Properties of External Insulation Surface Preparation Mortar Using Expandable Graphite for Fire Resistance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Materials-Surface Preparation Mortar
2.2. Test Specimen
3. Experiment Outline
3.1. Evaluation Items
3.2. Surface Preparation Mortar Formulation
3.3. Experimental Configuration
3.3.1. Bonding Strength
3.3.2. Water Absorption Coefficient
3.3.3. Hot and Cold Cycling Test
3.3.4. Flame Exposure Test
4. Experimental Results and Discussion
4.1. Bonding Strength
4.2. Bonding Strength After Hot and Cold Cycling
4.3. Water Absorption Coefficient
4.4. Flame Exposure Surface Characteristics
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- European Commission. Mapping and Analyses of the Current and Future (2020-2030) Heating/Cooling fuel Deployment (Fossil/Renewables); European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Gonçalves, M.; Simões, N.; Serra, C.; Flores-Colen, I. A review of the challenges posed by the use of vacuum panels in external insulation finishing systems. Appl. Energy 2020, 257, 1–15. [Google Scholar] [CrossRef]
- Pasker, R. The European ETICS market—Facts & Figures; European ETICS Forum: London, UK, 2015. [Google Scholar]
- Zhoua, B.; Yoshioka, H.; Noguchi, T.; Ando, T. Experimental study of expanded polystyrene (EPS) External Thermal Insulation Composite Systems (ETICS) masonery façade reaction-to-fire performance. Therm. Sci. Eng. Prog. 2018, 8, 83–92. [Google Scholar] [CrossRef]
- International Standard Organization. ISO 13785-2, Reaction-to-fire Tests for Facades Part 2: Large-Scale Test; International Standard Organization: Geneva, Switzerland, 2002. [Google Scholar]
- National Fire Protection Association. NFPA 285, Standard Fire Test Method for Evaluation of Fire Propagation Characteristics of Exterior Non-Load-Bearing Wall Assemblies Containing Combustible Components; National Fire Protection Association: Quincy, MA, USA, 2012. [Google Scholar]
- BSI Group. BS 8414-1, Fire Performance of External Cladding Systems Test Methods for Nonload bearing external cladding systems applied to the face of a building; BSI Group: London, UK, 2002. [Google Scholar]
- Barreira, E.; Freitas, V.P. Experimental study of the hygrothermal behaviour of External Thermal Insulation Composite Systems (ETICS). Build. Environ. 2013, 63, 31–39. [Google Scholar] [CrossRef]
- Nilica, R.; Harmuth, H. Mechanical and fracture mechanical characterization of building materials used for external thermal insulation composite systems. Cem. Concr. Res. 2005, 35, 1641–1645. [Google Scholar] [CrossRef]
- Peng, L.; Ni, Z.; Huang, X. Review on the fire safety of exterior wall claddings in high- rise buildings in China. Procedia Eng. 2013, 62 (Suppl. C), 663–670. [Google Scholar] [CrossRef] [Green Version]
- Doroudiani, S.; Omidian, H. Environmental, health and safety concerns of decorative mouldings made of expanded polystyrene in buildings. Build. Environ. 2010, 45, 647–654. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Q.; Zhang, Y.; Yin, Y.; Sun, J. Thickness effect on flame spread characteristics of expanded polystyrene in different environments. J. Thermoplast. Compos. Mater. 2012, 25, 427–438. [Google Scholar] [CrossRef]
- Chen, Y.F.; Yang, L.; Zhuang, S. Study on the combustion characteristic of adhesive polystyrene. Appl. Mech. Mater. 2014, 664, 191–193. [Google Scholar] [CrossRef]
- Muthadhi, A.; Kothandaraman, S. Experimental investigations on polymer-modified concrete subjected to elevated temperatures. Mater. Struct. 2014, 47, 977–986. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Kodur, V.; Wu, B.; Cao, L.; Wang, F. Thermal behavior and mechanical properties of geopolymer mortar after exposure to elevated temperatures. Constr. Build. Mater. 2016, 109, 17–24. [Google Scholar] [CrossRef]
- Berardi, U.; Meacham, B.J.; Dembsey, N.A.; You, Y.G. Fire performance assessment of a fiber reinforced polymer wall panel used in a single family dwelling. Fire Technol. 2014, 50, 1607–1617. [Google Scholar] [CrossRef]
- Chang, J.H.; Choi, S.M. Workability evaluation of the inorganic surface preparation materials including EVA redispersible polymer powder for wall. J. Archit. Inst. Korea Struct. Constr. 2013, 29, 53–62. [Google Scholar]
- Kim, W.K.; Kim, D.M. Properties of acrylic emulsion mortar using pyroligneous liquid of wood by-product. J. Korea Soc. Waste Manag. 2014, 31, 70–78. [Google Scholar] [CrossRef]
- Korean Agency for Technology and Standards (KATS). Cement Filling Compound for Surface Preparation; Korean Standard KS F 4716; Korean Agency for Technology and Standards (KATS): Seoul, Korea, 2016.
- Park, J.H.; Singh, J.K.; Lee, H.S. Ozone Resistance, Water Permeability, and Concrete Adhesion of Metallic Films Sprayed on a Concrete Structure for Advanced Water Purification. Coatings 2017, 7, 41. [Google Scholar] [CrossRef] [Green Version]
- Min, S.H.; Kim, M.S. A study on the fire risk assessment of EIFS by cone calorimeter test & single burning item test. J. Korea Saf. Manag. Sci. 2010, 12, 1–9. [Google Scholar]
- Lee, J.C.; Park, J.C.; Song, H. Effect of external thermal insulation composite system with a non-combustible calcium silicate based mineral on the mitigation for reducing fast spread of flame. J. Korea Inst. Build. Constr. 2016, 16, 397–403. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.C.; Seo, J.S.; Kim, S.B. Study on flame retardancy and thermal resistance properties of phenolic foam and polyurethane foam. J. Korean Inst. Gas 2013, 17, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Shi, G.; Wang, S.; Fang, X.; Liu, X. Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material. Renew. Energy 2013, 50, 670–675. [Google Scholar] [CrossRef]
- Zhang, Y.P.; Ding, J.H.; Wang, X.; Yang, R.; Lin, K.P. Influence of additives on thermal conductivity of shape-stabilized phase change material. Sol. Energy Mater. Sol. Cells 2006, 90, 1692–1702. [Google Scholar] [CrossRef]
- He, Y.; Zhang, X.; Zhang, Y.J.; Song, Q.; Liao, X.M. Utilization of lauric acid-myristic acid/expanded graphite phasechange materials to improve thermal properties of cement mortar. Energy Build. 2016, 133, 547–558. [Google Scholar] [CrossRef]
- Pincemin, S. Highly conductive composites made of phase change materials and graphite for thermal storage. Sol. Energy Mater. Sol. Cells 2008, 92, 603–613. [Google Scholar] [CrossRef]
- Sari, A.; Karaipekli, A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl. Therm. Eng. 2007, 27, 1271–1277. [Google Scholar] [CrossRef]
- Xia, L.; Zhang, P.; Wang, R.Z. Preparation and thermal characterization of expanded graphite/paraffin composite phase change material. Carbon 2010, 48, 2538–2548. [Google Scholar] [CrossRef]
- Vahabi, H.; Sae, M.R.; Formelac, K.; Cuestad, J.M. Flame retardant epoxy/halloysite nanotubes nanocomposite coatings: Exploring low-concentration threshold for flammability compared to expandable graphite as superior fire retardant. Prog. Org. Coat. 2018, 119, 8–14. [Google Scholar] [CrossRef]
- Wang, X.; Kalali, E.N.; Wan, J.T.; Wang, D.Y. Carbon-family materials for flame retardant polymeric materials. Prog. Polym. Sci. 2017, 69, 22–46. [Google Scholar] [CrossRef]
- Kashiwagi, T.; Du, F.; Winey, K.I.; Groth, K.M.; Shields, J.R.; Bellayer, S.P.; Kim, H.; Douglas, J.F. Flammability properties of polymer nanocomposites with singlewalled carbon nanotubes: Effects of nanotube dispersion and concentration. Polymer 2005, 46, 471–481. [Google Scholar] [CrossRef]
- Korean Agency for Technology and Standards (KATS). Determination of the Water Absorption Coefficient of Building Materials; Korean Standard KS F 2609; Korean Agency for Technology and Standards (KATS): Seoul, Korea, 2018.
- Kang, H.J.; Song, M.S.; Lee, S.K. A Study on the Watertightness of Shotcrete with Watertightness Materials. J. Korean Ceram. Soc. 2008, 45, 35–41. [Google Scholar] [CrossRef]
- Chuigen, G.; Lin, Z.; Jianxiong, L. Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polym. Polym. Compos. 2013, 21, 449–456. [Google Scholar]
- Yang, E.H.; Yang, Y.; Li, V.C. Use of high volumes of fly ash to improve ecc mechanical properties and material greenness. ACI Mater. J. 2007, 104, 303–311. [Google Scholar]
SiO2 | Al2O3 | CaO | MgO | SO3 | K2O | Na2O | Fe2O3 |
---|---|---|---|---|---|---|---|
21.09 | 4.84 | 63.85 | 3.32 | 3.09 | 1.13 | 0.29 | 2.39 |
Density (20 °C) | Blaine Fineness Specific Surface Area (cm2/g) | Setting Time | Compressive Strength of Mortar (MPa) | |||
---|---|---|---|---|---|---|
Initial Set (hour) | Final Set (hour) | 3 days | 7 days | 28 days | ||
3.15 g/cm3 | 3400 | 4 | 7 | 20 | 23 | 38 |
Size (mm) | 0.6~0.85 | 0.25~0.6 | 0.1~0.25 | 0.075~0.1 |
---|---|---|---|---|
Rate (%) | 19.74 | 40.78 | 13.16 | 26.32 |
Color | Solid Content (%) | Viscosity (mPa․S) | pH (20 °C) |
---|---|---|---|
White | 48 | 102 | 9.0 |
Acrylic Resin | Butyl Carbitol | Antifoaming Agent | Ethylene Glycol | Methyl Cellulose |
---|---|---|---|---|
93.86 | 3.25 | 0.36 | 1.44 | 1.09 |
Carbon Content (wt%) | Expansion Rate (%) | Starting Temperature (°C) | Particle Size (μm) |
---|---|---|---|
92 | 100~250 | 200~250 | 173 |
Moisture Regain (%) | Density (g/cm3) | Loss of Ignition (%) | Tensile Strenth (MPa) | Mesh Size (mm) |
---|---|---|---|---|
<0.06 | 2.54 | 0.7 ± 0.15 | 900 | 4 |
Type | Fly Ash | Silica Fume |
---|---|---|
SiO2 | 41.20% | 95.90% |
Al2O3 | 14.70% | 0.00% |
CaO | 16.00% | 1.01% |
MgO | 1.36% | 0.09% |
K2O | 2.38% | 0.44% |
Na2O | 0.61% | 0.00% |
Fe2O3 | 18.10% | 0.18% |
SO3 | 1.03% | 0.11% |
Loss of ignition | 1.60% | 0.70% |
Density (g/cm3) | 2.2 | 2.1 |
Blain (g/cm3) | 2800 | 150,000~250,000 |
Type | Phenol Foam | EPS |
---|---|---|
Color | Pink | White |
Thermal Conductivity (Kcal․m․K) | 0.019 | 0.036 |
Density (kg/cm3) | 36 | 30 |
Flexural Strength (Mpa) | 23.3 | 35 |
Material | Phenol | Styrene |
Experiment Step | Evaluation Index |
---|---|
(1) Characteristics of graphite incorporation | Adhesion in tension Freeze thawing Water absorption Coefficient |
(2) Fly ash and silica fume incorporation to improve performance | Adhesion in tension Freeze thawing Water absorption Coefficient |
(3) Characteristics of graphite incorporation | Adhesion in tension Freeze thawing Water absorption Coefficient |
(4) Characteristics of heat transfer delay | Temperature Changing Expanded depth |
Specimen | Sand | Fly Ash | Silica Fume | Expandable Graphite | Emulsion | Methyl Cellulose | Water | OPC |
---|---|---|---|---|---|---|---|---|
Plain | 1140 | 0 | 0 | 0 | 180 | 6 | 280 | 2000 |
EG05 | 1083 | 57 | 2000 | |||||
EG10 | 1026 | 114 | 2000 | |||||
EG15 | 969 | 171 | 2000 | |||||
EG20 | 912 | 228 | 2000 | |||||
F05 | 1083 | 57 | 0 | 0 | 2000 | |||
F10 | 1026 | 114 | 0 | 0 | 2000 | |||
F15 | 969 | 171 | 0 | 0 | 2000 | |||
F20 | 912 | 228 | 0 | 0 | 2000 | |||
F10S1 | 1014.6 | 114 | 11.4 | 0 | 2000 | |||
F10S3 | 991.8 | 114 | 34.2 | 0 | 2000 | |||
F10S5 | 969 | 114 | 57 | 0 | 2000 | |||
FSEG05 | 934.8 | 114 | 34.2 | 57 | 2000 | |||
FSEG10 | 877.8 | 114 | 34.2 | 114 | 2000 | |||
FSEG15 | 820.8 | 114 | 34.2 | 171 | 2000 | |||
FSEG20 | 763.8 | 114 | 34.2 | 228 | 2000 |
Specimen | Flame | Thermo Couple-1 | Thermo Couple-2 | Expanded Depth of Surface Preparation Mortars |
---|---|---|---|---|
Plain | 700 °C | 750 °C | 600 °C | 0 |
FSEG05 | 700 °C | 670 °C | 430 °C | 8 mm |
FSEG10 | 700 °C | 650 °C | 400 °C | 10 mm |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, S.-Y.; Ryu, H.-S.; Shin, S.-H.; Kim, D.-M.; Park, a.W.-J. Properties of External Insulation Surface Preparation Mortar Using Expandable Graphite for Fire Resistance. Sustainability 2019, 11, 6882. https://doi.org/10.3390/su11236882
Song S-Y, Ryu H-S, Shin S-H, Kim D-M, Park aW-J. Properties of External Insulation Surface Preparation Mortar Using Expandable Graphite for Fire Resistance. Sustainability. 2019; 11(23):6882. https://doi.org/10.3390/su11236882
Chicago/Turabian StyleSong, Sung-Young, Hwa-Sung Ryu, Sang-Heon Shin, Deuck-Mo Kim, and and Won-Jun Park. 2019. "Properties of External Insulation Surface Preparation Mortar Using Expandable Graphite for Fire Resistance" Sustainability 11, no. 23: 6882. https://doi.org/10.3390/su11236882
APA StyleSong, S. -Y., Ryu, H. -S., Shin, S. -H., Kim, D. -M., & Park, a. W. -J. (2019). Properties of External Insulation Surface Preparation Mortar Using Expandable Graphite for Fire Resistance. Sustainability, 11(23), 6882. https://doi.org/10.3390/su11236882