2PO2H− | at pH 3.5 | ||
protonated bidentate species (FeO)2PO2H− | at pH 4.7 | ||
With the increase in pH values, bidentate phosphate species (FeO)2PO2H− undergo deprotonation reaction yielding unprotonated species (FeO)2PO2−2. | at pH > 4.7 but ≤ 8 | ||
bidentate surface complexes; Fe2O2PO2, and Fe2O2POOH | pH 4 to 10 | Ferrihydrite | [210] |
and presence of non-protonated monodentate surface complexes; FeOPO3 only at high pH | pH > 9.8 | ||
binding via binuclear bidentate complexation (i.e., binding of two phosphate oxygen atoms to two adjacent Fe3+ surface sites) predominate | pH 3 to 11 | On goethite (a-FeOOH), akaganeite (b-FeOOH), and lepidocrocite (g-FeOOH) | [50] |
double or triple-protonated phosphate ions on ferrihydrite and goethite | at pH 4 | Ferrihydrite and Goethite | [172] |
existence of double- and single-protonated phosphate species due to deprotonation of adsorbed phosphate | at pH 7 | ||
diprotonated phosphate desorbed faster than monoprotonated phosphate | at all pH | ||
mononuclear monoprotonated species | at pH > 5.5 | Goethite | [203] |
mononuclear diprotonated species | at pH < 5.5 | ||
mononuclear monoprotonated species | at all pH (at low surface coverage) |
5. Factors Influencing Phosphate Adsorption to Mineral (Iron Oxide) Surfaces
6. Plausible Reasons for Differences in the Ease of Phosphorus Removal from Different Iron Ores
7. Recent Efforts at Phosphorus Removal from Different High-P Iron Ores
8. Important Insights and Relevant Factors from Recent Literature Reports
9. Plausible Strategies for Sustainable Phosphorus Removal from Different Iron Ores and Greener Ore Processing
- (a)
- If beneficial, a process step for physical separation of phosphorus from ore to reduce P content prior to further processing after ore communition to desirable particle size ranges, determined principally by the size of P-rich phases.
- (b)
- A process step to thermally “remove” or reduce P content in ores and/or convert the phosphorus to forms that are more responsive to subsequent P removal steps (usually leaching).
- (c)
- A chemical processing step to reduce the P content of ores by its dissolution in processing media. For sustainable P-removal from high-phosphorus iron ores, the removed P needs to be recovered from P-rich processing media. Plausible routes to achieve this objective include:
- (a)
- The introduction of free cations to support phosphorus precipitation as a phosphate.
- (b)
- The electrochemical decomposition of soluble P-containing phases and/or stripping of P from processing media, preferably using energy from renewable sources.
- (c)
- Recycling (reusing) of P-depleted leach solutions.
- (d)
- The development of catalytic processes for P-removal and recovery to replace current stoichiometric processes.
10. Benefits of Phosphorus Recovery Versus Phosphorus Removal
11. Plausible Consequences of Ignoring the Challenge of Sustainable Valorization of High-P Iron Ores
12. Conclusions
Funding
Conflicts of Interest
References
- Chen, M.; Graedel, T.E. A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts. Glob. Environ. Chang. 2016, 36, 139–152. [Google Scholar] [CrossRef]
- Gargouri, K.; Mhiri, A. Relationship between soil fertility and phosphorus and potassium olive plant nutrition. In Proceedings of the 7th International Meeting on: Soils with Mediterranean Type of Climate, Valenzano, Italy, 23–28 September 2001. [Google Scholar]
- Dodd, R.J.; Sharpley, A.N. Recognizing the role of soil organic phosphorus in soil fertility and water quality. Resour. Conserv. Recycl. 2015, 105, 282–293. [Google Scholar] [CrossRef]
- Heckman, J.R. Soil Fertility Test Interpretation Phosphorus, Potassium, Magnesium, and Calcium. (Fact Sheet—FS719). Available online: https://ag.purdue.edu/agry/Purdue%20Agroecology/Kteam/fs719.pdf?Mobile=1&Source=%2Fa (accessed on 10 September 2018).
- Han, X.Z.; Tang, C.; Song, C.Y.; Wang, S.Y.; Qiao, Y.F. Phosphorus characteristics correlate with soil fertility of albic luvisols. Plant Soil 2005, 270, 47–56. [Google Scholar] [CrossRef]
- Williams, C.H. Studies on soil phosphorus III. Phosphorus fractionation as a fertility index in South Australian soils. J. Agric. Sci. 1950, 40, 257–262. [Google Scholar] [CrossRef]
- Garnache, C.; Swinton, S.M.; Herriges, J.A.; Lupi, F.; Stevenson, R.J. Solving the phosphorus pollution puzzle: Synthesis and directions for future research. Am. J. Agric. Econ. 2016, 98, 1334–1359. [Google Scholar] [CrossRef]
- Fink, G.; Alcamo, J.; Flörke, M.; Reder, K. Phosphorus loadings to the world’s largest lakes: Sources and trends. Glob. Biogeochem. Cycles 2018, 32, 617–634. [Google Scholar] [CrossRef]
- David, M.H.; Joeres, E.F.; Peirce, J.J. Phosphorus pollution control in the Lake Michigan watershed. Policy Anal. 1980, 6, 47–60. [Google Scholar]
- Roy-Poirier, A.; Champagne, P.; Filion, Y. Bioretention processes for phosphorus pollution control. Environ. Rev. 2010, 18, 159–173. [Google Scholar] [CrossRef]
- White, P.J.; Hammond, J.P. The sources of phosphorus in the waters of Great Britain. J. Environ. Qual. 2009, 38, 13–26. [Google Scholar] [CrossRef]
- Lin, C.; Ma, R.; Xiong, J. Can the watershed non-point phosphorus pollution be interpreted by critical soil properties? A new insight of different soil P states. Sci. Total Environ. 2018, 628, 870–881. [Google Scholar] [CrossRef]
- Correll, D.L. The role of phosphorus in the eutrophication of receiving waters: A review. J. Environ. Qual. 1998, 27, 261–266. [Google Scholar] [CrossRef]
- Lee, G.F. Role of phosphorus in eutrophication and diffuse source control. In Phosphorus in Fresh Water and the Marine Environment; Elsevier: Amsterdam, The Netherlands, 2013; pp. 111–128. [Google Scholar] [CrossRef]
- Carpenter, S.R. Phosphorus control is critical to mitigating eutrophication. Proc. Natl. Acad. Sci. USA 2008, 105, 11039–11040. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Machado, A.V. The role of phosphorus on eutrophication: A historical review and future perspectives. Environ. Technol. Rev. 2013, 2, 117–127. [Google Scholar] [CrossRef]
- Chislock, M.F.; Doster, E.; Zitomer, R.A.; Wilson, A.E. Eutrophication: Causes, consequences, and controls in aquatic ecosystems. Nat. Educ. Knowl. 2013, 4, 10. [Google Scholar]
- Schindler, D.W.; Carpenter, S.R.; Chapra, S.C.; Hecky, R.E.; Orihel, D.M. Reducing phosphorus to curb lake eutrophication is a success. Environ. Sci. Technol. 2016, 50, 8923–8929. [Google Scholar] [CrossRef]
- Jarvie, H.P.; Sharpley, A.N.; Withers, P.J.; Scott, J.T.; Haggard, B.E.; Neal, C. Phosphorus mitigation to control river eutrophication: Murky waters, inconvenient truths, and “postnormal” science. J. Environ. Qual. 2013, 42, 295–304. [Google Scholar] [CrossRef]
- Ofoegbu, S.U. Characterization studies on Agbaja iron ore: A high-phosphorus content ore. SN Appl. Sci. 2019, 1, 204. [Google Scholar] [CrossRef]
- Xia, W.T.; Ren, Z.D.; Gao, Y.F. Removal of phosphorus from high phosphorus iron ores by selective HCl leaching method. J. Iron Steel Res. Int. 2011, 18, 1–4. [Google Scholar] [CrossRef]
- Mudd, G.M. The Sustainability of Mining in Australia: Key Production Trends and Their Environmental Implications for the Future; Research Report No. RR5; Department of Civil Engineering, Monash University and Mineral Policy Institute: Victoria, Australia, April 2009. [Google Scholar]
- Cheng, C.Y.; Misra, V.N.; Clough, J.; Muni, R. Dephosphorisation of western Australian iron ore by hydrometallurgical process. Miner. Eng. 1999, 12, 1083–1092. [Google Scholar] [CrossRef]
- Graham, J. Phosphorus in Iron Ore from the Hamersley Iron Formations; Australasian Institute of Mining and Metallurgy: Carlton, Austrália, 1973; pp. 41–42. [Google Scholar]
- Wells, M.A.; Ramanaidou, E.R. Occurrence and mineralogical association of phosphorus in Australian bedded iron ore deposits. In Proceedings of the Iron Ore Conference, Perth, Australia, 11–13 July 2011; pp. 331–336. [Google Scholar]
- Nunes, A.P.L.; Pinto, C.L.L.; Valadão, G.E.S.; de Magalhães Viana, P.R. Floatability studies of wavellite and preliminary results on phosphorus removal from a Brazilian iron ore by froth flotation. Miner. Eng. 2012, 39, 206–212. [Google Scholar] [CrossRef]
- Coelho, L.H.; Fonseca, L.; Kaneko, K.M.; Melo, J.C.A. A origem do fósforo e sua localização espacial nos minérios de ferro enriquecidos supergenicamente. In II Simp. Bras. Minério de Ferro; ABM: Ouro Preto, Brazil, 1999; pp. 44–52. [Google Scholar]
- Nunes, A.P.L. Estudos Eletrocinéticos e de Flotabilidade de Wavellita, Turquesa, Senegalita e Apatita. Ph.D. Thesis, Universidade Federal de Minas Gerais, Minas Gerais, Brazil, July 2012. [Google Scholar]
- Nunes, A.P.L.; Ribeiro, M.V.; Brandão, P.R.G.; Valadão, G.E.S. Caracterização de fosfatos secundários presentes em minério de ferro do quadrilátero ferrífero. In Proceedings of the 67 ABM Congress, Rio de Janeiro, Brazil, 31 July–3 August 2012. [Google Scholar]
- Frost, R.L.; López, A.; Xi, Y.; Murta, N.; Scholz, R. The molecular structure of the phosphate mineral senegalite Al2(PO4)(OH)3⋅ 3H2O–A vibrational spectroscopic study. J. Mol. Struct. 2013, 1048, 420–425. [Google Scholar] [CrossRef]
- Nunes, A.P.L.; de Araujo, A.C.; de Magalhães, P.R.; Viana, A.B.H. Occurence of phosphorus-bearing minerals in Brazilian iron ores. In Proceedings of the GEOMIN 2009 Conference, First International Seminar on Geology for the Mining Industry, Antofagasta, Chile, 10–12 June 2009. [Google Scholar]
- Sparks, B.; Sirianni, A. Beneficiation of a phosphoriferous iron ore by agglomeration methods. Int. J. Miner. Process. 2009, 1, 231–241. [Google Scholar] [CrossRef]
- Peng, T.; Gao, X.; Li, Q.; Xu, L.; Luo, L.; Xu, L. Phase transformation during roasting process and magnetic beneficiation of oolitic-iron ores. Vacuum 2017, 146, 63–73. [Google Scholar] [CrossRef]
- Xiang, X.Y.; Xia, W.T.; Yuan, X.L.; Yin, J.G.; An, J. Removal of phosphorus from high phosphorus iron ores in Wushan mountain by crosscurrent acid leaching. Solid State Phenom. 2018, 279, 222–229. [Google Scholar] [CrossRef]
- An, J.; Yang, W.Q.; Yuan, X.L.; Xia, W.T. Removal of phosphorus from high-phosphorus iron ores by sodium roasting. Adv. Mater. Res. 2014, 884–885, 228–232. [Google Scholar] [CrossRef]
- Jin, Y.S.; Jiang, T.; Yang, Y.B.; Li, Q.; Li, G.H.; Guo, Y.F. Removal of phosphorus from iron ores by chemical leaching. J. Cent. South Univ. Technol. 2006, 13, 673–677. [Google Scholar] [CrossRef]
- Yang, M.; Zhu, Q.S.; Fan, C.L.; Xie, Z.H.; Li, H.Z. Roasting-induced phase change and its influence on phosphorus removal through acid leaching for high-phosphorus iron ore. Int. J. Miner. Metall. Mater. 2015, 22, 346–352. [Google Scholar] [CrossRef]
- Baioumy, H.; Omran, M.; Fabritius, T. Mineralogy, geochemistry and the origin of high-phosphorus oolitic iron ores of Aswan, Egypt. Ore Geol. Rev. 2017, 80, 185–199. [Google Scholar] [CrossRef]
- Kolitsch, U.; Bernhardt, H.J.; Lengauer, C.L.; Blass, G.; Tillmanns, E. Allanpringite, Fe3(PO4)2(OH)3·5H2O, a new ferric iron phosphate from Germany, and its close relation to wavellite. Eur. J. Mineral. 2006, 18, 793–801. [Google Scholar] [CrossRef]
- Tohry, A.; Dehghani, A. Effect of sodium silicate on the reverse anionic flotation of a siliceous–phosphorus iron ore. Sep. Purif. Technol. 2016, 164, 28–33. [Google Scholar] [CrossRef]
- Ionkov, K.; Gaydardzhiev, S.; Bastin, D.; de Araujo, A.C.; Lacoste, M. Removal of phosphorous through roasting of oolitic iron ore with alkaline earth additives. In Proceedings of the XXVI International Mineral Processing Congress, New Delhi, India, 24–28 September 2012; pp. 2194–2205. Available online: http://hdl.handle.net/2268/133978 (accessed on 15 January 2018).
- Lovel, R.R.; Sparrow, G.J.; Fisher-White, M.J. Developments in chemical separation of iron ore. In Iron Ore: Mineralogy, Processing and Environmental Sustainability; Lu, L., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 357–372. [Google Scholar]
- Adedeji, F.A.; Sale, F.R. Characterization and reducibility of Itakpe and Agbaja (Nigerian) iron ores. Clay Miner. 1984, 19, 843–856. [Google Scholar] [CrossRef]
- Asuke, F. A Study of the Dephosphorization of Koton-Karfe Iron Ore by Acidic Leaching. Ph.D. Thesis, Ahmadu Bello University, Zaria, Nigeria, May 2014. Available online: http://hdl.handle.net/123456789/5394 (accessed on 15 January 2018).
- Gomes, M.E.P.; Ramos, J.M.F. Recursos Minerais de Trás-os-Montes e Alto Douro In Recursos Geológicos de Trás-os-Montes–Passado, Presente e Perspetivas Futuras; Balsa, C., Sobrinho Teixeira, J., Eds.; Instituto Politécnico de Bragança: Bragança, Portugal, 2018; p. 31. Available online: http://hdl.handle.net/10198/15491 (accessed on 18 November 2018).
- EDSTRÖM, J.O. Optimized steelmaking from high phosphorus ores. Trans. Iron Steel Inst. Jpn. 1986, 26, 679–696. [Google Scholar] [CrossRef]
- Parak, T. Phosphorus in different types of ore, sulfides in the iron deposits, and the type and origin of ores at Kiruna. Econ. Geol. 1985, 80, 646–665. [Google Scholar] [CrossRef]
- Peixoto, G. Improvement of the Reduction Process in Phosphorus Content and Other Gangue in Iron Ore and Its Agglomerates. International Patent No. 93/10271, 1991. [Google Scholar]
- Baker, M.J.; Blowes, D.W.; Ptacek, C.J. Laboratory development of permeable reactive mixtures for the removal of phosphorus from onsite wastewater disposal systems. Environ. Sci. Technol. 1998, 32, 2308–2316. [Google Scholar] [CrossRef]
- Kim, J.; Li, W.; Philips, B.L.; Grey, C.P. Phosphate adsorption on the iron oxyhydroxides goethite (α-FeOOH), akaganeite (β-FeOOH), and lepidocrocite (γ-FeOOH): A 31P NMR Study. Energy Environ. Sci. 2011, 4, 4298–4305. [Google Scholar] [CrossRef]
- Wang, L.; Putnis, C.; Hövelmann, J.; Putnis, A. Interfacial Precipitation of Phosphate on Hematite and Goethite. Minerals 2018, 8, 207. [Google Scholar] [CrossRef] [Green Version]
- McBride, M.B. Trace and toxic elements in soils. Environmental chemistry of soils. In Environmental Chemistry of Soils; Oxford University Press: New York, NY, USA, 1994; pp. 308–341. [Google Scholar]
- Memon, M.; Memon, K.S.; Akhtar, M.S.; Stüben, D. Characterization and quantification of iron oxides occurring in low concentration in soils. Commun. Soil Sci. Plant. Anal. 2009, 40, 162–178. [Google Scholar] [CrossRef]
- Morris, R.C. A Pilot Study of Phosphorus Distribution in Parts of the Brockman Iron Formation, Hamersley Group, Western Australia; Western Australia Department of Mines Annual Report; Geological Survey of Western Australia: Perth, Western Australia, 1973; pp. 75–81.
- Barbour, A.P. Distribution of phosphorus in the iron ore deposits of Itabira, Minas Gerais, Brazil. Econ. Geol. 1973, 68, 52–64. [Google Scholar] [CrossRef]
- Dukino, R.D. Phosphorus in Hamersley Range Iron Ore; BHP Internal Report; BHP Billiton: Melbourne, Australia, 1997. [Google Scholar]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Rothery, W.H. Researches on the nature, properties, and conditions of formation of intermetallic compounds, with special reference to certain compounds of tin-IV. J. Inst. Met. 1926, 35, 295–354. [Google Scholar]
- Rothery, W.H. Researches on the Nature, Properties, and Conditions of Formation of Intermetallic Compounds, with Special Reference to Certain Compounds of Tin. Ph.D. Thesis, University of London, London, UK, 1926. [Google Scholar]
- Rothery, W.H. Phase Stability in Metals and Alloys; Series in Material Science and Engineering; McGraw-Hill: New York, NY, USA, 1967; pp. 3–23. [Google Scholar]
- Levard, C.; Borschneck, D.; Grauby, O.; Rose, J.; Ambrosi, J.P. Goethite, a tailor-made host for the critical metal scandium: The FexSc(1-x)OOH solid solution. Geochem. Perspect. Lett. 2018, 9, 16. [Google Scholar] [CrossRef]
- Goldschmidt, V.M. Die Gesetze der Krystallochemie. Sci. Nat. 1926, 21, 477–485. [Google Scholar] [CrossRef]
- Goldschmidt, V.; Videnskaps-Akad, S.; Oslo, I. Tolerance factor. Mat. Nat. 1926, Kl8, 5–116. [Google Scholar]
- Choudhury, A.; Natarajan, S. A synthetic iron phosphate mineral, spheniscidite, [NH4]+[Fe2(OH)(H2O)(PO4)2]−H2O, exhibiting reversible dehydration. J. Chem. Sci. 1999, 111, 627–637. [Google Scholar] [CrossRef]
- Pokrovski, G.S.; Schott, J.; Farges, F.; Hazemann, J.L. Iron (III)-silica interactions in aqueous solution: Insights from X-ray absorption fine structure spectroscopy. Geochim. Cosmochim. Acta 2003, 67, 3559–3573. [Google Scholar] [CrossRef] [Green Version]
- Hoppe, U.; Kranold, R.; Stachel, D.; Barz, A.; Hannonb, A.C. Variation in PO bonding in phosphate glasses-a neutron diffraction study. Z. Naturforschung A 2000, 55, 369–380. [Google Scholar] [CrossRef]
- Gagné, O.C.; Hawthorne, F.C. Bond-length distributions for ions bonded to oxygen: Results for the non-metals and discussion of lone-pair stereoactivity and the polymerization of PO. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2018, 74, 79–96. [Google Scholar] [CrossRef] [Green Version]
- Bartell, L.S.; Su, L.S.; Yow, H. Lengths of phosphorus-oxygen and sulfur-oxygen bonds. Extended Hueckel molecular orbital examination of Cruickshank’s d. pi.-p. pi. picture. Inorg. Chem. 1970, 9, 1903–1912. [Google Scholar] [CrossRef]
- Gamoke, B.; Neff, D.; Simons, J. Nature of PO bonds in phosphates. J. Phys. Chem. A 2009, 113, 5677–5684. [Google Scholar] [CrossRef] [Green Version]
- Gillis, R.G.; Horwood, J.F.; White, G.L. Bond refractions and the nature of phosphorus-oxygen bonds. J. Am. Chem. Soc. 1958, 80, 2999–3002. [Google Scholar] [CrossRef]
- MacRae, C.M.; Wilson, N.C.; Pownceby, M.I.; Miller, P.R. The occurrence of phosphorus and other impurities in Australian iron ores. In Iron Ore 2011; The Australasian Institute of Mining and Metallurgy: Melbourne, Australia, 2011; pp. 281–289. [Google Scholar]
- Fish, D.H.; Dietz, J.M. Use of Iron Oxides Produced from the Treatment of Coal Mine Drainage as Adsorbents to Remove Phosphorus from Secondary Wastewater Effluent; Final Report for OSM PA (AMD-04) Grant; Pennsylvania Department of Environmental Protection: Harrisburg, PA, USA, 2008.
- Crosby, S.A.; Butler, E.I.; Turner, D.R.; Whltfield, M.; Glasson, D.R.; Millward, G.E. Phosphate adsorption onto iron oxyhydroxides at natural concentrations. Environ. Technol. 1981, 2, 371–378. [Google Scholar] [CrossRef]
- Bastin, O.; Janssens, F.; Dufey, J.; Peeters, A. Phosphorus removal by a synthetic iron oxide–gypsum compound. Ecol. Eng. 1999, 12, 339–351. [Google Scholar] [CrossRef]
- Huang, X.; Foster, G.D.; Honeychuck, R.V.; Schreifels, J.A. The maximum of phosphate adsorption at pH 4.0: Why it appears on aluminum oxides but not on iron oxides. Langmuir 2009, 25, 4450–4461. [Google Scholar] [CrossRef] [PubMed]
- Sei, J.; Jumas, J.C.; Olivier-Fourcade, J.; Quiquampoix, H.; Staunton, S. Role of iron oxide on the phosphate adsorption properties of kaolinites from the Ivory Coast. Clays Clay Miner. 2002, 50, 217–222. [Google Scholar] [CrossRef]
- Rietra, R.P.; Hiemstra, T.; van Riemsdijk, W.H. Interaction between calcium and phosphate adsorption on goethite. Environ. Sci. Technol. 2001, 35, 3369–3374. [Google Scholar] [CrossRef] [PubMed]
- Madrid, L.; De Arambarri, P. Adsorption of phosphate by two iron oxides in relation to their porosity. J. Soil Sci. 1985, 36, 523–530. [Google Scholar] [CrossRef]
- Wang, X.; Liu, F.; Tan, W.; Li, W.; Feng, X.; Sparks, D.L. Characteristics of phosphate adsorption-desorption onto ferrihydrite: Comparison with well-crystalline Fe (hydr) oxides. Soil Sci. 2013, 178, 1–11. [Google Scholar] [CrossRef]
- Villalobos, M.; Trotz, M.A.; Leckie, J.O. Variability in goethite surface site density: Evidence from proton and carbonate sorption. J. Colloid Interface Sci. 2003, 268, 273–287. [Google Scholar] [CrossRef]
- Jonasson, R.G.; Martin, R.R.; Giuliacci, M.E.; Tazaki, K. Surface reactions of goethite with phosphate. J. Chem. Soc. Faraday Trans. 1988, 84, 2311–2315. [Google Scholar] [CrossRef]
- Dideriksen, K.; Stipp, S.L.S. The adsorption of glyphosate and phosphate to goethite: A molecular-scale atomic force microscopy study. Geochim. Cosmochim. Acta 2003, 67, 3313–3327. [Google Scholar] [CrossRef]
- Bolan, N.S.; Barrow, N.J.; Posner, A.M. Describing the effect of time on sorption of phosphate by iron and aluminium hydroxides. J. Soil Sci. 1985, 36, 187–197. [Google Scholar] [CrossRef]
- Kwon, K.D.; Kubicki, J.D. Molecular orbital theory study on surface complex structures of phosphates to iron hydroxides: Calculation of vibrational frequencies and adsorption energies. Langmuir 2004, 20, 9249–9254. [Google Scholar] [CrossRef] [PubMed]
- Lijklema, L. Interaction of orthophosphate with iron (III) and aluminum hydroxides. Environ. Sci. Technol. 1980, 14, 537–541. [Google Scholar] [CrossRef] [Green Version]
- Abdala, D.B.; Northrup, P.A.; Arai, Y.; Sparks, D.L. Surface loading effects on orthophosphate surface complexation at the goethite/water interface as examined by extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. J. Colloid Interface Sci. 2015, 437, 297–303. [Google Scholar] [CrossRef] [Green Version]
- Helyar, K.R.; Munns, D.N.; Burau, R.G. Adsorption of phosphate by gibbsite: II. Formation of a surface complex involving divalent cations. J. Soil Sci. 1976, 27, 315–323. [Google Scholar] [CrossRef]
- Hinkle, M.A.; Wang, Z.; Giammar, D.E.; Catalano, J.G. Interaction of Fe (II) with phosphate and sulfate on iron oxide surfaces. Geochim. Cosmochim. Acta 2015, 158, 130–146. [Google Scholar] [CrossRef]
- Borch, T.; Fendorf, S. Phosphate interactions with iron (hydr) oxides: Mineralization pathways and phosphorus retention upon bioreduction. Dev. Earth Environ. Sci. 2007, 7, 321–348. [Google Scholar] [CrossRef]
- Yin, J.; Lv, X.; Bai, C.; Qiu, G.; Ma, S.; Xie, B. Dephosphorization of iron ore bearing high phosphorous by carbothermic reduction assisted with microwave and magnetic separation. ISIJ Int. 2012, 52, 1579–1584. [Google Scholar] [CrossRef] [Green Version]
- Mammadov, K. Dephosphorization of Iron Ore through Bioleaching. Master’s Thesis, Instituto Politécnico de Bragança, Bragança, Portugal, June 2016. Available online: http://hdl.handle.net/10198/13176 (accessed on 10 February 2018).
- Makris, K.C.; Harris, W.G.; O’Connor, G.A.; El-Shall, H. Long-term phosphorus effects on evolving physicochemical properties of iron and aluminum hydroxides. J. Colloid Interface Sci. 2005, 287, 552–560. [Google Scholar] [CrossRef]
- Ruttenberg, K.C. Development of a sequential extraction method for different forms of phosphorus in marine sediments. Limnol. Oceanogr. 1992, 37, 1460–1482. [Google Scholar] [CrossRef]
- Ruttenberg, K.C.; Ogawa, N.O.; Tamburini, F.; Briggs, R.A.; Colasacco, N.D.; Joyce, E. Improved, high-throughput approach for phosphorus speciation in natural sediments via the SEDEX sequential extraction method. Limnol. Oceanogr. Methods 2009, 7, 319–333. [Google Scholar] [CrossRef]
- MacDonald, K.R. Evaluation of Selective Iron Extraction Techniques to Quantify Iron-Bound Phosphorus in Sediments. Master’s Thesis, University of Hawaii, Honolulu, HI, USA, 2013. [Google Scholar]
- Stockdale, A.; Krom, M.D.; Mortimer, R.J.; Benning, L.G.; Carslaw, K.S.; Herbert, R.J.; Shi, Z.; Myriokefalitakis, S.; Kanakidou, M.; Nenes, A. Understanding the nature of atmospheric acid processing of mineral dusts in supplying bioavailable phosphorus to the oceans. Proc. Natl. Acad. Sci. USA 2016, 113, 14639–14644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, S.; Qian, Y.; Jiao, Y.; Li, Q.; Pinay, G.; Gruau, G. An innovative approach for sequential extraction of phosphorus in sediments: Ferrous iron P as an independent P fraction. Water Res. 2016, 103, 352–361. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, Y.; Li, H.; Morrison, R.J. Sequential extraction procedures for the determination of phosphorus forms in sediment. Limnology 2013, 14, 147–157. [Google Scholar] [CrossRef] [Green Version]
- Kraal, P.; Slomp, C.P.; Reed, D.C.; Reichart, G.J.; Poulton, S.W. Sedimentary phosphorus and iron cycling in and below the oxygen minimum zone of the northern Arabian Sea. Biogeosciences 2012, 9, 2603–2624. [Google Scholar] [CrossRef] [Green Version]
- Orihel, D.M.; Baulch, H.M.; Casson, N.J.; North, R.L.; Parsons, C.T.; Seckar, D.C.; Venkiteswaran, J.J. Internal phosphorus loading in Canadian fresh waters: A critical review and data analysis. Can. J. Fish. Aquat. Sci. 2017, 74, 2005–2029. [Google Scholar] [CrossRef] [Green Version]
- Ni, J.; Lin, P.; Zhen, Y.; Yao, X.; Guo, L. Distribution, source and chemical speciation of phosphorus in surface sediments of the central Pacific Ocean. Deep Sea Res. Part I Oceanogr. Res. Pap. 2015, 105, 74–82. [Google Scholar] [CrossRef]
- Al-Enezi, E.; Al-Shammari, F. Phosphorus speciation and trace metals in core sediment of Kuwait bay. In Petrogenesis and Exploration of the Earth’s Interior; Doronzo, D., Schingaro, E., Armstrong-Altrin, J., Zoheir, B., Eds.; Advances in Science, Technology & Innovation (IEREK Interdisciplinary Series for Sustainable Development); Springer: Cham, Switzerland, 2006. [Google Scholar] [CrossRef]
- Defforey, D.; Paytan, A. Data report: Characteristics of sedimentary phosphorus at North Pond, IODP Expedition 336. Proc. IODP 2015, 336, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Nooney, M.G.; Murrell, T.S.; Corneille, J.S.; Rusert, E.I.; Hossner, L.R.; Goodman, D.W. A spectroscopic investigation of phosphate adsorption onto iron oxides. J. Vac. Sci. Technol. A Vac. Surf. Films 1996, 14, 1357–1361. [Google Scholar] [CrossRef]
- Gooden, J.E.A.; Walker, W.M.; Allen, R.J. AMDEPHOS—A chemical process for dephosphorisation of iron ore. In Proceedings Second National Chemical Engineering Conference; The Institution of Chemical Engineers, University of Queensland: St. Lucia, Australia, 1974; pp. 38–48. [Google Scholar]
- Belikov, V.V.; Ogorodov, V.B.; Jadryshnikov, A.O.; Mikhailovna, N.A.; Chop, S.V. Method for Cleaning of Iron Ore Concentrate from Phosphor Contaminants. RU Patent No. RU2184158, 2002. [Google Scholar]
- Ionkov, K.; Gaydardzhiev, S.; Correa de Araujo, A.; Kokal, H.; Pirson, A.; Bastin, D. Dephosphorisation of limonitic concentrate by roasting, acid leaching and magnetic separation. In Iron Ore 2011; The Australasian Institute of Mining and Metallurgy: Melbourne, Australia, 2011; pp. 445–452. Available online: http://hdl.handle.net/2268/97334 (accessed on 2 March 2018).
- Sample, E.C.; Soper, R.J.; Racz, G.J. Reactions of phosphate fertilizers in soils. In The Role of Phosphorus in Agriculture; Khasawneh, F.E., Sample, E.C., Kamprath, E.J., Eds.; American Society of Agronomy: Madison, WI, USA, 1980; pp. 263–310. [Google Scholar]
- Borggaard, O.K. The influence of iron oxides on phosphate adsorption by soil. J. Soil Sci. 1983, 34, 333–341. [Google Scholar] [CrossRef]
- Elbouaanani, L.K.; Malaman, B.; Gerardin, R. Structure refinement and magnetic properties of C–Fe(PO3)3 studied by neutron diffraction and Mössbauer techniques. J. Solid State Chem. 1999, 148, 455–463. [Google Scholar] [CrossRef]
- Parada, C.; Perles, J.; Sáez-Puche, R.; Ruiz-Valero, C.; Snejko, N. Crystal growth, structure, and magnetic properties of a new polymorph of Fe2P2O7. Chem. Mater. 2003, 15, 3347–3351. [Google Scholar] [CrossRef]
- Wentrup, H. Beitrag zum System Eisen-Phosphor-Sauerstoff. (Contribution on the system iron-phosphorus-oxygen). Archiv für das Eisenhüttenwesen 1935, 9, 57–60. (In German) [Google Scholar] [CrossRef]
- Korinth, J.; Royen, P. Zur kenntnis der reduktion von metallsalzen. I. Reaktionen im System Fe2O3/FePO4. (Reaction in the system Fe2O3/FePO4). Zeitschrift für Anorganische und allgemeine Chemie 1961, 313, 121–137. (In German) [Google Scholar] [CrossRef]
- Trömel, G.; Schwerdtfeger, K. Untersuchungen im system eisen–phosphor–sauerstoff. (A study of the system iron-phosphorous oxygen). Archiv für das Eisenhüttenwesen 1963, 34, 55–59. (In German) [Google Scholar] [CrossRef]
- Modaressi, A.; Courtois, A.; Gerardin, R.; Malaman, B.; Gleitzer, C. Fe2PO5, un phosphate de fer de valence mixte. Préparation et études structurale, Mössbauer et magnétique. J. Solid State Chem. 1981, 40, 301–311. (In French) [Google Scholar] [CrossRef]
- Modaressi, A.; Kaell, J.C.; Malaman, B.; Gerardin, R.; Gleitzer, C. Etude du system Fe-P-O (pour Fe/P ≥ 1) et d’une famille: Les oxyphosphates de fer. (“Study of the system Fe-P-O (for Fe/P ≥1) and its compounds: The Oxyphosphates of Iron”). Mater. Res. Bull. 1983, 18, 101–109. (In French) [Google Scholar] [CrossRef]
- Kaell, J.C.; Jeannot, F.; Gleitzer, C. Étude de la reduction ménagée de Fe3(PO4)2 et Fe9(PO4)O8. (“Study of the Progressive Reduction of Fe3(PO4)2 and Fe9(PO4)O8.”). Ann. Chim. 1984, 9, 169–180. (In French) [Google Scholar]
- Okada, S.; Yamamoto, T.; Okazaki, Y.; Yamaki, J.I.; Tokunaga, M.; Nishida, T. Cathode properties of amorphous and crystalline FePO4. J. Power Sources 2005, 146, 570–574. [Google Scholar] [CrossRef]
- Jin, M.; Chui, X.; Xu, W.; Liu, M. Mössbauer study of ferric phosphate catalysts. Hyperfine Interact. 1988, 41, 645–648. [Google Scholar] [CrossRef]
- Rojo, J.M.; Mesa, J.L.; Lezama, L.; Rojo, T. Magnetic properties of the Fe(PO3)3 metaphosphate. J. Solid State Chem. 1999, 145, 629–633. [Google Scholar] [CrossRef]
- Gleitzer, C. Anhydrous iron phosphates and oxyphosphates. Eur. J. Solid State Inorg. Chem. (Revue de Chimie Minerale) 1991, 22, 77–91. [Google Scholar] [CrossRef]
- Bouchdoug, M.; Courtois, A.; Gerardin, R.; Steinmetz, J.; Gleitzer, C. Preparation et etude d’un oxyphosphate Fe4(PO4)2O. J. Solid State Chem. 1982, 42, 149–157. [Google Scholar] [CrossRef]
- Hoggins, J.T.; Swinnea, J.S.; Steinfink, H. Crystal structure of Fe2P2O7. J. Solid State Chem. 1983, 47, 278–283. [Google Scholar] [CrossRef]
- Ijjaali, M.; Venturini, G.; Gerardin, R.; Malaman, B.; Gleitzer, C. Synthesis, Structure and Physical Properties of a Mixed-Valence Iron Diphosphate Fe3(P2O7)2: First Example of Trigonal Prismatic Fe2+ with O2-Ligands. Eur. J. Solid State Inorg. Chem. 1991, 22, 983–998. [Google Scholar] [CrossRef]
- Malaman, B.; Ijjaali, M.; Gerardin, R.; Venturini, G.; Gleitzer, C. Fe7(P2O7)4 a mixed-valence iron diphosphate, the missing link between Fe2P2O7 and Fe3(P2O7)2. Eur. J. Solid State Inorg. Chem. 1993, 24, 1269–1284. [Google Scholar] [CrossRef]
- Hong, Y.S.; Park, Y.J.; Ryu, K.S.; Chang, S.H. Crystalline Fe3PO7 as an electrode material for lithium secondary batteries. Solid State Ionics 2003, 156, 27–33. [Google Scholar] [CrossRef]
- Moffat, J.B. Phosphates as catalysts. Catal. Rev. Sci. Eng. 1978, 18, 199–258. [Google Scholar] [CrossRef]
- Forsyth, J.B.; Johnson, C.E.; Wilkinson, C. The magnetic structure of vivianite, Fe3(PO4)2.8H2O. J. Phys. C Solid State Phys. 1970, 3, 1127. [Google Scholar] [CrossRef]
- Padhi, A.K.; Nanjundaswamy, K.S.; Masquelier, C.; Okada, S.; Goodenough, J.B. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J. Electrochem. Soc. 1997, 144, 1609–1613. [Google Scholar] [CrossRef]
- Abrahams, S.C.; Bernstein, J.L. Crystal structure of paramagnetic ludlamite, Fe3(PO4)2·4H2O, at 298° K. J. Chem. Phys. 1966, 44, 2223–2229. [Google Scholar] [CrossRef]
- Pan, H.B.; Darvell, B.W. Calcium phosphate solubility: The need for re-evaluation. Cryst. Growth Des. 2008, 9, 639–645. [Google Scholar] [CrossRef]
- Valyashko, V.M.; Kogarko, L.N.; Khodakovskiy, I.L. Stability of fluorapatite, chlorapatite, and hydroxyapatite in aqueous solutions at different temperatures. Geochem. Int. 1968, 5, 21–30. [Google Scholar]
- McCann, H.G. The solubility of fluorapatite and its relationship to that of calcium fluoride. Arch. Oral Biol. 1968, 13, 987–1001. [Google Scholar] [CrossRef]
- Moreno, E.C.; Kresak, M.; Zahradnik, R.T. Physicochemical aspects of fluoride-apatite systems relevant to the study of dental caries. Caries Res. 1977, 11 (Suppl. 1), 142–171. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.S. Solubility criteria for the existence of hydroxyapatite. Can. J. Chem. 1955, 33, 1696–1700. [Google Scholar] [CrossRef]
- Bell, L.C.; Mika, H.; Kruger, B.J. Synthetic hydroxyapatite-solubility product and stoichiometry of dissolution. Arch. Oral Biol. 1978, 23, 329–336. [Google Scholar] [CrossRef]
- McDowell, H.; Gregory, T.M.; Brown, W.E. Solubility of Ca5(PO4)3OH in the system Ca(OH)2−H3PO4−H2O at 5, 15, 25, and 37 °C. J. Res. Natl. Bur. Stand. Sect. A 1977, 81, 273–281. [Google Scholar] [CrossRef]
- Patel, P.R.; Brown, W.E. Thermodynamic solubility product of human tooth enamel: Powdered sample. J. Dent. Res. 1975, 54, 728–736. [Google Scholar] [CrossRef]
- McDowell, H.; Wallace, B.M.; Brown, W.E. The Solubilities of Hydroxyapatite at 5, 15, 25 and 37 °C; Abstracted, IADR Program and Abstracts of Papers, 47th General Meeting IADR, Abstract No. 340; IADR: Alexandria, VA, USA, 1969. [Google Scholar]
- Avnimelech, Y.; Moreno, E.C.; Brown, W.E. Solubility and surface properties of finely divided hydroxyapatite. J. Res. Natl. Bur. Stand. Phys. Chem. A 1973, 77, 149–155. [Google Scholar] [CrossRef]
- Chuong, R. Experimental study of surface and lattice effects on the solubility of hydroxyapatite. J. Dent. Res. 1973, 52, 911–914. [Google Scholar] [CrossRef]
- Moreno, E.C.; Gregory, T.M.; Brown, W.E. Preparation and solubility of hydroxyapatite. J. Res. Natl. Bur. Stand. Phys. Chem. A 1968, 72A, 773–782. [Google Scholar] [CrossRef]
- Jaynes, W.F.; Moore, P.A.; Miller, D.M. Solubility and ion activity products of calcium phosphate minerals. J. Environ. Qual. 1999, 28, 530–536. [Google Scholar] [CrossRef]
- Gregory, T.M.; Moreno, E.C.; Patel, J.M.; Brown, W.E. Solubility of Ca3(PO4)2 in the system Ca(OH)2-H3PO4-H2O at 5, 15, 25, and 37 °C. J. Res. Natl. Bur. Stand. Phys. Chem. A 1974, 78A, 667–674. [Google Scholar] [CrossRef]
- Moreno, E.C.; Brown, W.E.; Osborn, G. Stability of dicalcium phosphate dihydrate in aqueous solutions and solubility of octocalcium phosphate 1. Soil Sci. Soc. Am. J. 1960, 24, 99–102. [Google Scholar] [CrossRef]
- McDowell, H. Solubility of CaHPO4 and Ion-Pair Formation. Ph.D. Thesis, Howard University, Washington DC, USA, 1968. [Google Scholar]
- Sutter, J.R.; McDowell, H.; Brown, W.E. Solubility study of calcium hydrogen phosphate. Ion-Pair formation. Inorg. Chem. 1971, 10, 1638–1643. [Google Scholar] [CrossRef]
- Patel, P.R.; Gregory, T.M.; Brown, W.E. Solubility of CaHPO4.2H2O in the quaternary system Ca(OH)2-H3PO4-NaCI-H2O at 25 °C. J. Res. Nat. Bur. Stand. 1974, 78A, 675–681. [Google Scholar] [CrossRef]
- Gregory, T.M.; Moreno, E.C.; Brown, W.E. Solubility of CaHPO4. 2H2O in the system Ca(OH)2 − HPO4 − H2O at 5, 15, 25, 37.5 °C. J. Res. Natl. Bur. Stand. Phys. Chem. A 1970, 74A, 461–475. [Google Scholar] [CrossRef]
- Moreno, E.C.; Brown, W.E.; Osborn, G. Solubility of dicalcium phosphate dihydrate in aqueous systems 1. Soil Sci. Soc. Am. J. 1960, 24, 94–98. [Google Scholar] [CrossRef]
- Strates, B.S.; Neuman, W.F.; Levinskas, G.J. The solubility of bone mineral. II. Precipitation of Near-Neutral Solutions of Calcium.; Phosphate. J. Phys. Chem. 1957, 61, 279–282. [Google Scholar] [CrossRef]
- Moreno, E.C.; Patel, J.M.; Gregory, T.M.; Brown, W.E. Solubility of whitlockite/β-Ca3(PO4)2; Abstracted, IADR Program and Abstracts of Papers, No. 183; IADR: Alexandria, VA, USA, 1970. [Google Scholar]
- Lide, D.R. (Ed.) CRC Handbook of Chemistry and Physics, 84th ed.; CRC Press: Bocan Raton, FL, USA, 2004. [Google Scholar]
- Zharovskii, F.G. The solubility of phosphates. Trudy Kom. Anal. Khim. Akad. Nauk SSSR 1951, 3, 101–115. (In Russian) [Google Scholar]
- Galal-Gorchev, H.; Stumm, W. The reaction of ferric iron with ortho-phosphate. J. Inorg. Nuclear Chem. 1963, 25, 567–574. [Google Scholar] [CrossRef]
- Singer, P.C. Anaerobic control of phosphate by ferrous iron. J. Water Pollut. Control Fed. 1972, 44, 663–669. [Google Scholar]
- Nriagu, J.O. Solubility equilibrium constant of strengite. Am. J. Sci. 1972, 272, 476–484. [Google Scholar] [CrossRef]
- Bache, B.W. Aluminium and iron phosphate studies relating to soils. J. Soil Sci. 1963, 14, 113–123. [Google Scholar] [CrossRef]
- Chang, S.C.; Jackson, M.L. Solubility product of iron phosphate 1. Soil Sci. Soc. Am. J. 1957, 21, 265–269. [Google Scholar] [CrossRef]
- Al-Borno, A.; Tomson, M.B. The temperature dependence of the solubility product constant of vivianite. Geochim. Cosmochim. Acta 1994, 58, 5373–5378. [Google Scholar] [CrossRef]
- Nriagu, J.O. Stability of vivianite and ion-pair formation in the system Fe3(PO4)2-H3PO4-H2O. Geochim. Cosmochim. Acta 1972, 36, 459–470. [Google Scholar] [CrossRef]
- Rosenqvist, I.T. Formation of vivianite in Holocene clay sediments. Lithos 1970, 3, 327–334. [Google Scholar] [CrossRef]
- Chen, P.J.; Faust, S.D. The solubility product of ferrous phosphate. Environ. Lett. 1974, 6, 287–296. [Google Scholar] [CrossRef]
- Lindsay, W.L.; Peech, M.; Clark, J.S. Solubility criteria for the existence of variscite in soils 1. Soil Sci. Soc. Am. J. 1959, 23, 357–360. [Google Scholar] [CrossRef]
- Veith, J.A.; Sposito, G. Reactions of aluminosilicates, aluminum hydrous oxides, and aluminum oxide with o-phosphate: The formation of x-ray amorphous analogs of variscite and montebrasite 1. Soil Sci. Soc. Am. J. 1977, 41, 870–876. [Google Scholar] [CrossRef]
- Firsching, F.H.; Brune, S.N. Solubility products of the trivalent rare-earth phosphates. J. Chem. Eng. Data 1991, 36, 93–95. [Google Scholar] [CrossRef]
- Magalhães, M.C.F.; Costa, M.O.G. On the solubility of whitlockite, Ca9Mg(HPO4)(PO4)6, in aqueous solution at 298.15 K. Monatshefte für Chemie-Chem. Mon. 2018, 149, 253–260. [Google Scholar] [CrossRef]
- Verbeeck, R.M.H.; De Bruyne, P.A.M.; Driessens, F.C.M.; Terpstra, R.A.; Verbeek, F. Solubility behaviour of Mg-containing β-Ca3(PO4)2. Bulletin Des Sociétés Chimiques Belges 2010, 95, 455–476. [Google Scholar] [CrossRef]
- Li, X.; Ito, A.; Sogo, Y.; Wang, X.; LeGeros, R.Z. Solubility of Mg-containing β-tricalcium phosphate at 25 °C. Acta Biomater. 2009, 5, 508–517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poitrasson, F.; Oelkers, E.; Schott, J.; Montel, J.M. Experimental determination of synthetic NdPO4 monazite end-member solubility in water from 21 °C to 300 °C: Implications for rare earth element mobility in crustal fluids. Geochim. Cosmochim. Acta 2004, 68, 2207–2221. [Google Scholar] [CrossRef]
- Tiessen, H. Phosphorus in the Global Environment: Transfers, Cycles, and Management; Wiley: Chichester, UK, 1995. [Google Scholar]
- Krumina, L.; Kenney, J.P.; Loring, J.S.; Persson, P. Desorption mechanisms of phosphate from ferrihydrite and goethite surfaces. Chem. Geol. 2016, 427, 54–64. [Google Scholar] [CrossRef]
- Antelo, J.; Avena, M.; Fiol, S.; López, R.; Arce, F. Effects of pH and ionic strength on the adsorption of phosphate and arsenate at the goethite–water interface. J. Colloid Interface Sci. 2005, 285, 476–486. [Google Scholar] [CrossRef]
- Luengo, C.; Brigante, M.; Antelo, J.; Avena, M. Kinetics of phosphate adsorption on goethite: Comparing batch adsorption and ATR-IR measurements. J. Colloid Interface Sci. 2006, 300, 511–518. [Google Scholar] [CrossRef]
- Liu, F.; De Cristofaro, A.; Violante, A. Effect of pH, phosphate and oxalate on the adsorption/desorption of arsenate on/from goethite. Soil Sci. 2001, 166, 197–208. [Google Scholar] [CrossRef]
- Xu, N.; Christodoulatos, C.; Braida, W. Adsorption of molybdate and tetrathiomolybdate onto pyrite and goethite: Effect of pH and competitive anions. Chemosphere 2006, 62, 1726–1735. [Google Scholar] [CrossRef] [PubMed]
- Elzinga, E.J.; Sparks, D.L. Phosphate adsorption onto hematite: An in-situ ATR-FTIR investigation of the effects of pH and loading level on the mode of phosphate surface complexation. J. Colloid Interface Sci. 2007, 308, 53–70. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.A.; Gypser, S.; Leinweber, P.; Freese, D.; Kühn, O. Infrared spectroscopic characterization of phosphate binding at the goethite-water interface. Phys. Chem. Chem. Phys. 2019, 21, 4421–4434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torrent, J.; Barron, V.; Schwertmann, U. Phosphate adsorption and desorption by goethites differing in crystal morphology. Soil Sci. Soc. Am. J. 1990, 54, 1007–1012. [Google Scholar] [CrossRef]
- Strauss, R.; Brümmer, G.W.; Barrow, N.J. Effects of crystallinity of goethite: I. Preparation and properties of goethites of differing crystallinity. Eur. J. Soil Sci. 1997, 48, 87–99. [Google Scholar] [CrossRef]
- Strauss, R.; Brümmer, G.W.; Barrow, N.J. Effects of crystallinity of goethite: II. Rates of sorption and desorption of phosphate. European. J. Soil Sci. 1997, 48, 101–114. [Google Scholar] [CrossRef]
- Colombo, C.; Barrón, V.; Torrent, J. Phosphate adsorption and desorption in relation to morphology and crystal properties of synthetic hematites. Geochim. Cosmochim. Acta 1994, 58, 1261–1269. [Google Scholar] [CrossRef]
- Liu, F.; He, J.; Colombo, C.; Violante, A. Competitive adsorption of sulfate and oxalate on goethite in the absence or presence of phosphate. Soil Sci. 1999, 164, 180–189. [Google Scholar] [CrossRef]
- Geelhoed, J.S.; Hiemstra, T.; Van Riemsdijk, W.H. Phosphate and sulfate adsorption on goethite: Single anion and competitive adsorption. Geochim. Cosmochim. Acta 1997, 61, 2389–2396. [Google Scholar] [CrossRef]
- Manning, B.A.; Goldberg, S. Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals. Soil Sci. Soc. Am. J. 1996, 60, 121–131. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Stanforth, R. Competitive adsorption of phosphate and arsenate on goethite. Environ. Sci. Technol. 2001, 35, 4753–4757. [Google Scholar] [CrossRef]
- Chitrakar, R.; Tezuka, S.; Sonoda, A.; Sakane, K.; Ooi, K.; Hirotsu, T. Phosphate adsorption on synthetic goethite and akaganeite. J. Colloid Interface Sci. 2006, 298, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, S. Chemical modeling of anion competition on goethite using the constant capacitance model 1. Soil Sci. Soc. Am. J. 1985, 49, 851–856. [Google Scholar] [CrossRef] [Green Version]
- Hawke, D.; Carpenter, P.D.; Hunter, K.A. Competitive adsorption of phosphate on goethite in marine electrolytes. Environ. Sci. Technol. 1989, 23, 187–191. [Google Scholar] [CrossRef]
- Gao, Y.; Mucci, A. Acid base reactions, phosphate and arsenate complexation, and their competitive adsorption at the surface of goethite in 0.7 M NaCl solution. Geochim. Cosmochim. Acta 2001, 65, 2361–2378. [Google Scholar] [CrossRef]
- Violante, A.; Pigna, M.; Ricciardella, M.; Gianfreda, L. Adsorption of phosphate on variable charge minerals and soils as affected by organic and inorganic ligands. In Developments in Soil Science; Elsevier: Amsterdam, The Netherlands, 2002; Volume 28, pp. 279–295. [Google Scholar] [CrossRef]
- Madrid, L.; Posner, A.M. Desorption of phosphate from goethite. J. Soil Sci. 1979, 30, 697–707. [Google Scholar] [CrossRef] [Green Version]
- Kubicki, J.D.; Paul, K.W.; Kabalan, L.; Zhu, Q.; Mrozik, M.K.; Aryanpour, M.; Pierre-Louis, A.M.; Strongin, D.R. ATR–FTIR and density functional theory study of the structures, energetics, and vibrational spectra of phosphate adsorbed onto goethite. Langmuir 2012, 28, 14573–14587. [Google Scholar] [CrossRef]
- Cabrera, F.; De Arambarri, P.; Madrid, L.; Toga, C.G. Desorption of phosphate from iron oxides in relation to equilibrium pH and porosity. Geoderma 1981, 26, 203–216. [Google Scholar] [CrossRef]
- Martin, R.R.; Tazaki, K.; Smart, R.S.C. Direct observation of phosphate precipitation in the goethite/phosphate system. Soil Sci. Soc. Am. J. 1988, 52, 1492–1500. [Google Scholar] [CrossRef]
- Ler, A.; Stanforth, R. Evidence for surface precipitation of phosphate on goethite. Environ. Sci. Technol. 2003, 37, 2694–2700. [Google Scholar] [CrossRef]
- Jia, Y.; Xu, L.; Fang, Z.; Demopoulos, G.P. Observation of surface precipitation of arsenate on ferrihydrite. Environ. Sci. Technol. 2006, 40, 3248–3253. [Google Scholar] [CrossRef] [PubMed]
- Khare, N.; Hesterberg, D.; Martin, J.D. XANES investigation of phosphate sorption in single and binary systems of iron and aluminum oxide minerals. Environ. Sci. Technol. 2005, 39, 2152–2160. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Putnis, C.V.; Ruiz-Agudo, E.; Hövelmann, J.; Putnis, A. In situ imaging of interfacial precipitation of phosphate on goethite. Environ. Sci. Technol. 2015, 49, 4184–4192. [Google Scholar] [CrossRef] [PubMed]
- Tejedor-Tejedor, M.I.; Anderson, M.A. The protonation of phosphate on the surface of goethite as studied by CIR-FTIR and electrophoretic mobility. Langmuir 1990, 6, 602–611. [Google Scholar] [CrossRef]
- Persson, P.; Nilsson, N.; Sjöberg, S. Structure and bonding of orthophosphate ions at the iron oxide–aqueous interface. J. Colloid Interface Sci. 1996, 177, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Rahnemaie, R.; Hiemstra, T.; van Riemsdijk, W.H. Geometry, charge distribution, and surface speciation of phosphate on goethite. Langmuir 2007, 23, 3680–3689. [Google Scholar] [CrossRef]
- Arroyave, J.M.; Puccia, V.; Zanini, G.P.; Avena, M.J. Surface speciation of phosphate on goethite as seen by InfraRed Surface Titrations (IRST). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 199, 57–64. [Google Scholar] [CrossRef]
- Hingston, F.J.; Posner, A.M.; Quirk, J.P. Competitive adsorption of negatively charged ligands on oxide surfaces. Discuss. Faraday Soc. 1971, 52, 334–342. [Google Scholar] [CrossRef]
- Waiman, C.V.; Arroyave, J.M.; Chen, H.; Tan, W.; Avena, M.J.; Zanini, G.P. The simultaneous presence of glyphosate and phosphate at the goethite surface as seen by XPS, ATR-FTIR and competitive adsorption isotherms. Colloids Surf. A Physicochem. Eng. Asp. 2016, 498, 121–127. [Google Scholar] [CrossRef]
- Hiemstra, T.; Van Riemsdijk, W.H. A surface structural approach to ion adsorption: The charge distribution (CD) model. J. Colloid Interface Sci. 1996, 179, 488–508. [Google Scholar] [CrossRef]
- Arai, Y.; Sparks, D.L. ATR–FTIR spectroscopic investigation on phosphate adsorption mechanisms at the ferrihydrite–water interface. J. Colloid Interface Sci. 2001, 241, 317–326. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, N.; Lövgren, L.; Sjöberg, S. Phosphate complexation at the surface of goethite. Chem. Speciat. Bioavailab. 1992, 4, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Zhong, B.; Stanforth, R.; Wu, S.; Chen, J.P. Proton interaction in phosphate adsorption onto goethite. J. Colloid Interface Sci. 2007, 308, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Antelo, J.; Fiol, S.; Pérez, C.; Mariño, S.; Arce, F.; Gondar, D.; López, R. Analysis of phosphate adsorption onto ferrihydrite using the CD-MUSIC model. J. Colloid Interface Sci. 2010, 347, 112–119. [Google Scholar] [CrossRef]
- Gaboriaud, F.; Ehrhardt, J. Effects of different crystal faces on the surface charge of colloidal goethite(alpha-FeOOH) particles: An experimental and modeling study. Geochim. Cosmochim. Acta 2003, 67, 967–983. [Google Scholar] [CrossRef]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses; Wiley-VCH: Weinheim, Germany, 1996. [Google Scholar]
- Kosmulski, M.; Maczka, E.; Jartych, E.; Rosenholm, J.B. Synthesis and characterization of goethite and goethite–hematite composite: Experimental study and literature survey. Adv. Colloid Interface Sci. 2003, 103, 57–76. [Google Scholar] [CrossRef]
- Appel, C.; Ma, L.Q.; Rhue, R.D.; Kennelley, E. Point of zero charge determination in soils and minerals via traditional methods and detection of electroacoustic mobility. Geoderma 2003, 113, 77–93. [Google Scholar] [CrossRef] [Green Version]
- Cristiano, E.; Hu, Y.J.; Siegfried, M.; Kaplan, D.; Nitsche, H. A comparison of point of zero charge measurement methodology. Clays Clay Miner. 2011, 59, 107–115. [Google Scholar] [CrossRef]
- Marsac, R.; Martin, S.; Boily, J.F.; Hanna, K. Oxolinic acid binding at goethite and akaganéite surfaces: Experimental study and modeling. Environ. Sci. Technol. 2015, 50, 660–668. [Google Scholar] [CrossRef]
- Kozin, P.A. Charge Development at Iron Oxyhydroxide Surfaces: The Interplay between Surface Structure, Particle Morphology and Counterion Identity. Ph.D. Thesis, Umeå Universitet, Umeå, Sweden, 2014. [Google Scholar]
- Sheydaei, M.; Aber, S. Preparation of nano-lepidocrocite and an investigation of its ability to remove a metal complex dye. CLEAN–Soil Air Water 2013, 41, 890–898. [Google Scholar] [CrossRef]
- Kozin, P.A.; Salazar-Alvarez, G.; Boily, J.F. Oriented aggregation of lepidocrocite and impact on surface charge development. Langmuir 2014, 30, 9017–9021. [Google Scholar] [CrossRef] [PubMed]
- Borkovec, M.; Jönsson, B.; Koper, G.J. Ionization processes and proton binding in polyprotic systems: Small molecules, proteins, interfaces, and polyelectrolytes. In Surface and Colloid Science; Matijevic, E., Ed.; Springer: Boston, MA, USA, 2001; Volume 16, pp. 99–339. [Google Scholar]
- Smith, G.W.; Salman, T. Zero-point-of-charge of hematite and zirconia. Can. Metall. Q. 1966, 5, 93–107. [Google Scholar] [CrossRef]
- Vieira, A.P.; Berndt, G.; de Souza Junior, I.G.; Di Mauro, E.; Paesano, A.; de Santana, H.; da Costa, A.C.S.; Zaia, C.T.; Zaia, D.A. Adsorption of cysteine on hematite, magnetite and ferrihydrite: FT-IR, Mössbauer, EPR spectroscopy and X-ray diffractometry studies. Amino Acids 2011, 40, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Sverjensky, D.A. Zero-point-of-charge prediction from crystal chemistry and solvation theory. Geochim. Cosmochim. Acta 1994, 58, 3123–3129. [Google Scholar] [CrossRef]
- Hu, J.; Chen, G.; Lo, I.M. Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles. Water Res. 2005, 39, 4528–4536. [Google Scholar] [CrossRef] [PubMed]
- Nurdin, I. The effect of pH and time on the stability of superparamagnetic maghemite nanoparticle suspensions. In Proceedings of the 2015 2nd International Conference on Chemical and Material Engineering (ICCME 2015), Phuket, Thailand, 27–28 December 2015; MATEC Web of Conferences. EDP Sciences: Les Ulis, France, 2016; Volume 39, p. 01001. [Google Scholar] [CrossRef] [Green Version]
- Schwertmann, U.; Fechter, H. The point of zero charge of natural and synthetic ferrihydrites and its relation to adsorbed silicate. Clay Miner. 1982, 17, 471–476. [Google Scholar] [CrossRef]
- Sposito, G. The Chemistry of Soils; Oxford University Press: New York, NY, USA, 1989. [Google Scholar]
- Zhou, Z.; Gunter, W.D. The nature of surface charge of kaolinite. Clays Clay Miner. 1992, 40, 365–368. [Google Scholar] [CrossRef]
- Parks, G.A. The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chem. Rev. 1965, 65, 177–198. [Google Scholar] [CrossRef]
- Gulicovski, J.J.; Čerović, L.S.; Milonjić, S.K. Point of zero charge and isoelectric point of alumina. Mater. Manuf. Process. 2008, 23, 615–619. [Google Scholar] [CrossRef]
- James, R.O.; Healy, T.W. Adsorption of hydrolyzable metal ions at the oxide—Water interface. I. Co (II) adsorption on SiO2 and TiO2 as model systems. J. Colloid Interface Sci. 1972, 40, 42–52. [Google Scholar] [CrossRef]
- Riese, A.C. Adsorption of Radium and Thorium onto Quartz and Kaolinite: A Comparison of Solution/Surface Equilibria Models. Ph.D. Thesis, Colorado School of Mines, Golden, CO, USA, 1982. [Google Scholar]
- Parks, G.A. Surface and interfacial free energies of quartz. J. Geophys. Res. Solid Earth 1984, 89, 3997–4008. [Google Scholar] [CrossRef]
- Wei, S.; Tan, W.; Liu, F.; Zhao, W.; Weng, L. Surface properties and phosphate adsorption of binary systems containing goethite and kaolinite. Geoderma 2014, 213, 478–484. [Google Scholar] [CrossRef]
- Shin, E.W.; Han, J.S.; Jang, M.; Min, S.H.; Park, J.K.; Rowell, R.M. Phosphate adsorption on aluminum-impregnated mesoporous silicates: Surface structure and behavior of adsorbents. Environ. Sci. Technol. 2004, 38, 912–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murashov, V.V.; Leszczynski, J. Adsorption of the phosphate groups on silica hydroxyls: An ab initio study. J. Phys. Chem. A 1999, 103, 1228–1238. [Google Scholar] [CrossRef]
- Lee, Y.B.; Hoon, C.; Hwang, J.Y.; Lee, I.B.; Kim, P.J. Enhancement of phosphate desorption by silicate in soils with salt accumulation. Soil Sci. Plant. Nutr. 2004, 50, 493–499. [Google Scholar] [CrossRef] [Green Version]
- Svatos, K.B. Commercial silicate phosphate sequestration and desorption leads to a gradual decline of aquatic systems. Environ. Sci. Pollut. Res. 2018, 25, 5386–5392. [Google Scholar] [CrossRef]
- Kuwahara, Y.; Yamashita, H. Phosphate removal from aqueous solutions using calcium silicate hydrate prepared from blast furnace slag. ISIJ Int. 2017, 57, 1657–1664. [Google Scholar] [CrossRef] [Green Version]
- Rājan, S.S.S.; Watkinson, J.H. Adsorption of selenite and phosphate on an allophane clay 1. Soil Sci. Soc. Am. J. 1976, 40, 51–54. [Google Scholar] [CrossRef]
- Reitzel, K.; Andersen, F.Ø.; Egemose, S.; Jensen, H.S. Phosphate adsorption by lanthanum modified bentonite clay in fresh and brackish water. Water Res. 2013, 47, 2787–2796. [Google Scholar] [CrossRef]
- Gérard, F. Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils—A myth revisited. Geoderma 2016, 262, 213–226. [Google Scholar] [CrossRef]
- Violante, A.; Pigna, M. Competitive sorption of arsenate and phosphate on different clay minerals and soils. Soil Sci. Soc. Am. J. 2002, 66, 1788–1796. [Google Scholar] [CrossRef]
- Van Oosterhout, F.; Lürling, M. The effect of phosphorus binding clay (Phoslock®) in mitigating cyanobacterial nuisance: A laboratory study on the effects on water quality variables and plankton. Hydrobiologia 2013, 710, 265–277. [Google Scholar] [CrossRef] [Green Version]
- Hertzog, E.S. A Study of the Occurrence and Amenability to Leaching of the Phosphorus Compounds in Some Red iron Ores; United States Bureau of Mines, Report of Investigations, RI 3294; United States Bureau of Mines: Washington, DC, USA, 1935; 9p.
- Crawford, J. Solubility Data on 646 Common and Not So Common Minerals. Available online: https://www.mindat.org/article.php/553/Solubility+Data+on+646+Common+and+Not+So+Common+Minerals (accessed on 5 February 2019).
- Parfitt, R.L.; Atkinson, R.J.; Smart, R.S.C. The mechanism of phosphate fixation by iron oxides1. Soil Sci. Soc. Am. J. 1975, 39, 837. [Google Scholar] [CrossRef]
- Goldberg, S.; Sposito, G. On the mechanism of specific phosphate adsorption by hydroxylated mineral surfaces: A review. Commun. Soil Sci. Plant. Anal. 1985, 16, 801–821. [Google Scholar] [CrossRef]
- Liu, C.; Huang, P.M. Kinetics of phosphate adsorption on iron oxides formed under the influence of citrate. Can. J. Soil Sci. 2000, 80, 445–454. [Google Scholar] [CrossRef]
- Li, M.; Liu, J.; Xu, Y.; Qian, G. Phosphate adsorption on metal oxides and metal hydroxides: A comparative review. Environ. Rev. 2016, 24, 319–332. [Google Scholar] [CrossRef]
- Fang, H.; Cui, Z.; He, G.; Huang, L.; Chen, M. Phosphorus adsorption onto clay minerals and iron oxide with consideration of heterogeneous particle morphology. Sci. Total Environ. 2017, 605, 357–367. [Google Scholar] [CrossRef]
- Torrent, J.; Schwertmann, U.; Barron, V. Fast and slow phosphate sorption by goethite-rich natural materials. Clays Clay Miner. 1992, 40, 14–21. [Google Scholar] [CrossRef]
- Borggaard, O.K. Effect of surface area and mineralogy of iron oxides on their surface charge and anion-adsorption properties. Clays Clay Miner. 1983, 31, 230–232. [Google Scholar] [CrossRef]
- Guzman, G.; Alcantara, E.; Barron, V.; Torrent, J. Phytoavailability of phosphate adsorbed on ferrihydrite, hematite, and goethite. Plant. Soil 1994, 159, 219–225. [Google Scholar] [CrossRef]
- Colombo, C.; Buondonno, A.; Violante, A.; Torrent, J. The contrasting effect of goethite and hematite on phosphate sorption and desorption by Terre Rosse. Zeitschrift für Pflanzenernährung und Bodenkunde 1991, 154, 301–305. [Google Scholar] [CrossRef]
- Ruan, H.D.; Gilkes, R.J. Kinetics of phosphate sorption and desorption by synthetic aluminous goethite before and after thermal transformation to hematite. Clay Miner. 1996, 31, 63–74. [Google Scholar] [CrossRef]
- Tang, H.Q.; Guo, Z.C.; Zhao, Z.L. Phosphorus removal of high phosphorus iron ore by gas-based reduction and melt separation. J. Iron Steel Res. Int. 2010, 17, 1–6. [Google Scholar] [CrossRef]
- Fisher-White, M.J.; Lovel, R.R.; Sparrow, G.J. Phosphorus removal from goethitic iron ore with a low temperature heat treatment and a caustic leach. ISIJ Int. 2012, 52, 797–803. [Google Scholar] [CrossRef] [Green Version]
- D’Orey, F.L.C. The detrital origin of the Moncorvo ordovician ironstones. Ciências Da Terra/Earth Sci. J. 2009, 13, 131–140. [Google Scholar]
- Urbano, E.E.M.C. Génese do Jazigo de ferro de Moncorvo e Avaliação do uso de Equipamentos Portáteis de FRX e DRX Para a Exploração Mineral Deste tipo de Jazigos. Ph.D. Thesis, Universidade de Trás-os-Montes e Alto Douro, Vila Real, Portugal, 2017. [Google Scholar]
- Neiva, J.M. Geologia dos Minérios de Ferro Portugueses: Seu Interesse Para a Siderurgia. Museu Mineralógico e Geológico. 1949. Available online: http://hdl.handle.net/10316.2/37963 (accessed on 10 May 2019).
- Rath, S.S.; Dhawan, N.; Rao, D.S.; Das, B.; Mishra, B.K. Beneficiation studies of a difficult to treat iron ore using conventional and microwave roasting. Powder Technol. 2016, 301, 1016–1024. [Google Scholar] [CrossRef]
- Omran, M.; Fabritius, T.; Elmahdy, A.M.; Abdel-Khalek, N.A.; El-Aref, M.; Elmanawi, A.E.H. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore. Appl. Surf. Sci. 2015, 345, 127–140. [Google Scholar] [CrossRef] [Green Version]
- Omran, M.; Fabritius, T.; Mattila, R. Thermally assisted liberation of high phosphorus oolitic iron ore: A comparison between microwave and conventional furnaces. Powder Technol. 2015, 269, 7–14. [Google Scholar] [CrossRef]
- Omran, M.; Fabritius, T.; Elmahdy, A.M.; Abdel-Khalek, N.A.; Gornostayev, S. Improvement of phosphorus removal from iron ore using combined microwave pretreatment and ultrasonic treatment. Sep. Purif. Technol. 2015, 156, 724–737. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.; Hwang, J.Y. Microwave-assisted metallurgy. Int. Mater. Rev. 2015, 60, 30–63. [Google Scholar] [CrossRef]
- Bai, S.; Wen, S.; Liu, D.; Zhang, W.; Cao, Q. Beneficiation of high phosphorus limonite ore by sodium-carbonate-added carbothermic reduction. ISIJ Int. 2012, 52, 1757–1763. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Sun, T.; Kou, J.; Wei, Y.; Xu, C.; Liu, Z. The function of Ca(OH)2 and Na2CO3 as additive on the reduction of high-phosphorus oolitic hematite-coal mixed pellets. ISIJ Int. 2013, 53, 427–433. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Duan, D.; Wang, X.; Chen, S. Innovative method for separating phosphorus and iron from high-phosphorus oolitic hematite by iron nugget process. Metall. Mater. Trans. B 2014, 45, 1634–1643. [Google Scholar] [CrossRef]
- Li, Y.L.; Sun, T.C.; Xu, C.Y.; Liu, Z.H. New dephosphorizing agent for phosphorus removal from high-phosphorus oolitic hematite ore in direct reduction roasting. J. Cent. South Univ. (Sci. Technol.) 2012, 3, 827–834. [Google Scholar]
- Rao, M.; Ouyang, C.; Li, G.; Zhang, S.; Zhang, Y.; Jiang, T. Behavior of phosphorus during the carbothermic reduction of phosphorus-rich oolitic hematite ore in the presence of Na2SO4. Int. J. Miner. Process. 2015, 143, 72–79. [Google Scholar] [CrossRef]
- Tang, R.; Hass, M.; Wu, W.; Gulde, S.; Nancollas, G.H. Constant composition dissolution of mixed phases: II. Selective dissolution of calcium phosphates. J. Colloid Interface Sci. 2003, 260, 379–384. [Google Scholar] [CrossRef]
- Kwon, S.H.; Jun, Y.K.; Hong, S.H.; Kim, H.E. Synthesis and dissolution behavior of β-TCP and HA/β-TCP composite powders. J. Eur. Ceram. Soc. 2003, 23, 1039–1045. [Google Scholar] [CrossRef]
- Jalota, S.; Bhaduri, S.B.; Tas, A.C. A new rhenanite (β-NaCaPO4) and hydroxyapatite biphasic biomaterial for skeletal repair. J. Biomed. Mater. Res. Part B 2007, 80, 304–316. [Google Scholar] [CrossRef]
- Knabe, C.; Berger, G.; Gildenhaar, R.; Howlett, C.R.; Markovic, B.; Zreiqat, H. The functional expression of human bone-derived cells grown on rapidly resorbable calcium phosphate ceramics. Biomaterials 2004, 25, 335–344. [Google Scholar] [CrossRef]
- Glasser, F.P.; Gunawardane, R.P. Fertilizer Material from Apatite. U.S. Patent 4,436,546, 13 March 1984. [Google Scholar]
- Ben Amara, M.; Vlasse, M.; Le Flem, G.; Hagenmuller, P. Structure of the low-temperature variety of calcium sodium orthophosphate, NaCaPO4. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 1983, 39, 1483–1485. [Google Scholar] [CrossRef]
- Somasundaran, P.; Amankonah, J.O.; Ananthapadmabhan, K.P. Mineral—solution equilibria in sparingly soluble mineral systems. Colloids Surf. 1985, 15, 309–333. [Google Scholar] [CrossRef]
- Brown, W.E. Solubility of Phosphates and Other Sparingly Soluble Compounds. In Environmental Phosphorus Handbook; Griffith, E.J., Alfred, B., Spencer, J.M., Mitchell, D.T., Eds.; Wiley: New York, NY, USA, 1973; pp. 203–239. [Google Scholar]
- Brown, W.E. Physicochemistry of Apatite Dissolution (Physicochimie et Cristallographie des Apatites d’Int&et Biologique); Centre National de la Recherche Scientifique: Paris, France, 1975; pp. 355–368.
- Beck, M.T. Correlation between the isoelectric point and stability of complex compounds. Acta Chim. Acad. Sci. Hung. 1954, 4, 227. [Google Scholar]
- Amankonah, J.O.; Somasundaran, P.; Ananthapadmanabhan, K.P. Effect of Dissolved Mineral Species on the Dissolution/Precipitation Characteristics of Calcite and Apatite. Colloids Surf. 1985, 15, 295–307. [Google Scholar] [CrossRef]
- Greenwald, I. The effect of phosphate on the solubility of calcium carbonate and of bicarbonate on the solubility of calcium and magnesium phosphates. J. Biol. Chem. 1945, 161, 697–704. [Google Scholar]
- Grøn, P.; Spinelli, M.; Trautz, O.; Brudevold, F. The effect of carbonate on the solubility of hydroxylapatite. Arch. Oral Biol. 1963, 8, 251–263. [Google Scholar] [CrossRef]
- Pan, H.; Darvell, B.W. Effect of carbonate on hydroxyapatite solubility. Cryst. Growth Des. 2010, 10, 845–850. [Google Scholar] [CrossRef]
- Chen, Z.F.; Darvell, B.W.; Leung, V.H. Hydroxyapatite solubility in simple inorganic solutions. Arch. Oral Biol. 2004, 49, 359–367. [Google Scholar] [CrossRef]
- Pehkonen, S.O.; Siefert, R.; Erel, Y.; Webb, S.; Hoffmann, M.R. Photoreduction of iron oxyhydroxides in the presence of important atmospheric organic compounds. Environ. Sci. Technol. 1993, 27, 2056–2062. [Google Scholar] [CrossRef]
- Pehkonen, S.O.; Siefert, R.L.; Hoffmann, M.R. Photoreduction of iron oxyhydroxides and the photooxidation of halogenated acetic acids. Environ. Sci. Technol. 1995, 29, 1215–1222. [Google Scholar] [CrossRef]
- Rijkenberg, M.J.A.; Fischer, A.C.; Kroon, J.J.; Gerringa, L.J.A.; Timmermans, K.R.; Wolterbeek, H.T.; De Baar, H.J.W. The influence of UV irradiation on the photoreduction of iron in the Southern Ocean. Mar. Chem. 2005, 93, 119–129. [Google Scholar] [CrossRef]
- Waite, T.D.; Morel, F.M. Photoreductive dissolution of colloidal iron oxides in natural waters. Environ. Sci. Technol. 1984, 18, 860–868. [Google Scholar] [CrossRef]
- Krizek, D.T.; Bennett, J.H.; Brown, J.C.; Zaharieva, T.; Norris, K.H. Photochemical reduction of iron. I. Light reactions. J. Plant Nutr. 1982, 5, 323–333. [Google Scholar] [CrossRef]
- Feng, W.; Nansheng, D. Photochemistry of hydrolytic iron (III) species and photoinduced degradation of organic compounds. A minireview. Chemosphere 2000, 41, 1137–1147. [Google Scholar] [CrossRef]
- Wu, F.; Deng, N.; Zuo, Y. Discoloration of dye solutions induced by solar photolysis of ferrioxalate in aqueous solutions. Chemosphere 1999, 39, 2079–2085. [Google Scholar] [CrossRef]
- Goldberg, M.C.; Cunningham, K.M.; Weiner, E.R. Aquatic photolysis: Photolytic redox reactions between goethite and adsorbed organic acids in aqueous solutions. J. Photochem. Photobiol. A Chem. 1993, 73, 105–120. [Google Scholar] [CrossRef]
- Deng, N.; Fang, T.; Tian, S. Photodegradation of dyes in aqueous solutions containing Fe (II)-hydroxy complex I. Photodegradation kinetics. Chemosphere 1996, 33, 547–557. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, F.; Deng, N. Photochemical reduction of Cr (VI) in aqueous solutions containing Fe (III)-hydroxy complexes. Toxicol. Environ. Chem. 2002, 82, 129–137. [Google Scholar] [CrossRef]
- Xu, J.; Li, J.; Wu, F.; Zhang, Y. Rapid photooxidation of As (III) through surface complexation with nascent colloidal ferric hydroxide. Environ. Sci. Technol. 2013, 48, 272–278. [Google Scholar] [CrossRef]
- Luo, F.; Deng, N.; Wu, F.; Zuo, Y. UV-light induced discoloration of dye solutions in the presence of Fe (iii) and humic acid. Toxicol. Environ. Chem. 1999, 71, 125–134. [Google Scholar] [CrossRef]
- Grodkowski, J.; Neta, P. Ferrous ions as catalysts for photochemical reduction of CO2 in homogeneous solutions. J. Phys. Chem. A 2000, 104, 4475–4479. [Google Scholar] [CrossRef]
- Nishihama, S.; Hirai, T.; Komasawa, I. High Functional Liquid—Liquid Extraction System Using Photochemical Reduction for Metal Ions. In Solvent Extraction Research and Development, Japan; Japan Association of Solvent Extraction: Osaka, Japan, 2001; Volume 8, p. 172. [Google Scholar]
- Kumar, B.; Llorente, M.; Froehlich, J.; Dang, T.; Sathrum, A.; Kubiak, C.P. Photochemical and photoelectrochemical reduction of CO2. Annu. Rev. Phys. Chem. 2012, 63, 541–569. [Google Scholar] [CrossRef] [Green Version]
- Francko, D.A.; Heath, R.T. UV-sensitive complex phosphorus: Association with dissolved humic material and iron in a bog lake 1. Limnol. Oceanogr. 1982, 27, 564–569. [Google Scholar] [CrossRef]
- McKnight, D.M. Metal-Tolerant Algae in St. Kevin Gulch; Mallard, G.E., Ed.; U.S. Geological Survey: Pueblo, CO, USA, 1988; pp. 113–117.
- Tate, C.M.; Broshears, R.E.; McKnight, D.M. Phosphate dynamics in an acidic mountain stream: Interactions involving algal uptake, sorption by iron oxide, and photoreduction. Limnol. Oceanogr. 1995, 40, 938–946. [Google Scholar] [CrossRef]
- Cornell, R.M.; Schindler, P.W. Photochemical dissolution of goethite in acid/oxalate solution. Clays Clay Miner. 1987, 35, 347–352. [Google Scholar] [CrossRef]
- Panias, D.; Taxiarchou, M.; Paspaliaris, I.; Kontopoulos, A. Mechanisms of dissolution of iron oxides in aqueous oxalic acid solutions. Hydrometallurgy 1996, 42, 257–265. [Google Scholar] [CrossRef]
- Yiyong, Z. UV-sensitive P compounds: Release mechanism, seasonal fluctuation and inhibitory effects on alkaline phosphatase activity in a shallow Chinese freshwater lake (Donghu Lake). Hydrobiologia 1996, 335, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Cotner, J.B.; Heath, R.T. Iron redox effects on photosensitive phosphorus release from dissolved humic materials. Limnol. Oceanogr. 1990, 35, 1175–1181. [Google Scholar] [CrossRef]
- Francko, D.A.; Heath, R.T. Abiotic uptake and photo-dependent release of phosphate from high-molecular-weight humic-iron complexes in bog lake. In Aquatic and Terrestrial Humic Materials; Christman, R.F., Gjessing, E.T., Eds.; Ann Arbor Science Publishers: Ann Arbor, MI, USA, 1983; pp. 467–480. [Google Scholar]
- Rose, A.L.; and Waite, T.D. Reduction of organically complexed ferric iron by superoxide in a simulated natural water. Environ. Sci. Technol. 2005, 39, 2645–2650. [Google Scholar] [CrossRef]
- Rose, A.L.; and Waite, T.D. Role of superoxide in the photochemical reduction of iron in seawater. Geochim. Cosmochim. Acta 2006, 70, 3869–3882. [Google Scholar] [CrossRef]
- Stumm, W.; Lee, G.F. Oxygenation of ferrous iron. Ind. Eng. Chem. 1961, 53, 143–146. [Google Scholar] [CrossRef]
- Singer, P.C.; Stumm, W. Oxygenation of Ferrous Iron; Water Pollution Control Research Series Report. 14010, FWPCA, USA; Department of the Interior: Washington, DC, USA, 1970.
- Machiela, R.; Zhang, L.; Zhang, M.; Eisele, T. Regeneration of alkali leaching solution through precipitation using calcium hydroxide. Hydrometallurgy 2018, 181, 35–42. [Google Scholar] [CrossRef]
- Monte, H.M.D.; Albuquerque, A. Reutilização de Águas Residuais. Guia Técnico nº 14, ERSAR, Lisboa, Portugal. Available online: https://www.pseau.org/outils/ouvrages/esrar_guia_14_reutilizacao_de_aguas_residuais.pdf (accessed on 5 April 2018).
- Henze, M.; Comeau, Y. Wastewater characterization. In Biological Wastewater Treatment: Principles Modelling and Design; Henze, M., van Loosdrecht, M.C.M., Ekama, G.A., Brdjanovic, D., Eds.; IWA Publishing: London, UK, 2008; pp. 33–52. [Google Scholar]
- Henze, M.; Harremoes, P.; la Cour Jansen, J.; Arvin, E. Wastewater Treatment: Biological and Chemical Processes; Springer Science & Business Media: Berlin, Germany, 2001. [Google Scholar]
- Sun, J.; Xiu, Y.F.; Huang, K.; Yu, J.T.; Alam, S.; Zhu, H.M.; Guo, Z.C. Selective recovery of phosphorus from acid leach liquor of iron ore by garlic peel adsorbent. RSC Adv. 2018, 8, 22276–22285. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Muhammed, M. An integrated process for the treatment of apatite obtained from dephosphorization of iron ore. J. Chem. Technol. Biotechnol. 1990, 47, 47–60. [Google Scholar] [CrossRef]
- Bisaka, K.; Thobadi, I.C.; Pawlik, C. Extraction of rare earths from iron-rich rare earth deposits. J. S. Afr. Inst. Min. Metall. 2017, 117, 731–739. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.; Kennedy, M.W.; Tranell, G.; Aune, R.E. Apatite concentrate, a potential new source of rare earth elements. In Rare Metal Technology 2015; Neelameggham, N.R., Alam, S., Oosterhof, H., Jha, A., Dreisinger, D., Wang, S., Eds.; Springer: Cham, Switzerland, 2015; pp. 145–156. [Google Scholar] [CrossRef]
- Pålsson, B.I.; Martinsson, O.; Wanhainen, C.; Fredriksson, A. September. Unlocking rare earth elements from European apatite-iron ores. In Proceedings of the 1st European Rare Earth Resources Conference (ERES2014), Milos island, Greece, 4–7 September 2014; pp. 211–220. [Google Scholar]
- Tehrani, P.N.; Calagari, A.A.; Roldan, F.V.; Simmonds, V.; Siahcheshm, K. C and O stable isotopes and rare earth elements in the Devonian carbonate host rock of the Pivehzhan iron deposit, NE Iran. Geol. Acta 2018, 16, 125–148. [Google Scholar] [CrossRef]
- Jorjani, E.; Bagherieh, A.H.; Rezai, B. Determination of rare earth elements in products of Chadormalu iron ore concentrator plant (Iran) from beneficiation point of view. Iran. J. Chem. Chem. Eng. 2007, 26, 11–18. [Google Scholar]
- De Amorim Dinis, M.L.P.; De Sousa, A.B. Mineral resources in Portugal—An Overview. In Mineral Resource Base of the Southern Caucasus and Systems for its Management in the XXI Century; NATO Science Series (Series IV: Earth and Environmental Sciences); Tvalchrelidze, A.G., Morizot, G., Eds.; Springer: Dordrecht, The Netherlands, 2003; Volume 17. [Google Scholar] [CrossRef]
- Tóth, G.; Guicharnaud, R.A.; Tóth, B.; Hermann, T. Phosphorus levels in croplands of the European Union with implications for P fertilizer use. Eur. J. Agron. 2014, 55, 42–52. [Google Scholar] [CrossRef]
- Ueno, Y.; Fuji, M. Three years experience of operating and selling recovered struvite from full scale plant. Environ. Technol. 2001, 22, 1373–1381. [Google Scholar] [CrossRef]
- Cornel, P.; Schaum, C. Phosphorus recovery from wastewater: Needs, technologies and costs. Water Sci. Technol. 2009, 59, 1069–1076. [Google Scholar] [CrossRef]
- Cordell, D.; Rosemarin, A.; Schröder, J.J.; Smit, A.L. Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options. Chemosphere 2011, 84, 747–758. [Google Scholar] [CrossRef]
- Vaccari, D.A. Phosphorus: A looming crisis. Sci. Am. 2009, 300, 54–59. [Google Scholar] [CrossRef]
- Mohr, S.; Evans, G. Projections of Future Phosphorus Production. Philica. 2013. Available online: http://www.resilience.org/wpcontent/uploads/articles/General/2013/09_Sep/peakphosphorus/Phosphorus%20Projections.pdf (accessed on 10 March 2018).
- Driver, J.; Lijmbach, D.; Steen, I. Why recover phosphorus for recycling, and how? Environ. Technol. 1999, 20, 651–662. [Google Scholar] [CrossRef]
- Schoumans, O.F.; Bouraoui, F.; Kabbe, C.; Oenema, O.; van Dijk, K.C. Phosphorus management in Europe in a changing world. AMBIO 2015, 44, 180–192. [Google Scholar] [CrossRef] [Green Version]
- Ashley, K.; Cordell, D.; Mavinic, D. A brief history of phosphorus: From the philosopher’s stone to nutrient recovery and reuse. Chemosphere 2011, 84, 737–746. [Google Scholar] [CrossRef]
- Desmidt, E.; Ghyselbrecht, K.; Zhang, Y.; Pinoy, L.; Van der Bruggen, B.; Verstraete, W.; Rabaey, K.; Meesschaert, B. Global phosphorus scarcity and full-scale P-recovery techniques: A review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 336–384. [Google Scholar] [CrossRef]
- Koppelaar, R.H.E.M.; Weikard, H.P. Assessing phosphate rock depletion and phosphorus recycling options. Glob. Environ. Chang. 2013, 23, 1454–1466. [Google Scholar] [CrossRef]
- Rittmann, B.E.; Mayer, B.; Westerhoff, P.; Edwards, M. Capturing the lost phosphorus. Chemosphere 2011, 84, 846–853. [Google Scholar] [CrossRef]
- Withers, P.J.; van Dijk, K.C.; Neset, T.S.S.; Nesme, T.; Oenema, O.; Rubæk, G.H.; Schoumans, O.F.; Smit, B.; Pellerin, S. Stewardship to tackle global phosphorus inefficiency: The case of Europe. AMBIO 2015, 44, 193–206. [Google Scholar] [CrossRef] [Green Version]
- Mayer, B.K.; Baker, L.A.; Boyer, T.H.; Drechsel, P.; Gifford, M.; Hanjra, M.A.; Parameswaran, P.; Stoltzfus, J.; Westerhoff, P.; Rittmann, B.E. Total value of phosphorus recovery. Environ. Sci. Technol. 2016, 50, 6606–6620. [Google Scholar] [CrossRef]
- Cordell, D.; Drangerta, J.-O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 2, 292–305. [Google Scholar] [CrossRef]
- EU Comission. Comission of the European. 29 May 2015. Available online: https://ec.europa.eu/transparency/regdoc/rep/1/2015/EN/1-2015-229-EN-F1-1.PDF (accessed on 27 April 2018).
- Hukari, S.; Hermann, L.; Nättorp, A. From wastewater to fertilisers—technical overview and critical review of European legislation governing phosphorus recycling. Sci. Total Environ. 2016, 542, 1127–1135. [Google Scholar] [CrossRef]
- Roy, E.D. Phosphorus recovery and recycling with ecological engineering: A review. Ecol. Eng. 2017, 98, 213–227. [Google Scholar] [CrossRef]
- Childers, D.L.; Corman, J.; Edwards, M.; Elser, J.J. Sustainability challenges of phosphorus and food: Solutions from closing the human phosphorus cycle. Bioscience 2011, 61, 117–124. [Google Scholar] [CrossRef]
- Egle, L.; Rechberger, H.; Krampe, J.; Zessner, M. Phosphorus recovery from municipal wastewater: An integrated comparative technological, environmental and economic assessment of P recovery technologies. Sci. Total Environ. 2016, 571, 522–542. [Google Scholar] [CrossRef] [Green Version]
- Le Corre, K.S.; Valsami-Jones, E.; Hobbs, P.; Parsons, S.A. Phosphorus recovery from wastewater by struvite crystallization: A review. Crit. Rev. Environ. Sci. Technol. 2009, 39, 433–477. [Google Scholar] [CrossRef] [Green Version]
- Lanning, M.-C.E. Phosphate Recovery from Wastewaters Comparing Two Different Sources of Magnesium Oxide in the Precipitation of Struvite. Master’s Thesis, The University of Guelph, Guelph, ON, Canada, September 2008. [Google Scholar]
- Hermann, L. Recovery of Phosphorus from Wastewater Treatment. A Review. (Rückgewinnung von Phosphor aus der Abwassereinigung. Eine Bestandesaufnahme); Umwelt-Wissen Nr. 0929; Bundesamt für Umwelt (BAFU): Bern, Switzerland, 2009. (In German) [Google Scholar]
- Valsami-Jones, E. Mineralogical controls on phosphorus recovery from wastewaters. Mineral. Mag. 2001, 65, 611–620. [Google Scholar] [CrossRef]
- Kabbe, C.; Remy, C.; Kraus, F. Review of Promising Methods for Phosphorus Recovery & Recycling from Wastewater; International Fertiliser Society: Colchester, UK, 2015. [Google Scholar]
- Pratt, C.; Parsons, S.A.; Soares, A.; Martin, B.D. Biologically and chemically mediated adsorption and precipitation of phosphorus from wastewater. Curr. Opin. Biotechnol. 2012, 23, 890–896. [Google Scholar] [CrossRef]
- Saktaywin, W.; Tsuno, H.; Nagare, H.; Soyama, T.; Weerapakkaroon, J. Advanced sewage treatment process with excess sludge reduction and phosphorus recovery. Water Res. 2005, 39, 902–910. [Google Scholar] [CrossRef]
- Blöcher, C.; Niewersch, C.; Melin, T. Phosphorus recovery from sewage sludge with a hybrid process of low-pressure wet oxidation and nanofiltration. Water Res. 2012, 46, 2009–2019. [Google Scholar] [CrossRef]
- Güney, K.; Weidelener, A.; Krampe, J. Phosphorus recovery from digested sewage sludge as MAP by the help of metal ion separation. Water Res. 2008, 42, 4692–4698. [Google Scholar] [CrossRef]
- Sano, A.; Kanomata, M.; Inoue, H.; Sugiura, N.; Xu, K.Q.; Inamori, Y. Extraction of raw sewage sludge containing iron phosphate for phosphorus recovery. Chemosphere 2012, 89, 1243–1247. [Google Scholar] [CrossRef]
- Havukainen, J.; Nguyen, M.T.; Hermann, L.; Horttanainen, M.; Mikkilä, M.; Deviatkin, I.; Linnanen, L. Potential of phosphorus recovery from sewage sludge and manure ash by thermochemical treatment. Waste Manag. 2016, 49, 221–229. [Google Scholar] [CrossRef]
- Acelas, N.Y.; López, D.P.; Brilman, D.W.; Kersten, S.R.; Kootstra, A.M.J. Supercritical water gasification of sewage sludge: Gas production and phosphorus recovery. Bioresour. Technol. 2014, 174, 167–175. [Google Scholar] [CrossRef]
- Matsubae-Yokoyama, K.; Kubo, H.; Nagasaka, T. Recycling effects of residual slag after magnetic separation for phosphorus recovery from hot metal dephosphorization slag. ISIJ Int. 2010, 50, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Matsubae-Yokoyama, K.; Kubo, H.; Nakajima, K.; Nagasaka, T. A material flow analysis of phosphorus in Japan: The iron and steel industry as a major phosphorus source. J. Ind. Ecol. 2009, 13, 687–705. [Google Scholar] [CrossRef]
- Claveau-Mallet, D.; Wallace, S.; Comeau, Y. Removal of phosphorus, fluoride and metals from a gypsum mining leachate using steel slag filters. Water Res. 2013, 47, 1512–1520. [Google Scholar] [CrossRef]
- Liang, H.; Zhang, P.; Jin, Z.; DePaoli, D. Rare Earth and Phosphorus Leaching from a Flotation Tailings of Florida Phosphate Rock. Minerals 2018, 8, 416. [Google Scholar] [CrossRef] [Green Version]
- Guedes, P.; Couto, N.; Ottosen, L.M.; Ribeiro, A.B. Phosphorus recovery from sewage sludge ash through an electrodialytic process. Waste Manag. 2014, 34, 886–892. [Google Scholar] [CrossRef]
- Petzet, S.; Peplinski, B.; Cornel, P. On wet chemical phosphorus recovery from sewage sludge ash by acidic or alkaline leaching and an optimized combination of both. Water Res. 2012, 46, 3769–3780. [Google Scholar] [CrossRef]
- Nakagawa, H.; Ohta, J. Phosphorus Recovery from Sewage Sludge Ash: A Case Study in Gifu, Japan. In Phosphorus Recovery and Recycling; Springer: Singapore, 2019; pp. 149–155. [Google Scholar] [CrossRef]
- Adam, C.; Peplinski, B.; Michaelis, M.; Kley, G.; Simon, F.G. Thermochemical treatment of sewage sludge ashes for phosphorus recovery. Waste Manag. 2009, 29, 1122–1128. [Google Scholar] [CrossRef]
- Schoumans, O.F.; Rulkens, W.H.; Oenema, O.; Ehlert, P.A.I. Phosphorus Recovery from Animal Manure: Technical Opportunities and Agro-Economical Perspectives; Alterra Report No. 2158; Alterra: Wageningen, The Netherlands, December 2010; Available online: http://content.alterra.wur.nl/Webdocs/PDFFiles/Alterrarapporten/AlterraRapport2158.pdf (accessed on 30 April 2018).
- Van Rutten, A. Phosphate Recovery from Animal Manure: The Possibilities in The Netherlands; CEEP: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Tao, W.; Fattah, K.P.; Huchzermeier, M.P. Struvite recovery from anaerobically digested dairy manure: A review of application potential and hindrances. J. Environ. Manag. 2016, 169, 46–57. [Google Scholar] [CrossRef]
- Pan, S.H.; Lo, K.V.; Liao, P.H.; Schreier, H. Microwave pretreatment for enhancement of phosphorus release from dairy manure. J. Environ. Sci. Health Part B 2006, 41, 451–458. [Google Scholar] [CrossRef]
- Szoegi, A.A.; Vanotti, M.B.; Hunt, P.G. Phosphorus recovery from pig manure solids prior to land application. J. Environ. Manag. 2015, 157, 1–7. [Google Scholar] [CrossRef]
- Fang, L.; Li, J.S.; Guo, M.Z.; Cheeseman, C.R.; Tsang, D.C.; Donatello, S.; Poon, C.S. Phosphorus recovery and leaching of trace elements from incinerated sewage sludge ash (ISSA). Chemosphere 2018, 193, 278–287. [Google Scholar] [CrossRef]
- Mihelcic, J.R.; Fry, L.M.; Shaw, R. Global potential of phosphorus recovery from human urine and feces. Chemosphere 2011, 84, 832–839. [Google Scholar] [CrossRef]
- Cid, C.A.; Jasper, J.T.; Hoffmann, M.R. Phosphate recovery from human waste via the formation of hydroxyapatite during electrochemical wastewater treatment. ACS Sustain. Chem. Eng. 2018, 6, 3135–3142. [Google Scholar] [CrossRef]
- Tilley, E.; Atwater, J.; Mavinic, D. Recovery of struvite from stored human urine. Environ. Technol. 2008, 29, 797–806. [Google Scholar] [CrossRef]
- Antonini, S.; Paris, S.; Eichert, T.; Clemens, J. Nitrogen and phosphorus recovery from human urine by struvite precipitation and air stripping in Vietnam. CLEAN–Soil Air Water 2011, 39, 1099–1104. [Google Scholar] [CrossRef]
- Liu, B.; Giannis, A.; Zhang, J.; Chang, V.W.C.; Wang, J.Y. Characterization of induced struvite formation from source-separated urine using seawater and brine as magnesium sources. Chemosphere 2013, 93, 2738–2747. [Google Scholar] [CrossRef]
- Chapple, K. Defining the Green Economy: A Primer on Green Economic Development; The Center for Community Innovation (CCI) at UC-Berkeley: Berkeley, CA, USA, 2008; p. 66. [Google Scholar]
- Krugman, P. Building a Green Economy. The New York Times Magzine. 7 April 2010, Volume 5. pp. 2–16. Available online: https://www.ohipl.org/sites/default/files/KrugmanNYT.pdf (accessed on 10 March 2019).
- Borel-Saladin, J.M.; Turok, I.N. The green economy: Incremental change or transformation? Environ. Policy Gov. 2013, 23, 209–220. [Google Scholar] [CrossRef]
- Brand, U. Green economy—The next oxymoron? No lessons learned from failures of implementing sustainable development. GAIA—Ecolo. Perspect. Sci. Soc. 2012, 21, 28–32. [Google Scholar] [CrossRef] [Green Version]
- Barbier, E. The policy challenges for green economy and sustainable economic development. In Natural Resources Forum; Blackwell Publishing Ltd.: Oxford, UK, 2011; Volume 35, pp. 233–245. [Google Scholar] [CrossRef]
- Sheldon, R.A. Green chemistry and resource efficiency: Towards a green economy. Green Chem. 2016, 18, 3180–3183. [Google Scholar] [CrossRef]
- Heshmati, A. An empirical survey of the ramifications of a green economy. Int. J. Green Econ. 2018, 12, 53–85. [Google Scholar] [CrossRef] [Green Version]
- Lieder, M.; Rashid, A. Towards circular economy implementation: A comprehensive review in context of manufacturing industry. J. Clean. Prod. 2016, 115, 36–51. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.; Hultink, E.J. The circular economy—A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef] [Green Version]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Kalmykova, Y.; Sadagopan, M.; Rosado, L. Circular economy–From review of theories and practices to development of implementation tools. Resour. Conserv. Recycl. 2018, 135, 190–201. [Google Scholar] [CrossRef]
- Prieto-Sandoval, V.; Jaca, C.; Ormazabal, M. Towards a consensus on the circular economy. J. Clean. Prod. 2018, 179, 605–615. [Google Scholar] [CrossRef]
- Reike, D.; Vermeulen, W.J.; Witjes, S. The circular economy: New or refurbished as CE 3.0?—Exploring controversies in the conceptualization of the circular economy through a focus on history and resource value retention options. Resour. Conserv. Recycl. 2018, 135, 246–264. [Google Scholar] [CrossRef]
- Cordell, D.; White, S. Peak phosphorus: Clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 2011, 3, 2027–2049. [Google Scholar] [CrossRef] [Green Version]
- Villalba, G.; Liu, Y.; Schroder, H.; Ayres, R.U. Global phosphorus flows in the industrial economy from a production perspective. J. Ind. Ecol. 2008, 12, 557–569. [Google Scholar] [CrossRef]
- Rabchevsky, G. Phosphate Roc; Geological Survey: Reston, VA, USA, 1995.
- Lauriente, D.H. Phosphate Rock; Stanford Research Institute: Menlo Park, CA, USA, 2003. [Google Scholar]
- Jasinski, S.M. Phosphate Rock; Geological Survey: Reston, VA, USA, 2005.
- Parikh, P. Geopolitics and the (In)Security of EU’s Phosphate Imports. 2014. Available online: http://phosphateprice.com/geopolitics-and-the-insecurity-of-eus-phosphate-imports (accessed on 10 October 2018).
- Van der Hoeven, D. Geopolitics of Phosphate in a Biobased Economy. 2017. Available online: https://www.biobasedpress.eu/2017/11/geopolitics-of-phosphate-a-biobased-economy (accessed on 10 October 2018).
- Van Kauwenbergh, S.J. World Phosphate Rock Reserves and Resources; International Fertilizer Development Centre (IFDC): Muscle Shoals, AL, USA, 2010. [Google Scholar]
- Jasinski, S.M. Phosphate Rock, Mineral Commodity Summaries; US Geological Survey: Reston, VA, USA, 2011.
- Mancheri, N.A. World trade in rare earths, Chinese export restrictions, and implications. Resour. Policy 2015, 46, 262–271. [Google Scholar] [CrossRef]
- Wübbeke, J. Rare earth elements in China: Policies and narratives of reinventing an industry. Resour. Policy 2013, 38, 384–394. [Google Scholar] [CrossRef]
- García, M.V.R.; Krzemień, A.; del Campo, M.Á.M.; Álvarez, M.M.; Gent, M.R. Rare earth elements mining investment: It is not all about China. Resour. Policy 2017, 53, 66–76. [Google Scholar] [CrossRef]
- Zhang, L.; Qing, G.U.O.; Zhang, J.; Huang, Y.; Xiong, T. Did China’s rare earth export policies work?—Empirical evidence from USA and Japan. Resour. Policy 2015, 43, 82–90. [Google Scholar] [CrossRef]
- Massari, S.; Ruberti, M. Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resour. Policy 2013, 38, 36–43. [Google Scholar] [CrossRef]
- Klinger, J.M. Rare earth elements: Development, sustainability and policy issues. Extr. Ind. Soc. 2018, 5, 1–7. [Google Scholar] [CrossRef]
- Cox, C.; Kynicky, J. The rapid evolution of speculative investment in the REE market before, during, and after the rare earth crisis of 2010–2012. Extr. Ind. Soc. 2018, 5, 8–17. [Google Scholar] [CrossRef]
- Charalampides, G.; Vatalis, K.I.; Apostoplos, B.; Ploutarch-Nikolas, B. Rare earth elements: Industrial applications and economic dependency of Europe. Procedia Econ. Finance 2015, 24, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Golev, A.; Scott, M.; Erskine, P.D.; Ali, S.H.; Ballantyne, G.R. Rare earths supply chains: Current status, constraints and opportunities. Resour. Policy 2014, 41, 52–59. [Google Scholar] [CrossRef]
- Cruz, E.D. China’s Iron Ore Hits 16-Month High after Vale Dam Disaster. 2019. Available online: https://www.reuters.com/article/us-asia-ironore/chinas-iron-ore-hits-16-month-high-after-vale-dam-disaster-idUSKCN1PM0LP (accessed on 5 April 2019).
- Treadgold, T. Iron Ore Price Surges Higher after Second Dam Collapse in Brazil. 2019. Available online: https://www.forbes.com/sites/timtreadgold/2019/01/29/iron-ore-price-surges-higher-after-second-dam-collapse-in-brazil/#62fdad3d6fcf (accessed on 5 April 2019).
- CRU: Vale’s Dam Accident to Have Significant Impact on the Iron Ore Market. Available online: https://www.prnewswire.com/news-releases/cru-vales-dam-accident-to-have-significant-impact-on-the-iron-ore-market-300793304.html (accessed on 6 April 2019).
P Presentation (Name) | Chemical Formula | Solubility Product (Ksp) | Ref |
---|---|---|---|
Apatite | Ca5(PO4)(F, Cl, OH) | ||
Chlorapatite | Ca5(PO4)3Cl | 10−53.08 | [132] |
Fluorapatite | Ca5(PO4)3F | 8.6 ± 1.3 × 10−61 | [133] |
3.19 ± 0.14 × 10−61 | [134] | ||
Hydroxyapatite | Ca5(PO4)3OH | 0.53 to 7.59 × 10−58 | [135] |
2.91 × 10−58 | [136] | ||
4.7 × 10−59 | [137] | ||
7.2 × 10−53 to 6.4 × 10−58 | [138] | ||
4.8 × 10−59 | [139,140,141] | ||
10−57 | [142] | ||
7.36 ± 0.93 × 10−60 | [134] | ||
10−56.02 | [143] | ||
TCP | Ca3(PO4)2 | 1.20 × 10−29 | [144] |
OCP | Ca8H2(PO4)6∙5H2O | 1.06 × 10−47 | [145] |
Monetite (DCPA) | CaHPO4 | 1.26 × 10−7 | [146] |
0.92 to 1.97 × 10−7 | [147] | ||
10−6.60 | [143] | ||
Brushite (DCPD or dicalcium phosphate dihydrate) | CaHPO4∙2H2O | 2.49 × 10−7 | [148] |
2.59 × 10−7 | [149] | ||
2.77 × 10−7 | [150] | ||
2.7 × 10−7 | [151] | ||
10−6.60 | [143] | ||
β-Tricalcium Phosphate | β-Ca3(PO4)2 | 1.38 × 10−29 | [152] |
10−30.74 | [143] | ||
Ca3(PO4)2 | 2.07 × 10−33 | [153] | |
Berlinite | AlPO4 | 9.84 × 10−21 | [153] |
FePO4 | 10−22 | [154] | |
10−22.8 to 10−24.6 | [155] | ||
Ferrous Phosphate | Fe3(PO4)2 | 1.3 × 10−30 | [156] |
Strengite | Fe3+(PO4)∙2(H2O) | 10−34.9 ± 0.1 | [157] |
10−34.3 | [158] | ||
10−33.6 to 10−35.1 | [159] | ||
vivianite | (Fe3(PO4)2∙8H2O) | 10−35.755 | [160] |
10−36 ± 0.1 | [161] | ||
10−40 | [162] | ||
1.07 × 10−29 | [163] | ||
Variscite | Al(PO4)∙2(H2O) | 10−30.5 | [164] |
10−28.06 ± 0.05 | [165] | ||
10−30.5 | [158] | ||
xenotime | YPO4 | 10−24.76 | [166] |
Whitlockite | Ca9Mg(HPO4)(PO4)6 | 10−113.75 ± 2.18 | [167] |
10−109.48 | [168] | ||
10−29.53 * | [143] | ||
10−29.9 to 10−33.5 * | [169] | ||
Allanpringite | Fe3(PO4)2(OH)3·5H2O | NA | |
Barrandite | (Al,Fe)PO4∙2(H2O) | NA | |
Crandallite | CaAl3(PO4)2(OH)5(H2O) | NA | |
Frondelite | Mn2+Fe3+4(PO4)3(OH)5 | NA | |
Gorceixite | BaAl3(PO4)2(OH)5∙H2O | NA | |
Giniite | Fe2+Fe3+4(PO4)4(OH)2·2(H2O) | NA | |
Lazulite | (Mg,Fe2+)Al2(PO4)2(OH)2 | NA | |
monazite | (Ce,La,Y,Th)PO4 | 10−25.93 for NdPO4 | [170] |
10−25.87 for GdPO4 | |||
Rockbridgeite | Fe2+0.75Mn2+0.25Fe3+4(PO4)3(OH)5 | NA | |
Senegalite | Al2(PO4)(OH)3∙H2O | NA | |
Turquoise | CuAl6(PO4)4(OH)8∙5(H2O) | NA | |
Wardite | NaAl3(PO4)2(OH)4·2(H2O) | NA | |
Wavellite | Al3(PO4)2(OH)3∙5(H2O) | NA |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ofoegbu, S.U. Technological Challenges of Phosphorus Removal in High-Phosphorus Ores: Sustainability Implications and Possibilities for Greener Ore Processing. Sustainability 2019, 11, 6787. https://doi.org/10.3390/su11236787
Ofoegbu SU. Technological Challenges of Phosphorus Removal in High-Phosphorus Ores: Sustainability Implications and Possibilities for Greener Ore Processing. Sustainability. 2019; 11(23):6787. https://doi.org/10.3390/su11236787
Chicago/Turabian StyleOfoegbu, Stanley Udochukwu. 2019. "Technological Challenges of Phosphorus Removal in High-Phosphorus Ores: Sustainability Implications and Possibilities for Greener Ore Processing" Sustainability 11, no. 23: 6787. https://doi.org/10.3390/su11236787
APA StyleOfoegbu, S. U. (2019). Technological Challenges of Phosphorus Removal in High-Phosphorus Ores: Sustainability Implications and Possibilities for Greener Ore Processing. Sustainability, 11(23), 6787. https://doi.org/10.3390/su11236787