Size-Segregated Particulate Matter in a Selected Sports Facility in Poland
Abstract
:1. Introduction
- determine the differences in the concentrations of PM and the origin of PM inside and outside the sports facility at different times of the day and year,
- determine the differences in size composition of the total mass of PM inside and outside the sports facility,
- examine the possibility of using the results of automatic PM measurements for air quality monitoring in sports facilities and reference the results of concentration measurements for two PM fractions using the automatic method to the standard (reference–gravimetric) method, and
- designate and analyze the daily doses of respirable dust for three groups of people—pupils, physical education teachers, and athletes—who use this type of sports premises.
2. Materials and Methods
2.1. Sampling Sites
2.2. Sampling Methods
2.3. Results Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Frank, L.D.; Engelke, P.O. The Built Environment and Human Activity Patterns: Exploring the Impacts of Urban Form on Public Health. J. Plan. Lit. 2001, 16, 202–218. [Google Scholar] [CrossRef]
- Warburton, D.; Nicol, C.; Bredin, S. Health benefits of physical activity: The evidence. Can. Med. Assoc. J. 2006, 174, 801–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, C.A.; Calvo, A.I.; Castro, A.; Fraile, R.; Evtyugina, M.; Bate-Epey, E.F. Air Quality in Sports Venues with Distinct Characteristics. Int. J. Environ. Chem. Ecol. Geol. Geophys. Eng. 2013, 7, 298–302. [Google Scholar] [CrossRef]
- Andrade, A.; Dominski, F.H.; Coimbra, D.R. Scientific production on indoor air quality of environments used forphysical exercise and sports practice: Bibliometric analysis. J. Environ. Manag. 2017, 196, 188–200. [Google Scholar] [CrossRef]
- Rundell, K.W.; Caviston, R. Ultrafine and fine Particulate Matter inhalation decreases exercise performance in healthy subjects. J. Strength Cond. Res. 2008, 22, 2–5. [Google Scholar] [CrossRef]
- Cutrufello, P.T.; Smoliga, J.M.; Rundell, K.W. Small things make a big difference: Particulate matter and exercise. Sports Med. 2012, 42, 1041–1058. [Google Scholar] [CrossRef]
- Cakmak, S.; Dales, R.; Leech, J.; Liu, L. The influence of air pollution on cardiovascular and pulmonary function and exercise capacity: Canadian Health Measures Survey (CHMS). Environ. Res. 2011, 111, 1309–1312. [Google Scholar] [CrossRef]
- Pope, C.A.; Burnett, R.T.; Thurston, G.D.; Thun, M.J.; Calle, E.E.; Krewski, D.; Godleski, J.J. Cardiovascular Mortality and Long-Term Exposure to Particulate Air Pollution Epidemiological Evidence of General Pathophysiological Pathways of Disease. Circulation 2004, 6, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367. [Google Scholar] [CrossRef]
- Daigle, C.C.; Chalupa, D.C.; Gibb, F.R.; Morrow, P.E.; Oberdörster, G.; Utell, M.J.; Frampton, M.W. Ultrafine particle deposition in humans during rest and exercise. Inhal. Toxicol. 2003, 15, 539–552. [Google Scholar] [CrossRef]
- Carlisle, A.J.; Sharp, N.C.C. Exercise and outdoor ambient air pollution. Br. J. Sports Med. 2001, 35, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Castro, A.; Calvo, A.I.; Alves, C.; Alonso-Blanco, E.; Coz, E.; Marques, L.; Nunes, T.; Fernández-Guisuraga, J.M.; Fraile, R. Indoor aerosol size distributions in a gymnasium. Sci. Total Environ. 2015, 524, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Sracic, M.K. Modeled regional airway deposition of inhaled particles in athletes at exertion. J. Aerosol Sci. 2016, 99, 54–63. [Google Scholar] [CrossRef]
- Lippi, G.; Guidi, G.C.; Maffulli, N. Air Pollution and Sports Performance in Beijing. Int. J. Sports Med. 2008, 29, 696–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abelsohn, A.; Stieb, D.M. Health effects of outdoor air pollution. Approach to counseling patients using the Air Quality Health Index. Can. Fam. Physician 2011, 57, 881–887. [Google Scholar] [PubMed]
- Phalen, R.F. Inhalation Studies: Foundations and Techniques, 2nd ed.; Informa Healthcare: New York, NY, USA, 2009; pp. 57–58. [Google Scholar]
- Kuskowska, K.; Rogula-Kozłowska, W.; Rogula-Kopiec, W. Particulate matter and polycyclic aromatic hydrocarbons in a selected athletic hall: Ambient concentrations, origin and effects on human health. E3S Web Conf. 2018, 28. [Google Scholar] [CrossRef] [Green Version]
- Administration of Cities Roads. Available online: https://zdm.waw.pl/dzialania/badania-i-analizy/analiza-ruchu-na-drogach/ (accessed on 7 October 2019).
- Polish Committee for Standardization. PN-EN 12341:2014-07, Atmospheric Air—Standard Gravimetric Measuring Method for Determination of Mass Concentrations of PM10 or PM2.5 Fractions of Particulate Matter; Polish Standardization Committee: Warsaw, Poland, 2014. [Google Scholar]
- Polish Committee for Standardization. PN-EN12341:2014, Air Quality—Determination of PM10 Fraction of Particulate Matter; Polish Standardization Committee: Warsaw, Poland, 2014. [Google Scholar]
- Fromme, H.; Twardella, D.; Dietrich, S.; Heitmann, D.; Schierl, R.; Liebl, B.; Rüden, H. Particulate matter in the indoor air of classrooms—Exploratory results from Munich and surrounding area. Atmos. Environ. 2007, 41, 854–866. [Google Scholar] [CrossRef]
- Alves, C.A.; Calvo, A.I.; Castro, A.; Fraile, R.; Evtyugina, M.; Bate-Epey, E.F. Indoor Air Quality in Two University Sports Facilities. Aerosol Air Qual. Res. 2013, 13, 1723–1730. [Google Scholar] [CrossRef] [Green Version]
- EC Working Group. Guide to the Demonstration of Equivalence of Ambient Air Monitoring Methods; EC Working Group on Guidance for the Demonstration of Equivalence; Office for Official Publications of the European Communities: Ispra, Italy, 2008. [Google Scholar]
- Gębicki, J.; Szymańska, K. Comparison of Tests for Equivalence of Methods for Measuring PM10 Dust in Ambient Air. Pol. J. Environ. Stud. 2011, 20, 1465–1472. [Google Scholar]
- Gębicki, J.; Szymańska, K. Comparative field test for measurement of PM10 dust in atmospheric air using gravimetric (reference) method and b-absorption method (Eberline FH 62-1). Atmos. Environ. 2012, 54, 18–24. [Google Scholar] [CrossRef]
- Tzu-Chi Chang, L.; Leys, J.; Heidenreich, S.; Koen, T. Determining aerosol type using a multichannel DustTrak DRX. J. Aerosol Sci. 2018, 126, 68–84. [Google Scholar] [CrossRef]
- US EPA. Exposure Factors Handbook; U.S. Environmental Protection Agency: Washington, DC, USA, 2011.
- US EPA. Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual; U.S. Environmental Protection Agency: Washington, DC, USA, 2011.
- US EPA. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual. (Part F, Supplemental Guidance for Inhalation Risk Assessment); U.S. Environmental Protection Agency: Washington, DC, USA, 2009.
- Naranjo, J.; Centeno, R.; Galiano, D.; Beaus, M. A nomogram for assesment of breathingpatterns during treadmill exercise. Br. J. Sports Med. 2005, 39, 80–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bezemer, G. Particle Deposition Clearance from Respiratory Tract; Institute for Risk Assessment Sciences: Utrecht, The Netherlands, 2009.
- Guo, G.; Song, B.; Xia, D.; Yang, Z.; Wang, F. Metals and metalloids in PM10 in Nandan County, Guangxi, China, and the health risks posed. Environ. Geochem. Health 2018, 40, 2071–2086. [Google Scholar] [CrossRef] [PubMed]
- Thatcher, T.L.; Layton, D. Deposition, Resuspension, and Penetration of Particles within a Residence. Atmos. Environ. 1995, 29, 1487–1497. [Google Scholar] [CrossRef]
- Cohen, Y. Volatile Organic Compoundsin the Environment: A Multimedia Perspective. In Volatile Organic Compounds in the Environment; ASTM International: West Conshohocken, PA, USA, 1996; pp. 7–32. [Google Scholar]
- Putaud, J.P.; Raes, F.; Van Dingenen, R.; Brüggemann, E.; Facchini, M.C.; Decesari, S.; Fuzzi, S.; Gehrig, R.; Hüglin, C.; Laj, P.; et al. A european aerosol phenomenology—2: Chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmos. Environ. 2004, 38, 2579–2595. [Google Scholar] [CrossRef]
- Rogula-Kozłowska, W.; Klejnowski, K.; Rogula-Kopiec, P.; Ośródka, L.; Krajny, E.; Błaszczak, B.; Mathews, B. Spatial and seasonal variability of the mass concentration and chemical composition of PM2.5 in Poland. Air Qual. Atmos. Health 2014, 7, 41–58. [Google Scholar] [CrossRef] [Green Version]
- Rogula-Kozłowska, W. Size-segregated urban particulate matter: Mass closure, chemical composition, and primary and secondary matter content. Air Qual. Atmos. Health 2016, 9, 533–550. [Google Scholar] [CrossRef] [Green Version]
- Majewski, G.; Rogula-Kozłowska, W.; Rozbicka, K.; Rogula-Kopiec, P.; Mathews, B.; Brandyk, A. Concentration, chemical composition and origin of PM1: Results from the first long-term measurement campaign in Warsaw (Poland). Aerosol Air Qual. Res. 2018, 18, 636–654. [Google Scholar] [CrossRef]
- Rivas, I.; Mazaheri, M.; Viana, M.; Moreno, T.; Clifford, S.; He, C.; Bischof, O.F.; Martins, V.; Reche, C.; Alastuey, A.; et al. Identification of technical problems affecting performance of DustTrak DRX aerosol monitors. Sci. Total Environ. 2017, 15, 849–855. [Google Scholar] [CrossRef] [Green Version]
- Chung, A.; Chang, D.P.; Kleeman, M.J.; Perry, K.D.; Cahill, T.A.; Dutcher, D.; McDougall, E.M.; Stroud, K. Comparison of real-time instruments used to monitor airborne particulate matter. J. Air Waste Manag. Assoc. 2001, 51, 109–120. [Google Scholar] [CrossRef]
- Yanosky, J.D.; Williams, P.L.; MacIntosh, D.L. A comparison of two direct-reading aerosol monitors with the federal reference method for PM2.5 in indoor air. Atmos. Eviron. 2002, 36, 107–113. [Google Scholar] [CrossRef]
- Kingham, S.; Durand, M.; Aberkane, T.; Harrison, J.; Wilson, J.G.; Epton, M. Winter comparison of TEOM, MiniVol and DustTrak PM10 monitors in a woodsmoke environment. Atmos. Environ. 2006, 40, 338–347. [Google Scholar] [CrossRef]
- Zhu, J.; Smith, T.J.; Davis, M.E.; Levy, J.I.; Herrick, R.; Jiang, H. Comparing gravimetric and real-time sampling of PM2.5 concentrations inside truck cabins. J. Occup. Environ. Hyg. 2011, 8, 662–672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winkel, A.; Llorens Rubio, J.; Huis in’t Veld, J.W.H.; Vonk, J.A.; Ogink, N.W.M. Equivalence testing of filter-based, beta-attenuation, TEOM, and light-scattering devices for measurement of PM10 concentration in animal houses. J. Aerosol Sci. 2015, 80, 11–26. [Google Scholar] [CrossRef]
- Wang, Z.; Calderón, L.; Patton, A.P.; Sorensen Allacci, M.; Senick, J.; Wener, R.; Andrews, C.J.; Mainelis, G. Comparison of Real-Time Instruments and Gravimetric Method When Measuring Particulate Matter in a Residential Building. J. Air Waste Manag. Assoc. 2016, 66, 1109–1120. [Google Scholar] [CrossRef]
- Hajian, M.; Mohaghegh, S. Indoor Air Pollution in Exercise Centers. Int. J. Med. Toxicol. Forensic Med. 2015, 5, 22–31. [Google Scholar]
- The Office of the Capital City of Warsaw. Available online: www.um.warszawa.pl (accessed on 7 October 2019).
- Reizer, M.; Juda-Rezler, K. Explaining the high PM10 concentrations observed in Polish urban areas. Air Qual. Atmos. Health 2016, 9, 517–531. [Google Scholar] [CrossRef]
- Chlebowska-Styś, A.; Sówka, I.; Kobus, D.; Pachurka, Ł. Analysis of concentrations trends and origins of PM10 in selected European cities. E3S Web Conf. 2017, 17. [Google Scholar] [CrossRef] [Green Version]
- Klejnowski, K.; Krasa, A.; Rogula-Kozłowska, W.; Błaszczak, B. Number size distribution of ambient particles in a typical urban site: The first Polish assessment based on long-term (9 months) measurements. Sci. World J. 2013, 27. [Google Scholar] [CrossRef]
- Rogula-Kozłowska, W.; Majewski, G.; Czechowski, O. The size distribution and origin of elements bound to ambient particles: A case study of a Polish urban area. Environ. Monit. Assess. 2015, 187, 240. [Google Scholar] [CrossRef] [Green Version]
- Zwoździak, A.; Gini, M.I.; Samek, L.; Rogula-Kozłowska, W.; Sówka, I.; Eleftheriadis, K. Implications of the aerosol size distribution modal structure of trace and major elements on human exposure, inhaled dose and relevance to the PM2.5 and PM10 metrics in a European pollution hotspot urban area. J. Aerosol Sci. 2017, 103, 38–52. [Google Scholar] [CrossRef]
- Widziewicz, K.; Rogula-Kozłowska, W. Urban environment as a factor modulating metals deposition in the respiratory track and associated cancer risk. Atmos. Pollut. Res. 2017, 9, 399–410. [Google Scholar] [CrossRef]
- Li, X.; Yan, C.; Patterson, R.F.; Zhu, Y.; Yao, X.; Zhu, Y.; Ma, S.; Qiu, X.; Zhu, T.; Zheng, M. Modeled deposition of fine particles in human airway in Beijing, China. Atmos. Environ. 2016, 124, 387–395. [Google Scholar] [CrossRef]
- Guo, M.; Lyu, Y.; Xu, T.; Yao, B.; Song, W.; Li, M.; Yang, X.; Cheng, T.; Li, X. Particle size distribution and respiratory deposition estimates of airborne perfluoroalkyl acids during the haze period in the megacity of Shanghai. Environ. Pollut. 2018, 234, 9–19. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.S.; Zeman, K.L.; Bennett, W.D. Ultrafine particledeposition and clearance in the healthy and obstructedlung. Am. J. Respir. Crit. Care Med. 2002, 166, 1240–1247. [Google Scholar] [CrossRef] [Green Version]
- Chalupa, D.C.; Morrow, P.E.; Oberdörster, G.; Utell, M.J.; Frampton, M.W. Ultrafine Particle Deposition in Subjects with Asthma. Environ. Health Perspect. 2004, 112, 879–882. [Google Scholar] [CrossRef] [Green Version]
Season | Photometer | Indoor | Outdoor | ||||||
---|---|---|---|---|---|---|---|---|---|
PM4 | TSP | PM4 | TSP | ||||||
p | CF | p | CF | p | CF | p | CF | ||
Summer | DustTrak 8534 | 0.00011 | 0.16 | 0.00164 | 0.21 | 0.00021 | 0.18 | 0.00031 | 0.24 |
DustTrak 8533 | 0.00085 | 0.18 | 0.00171 | 0.22 | 0.00044 | 0.19 | 0.00042 | 0.25 | |
Winter | DustTrak 8534 | 0.00198 | 0.19 | 0.00014 | 0.19 | 0.0064 | 0.23 | 0.00144 | 0.25 |
DustTrak 8533 | 0.00199 | 0.20 | 0.00018 | 0.20 | 0.0068 | 0.24 | 0.00197 | 0.25 |
Parameter | Pupils (≤18 Years Old) | Teachers/Trainers (>18 Years Old) | Athletes (>18 Years Old) | Source |
---|---|---|---|---|
InhR [m3/day] | 7.63 (7.94*) | 15.2 | 15.2 (19.0*) | [29] |
Daily exposition (h) | 1 | 8 | 6 | - |
Statistical Parameter | Place of Measurements | Non-Heating Season | Heating Season | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PM1 | PM2.5 | PM4 | PM10 | TSP | REPI a | PM1 | PM2.5 | PM4 | PM10 | TSP | REPI a | ||||||||
A | M | A | M | P2.5 | PM10 | A | M | A | M | P2.5 | PM10 | ||||||||
Mean [µg/m3] | I | *29** | *30** | *31** | *18** | *40 | *62 | *24** | 17 | 23 | *38** | *39** | *40** | *33** | *45 | 56 | 52** | 31 | 29 |
O | *22** | *23** | *24** | *13** | *27** | *32** | *17** | *52** | *52** | *53** | *48** | *55** | 59** | 54** | |||||
Minimum [µg/m3] | I | 8 | 8 | 9 | 11 | 11 | 13 | 15 | 11 | 13 | 9 | 9 | 9 | 28 | 10 | 10 | 37 | 8 | 6 |
O | 3 | 3 | 3 | 10 | 4 | 6 | 12 | 5 | 5 | 5 | 22 | 6 | 6 | 27 | |||||
Maximum [µg/m3] | I | 172 | 174 | 179 | 29 | 217 | 379 | 54 | 26 | 39 | 142 | 143 | 146 | 40 | 171 | 500 | 68 | 62 | 76 |
O | 169 | 174 | 174 | 29 | 179 | 190 | 31 | 164 | 164 | 165 | 51 | 168 | 174 | 74 | |||||
Median [µg/m3] | I | 13 | 13 | 14 | 15 | 19 | 39 | 20 | 17 | 22 | 16 | 16 | 16 | 33 | 18 | 29 | 53 | 30 | 28 |
O | 14 | 14 | 15 | 13 | 15 | 17 | 15 | 34 | 34 | 34 | 33 | 35 | 36 | 50 | |||||
Standard deviation | I | 12.8 | 13.3 | 14.2 | 4.8 | 18.8 | 38.9 | 10.1 | 3.4 | 6.8 | 14.0 | 13.9 | 13.8 | 3.3 | 13.9 | 19.9 | 11.4 | 14.5 | 14.8 |
O | 14.3 | 14.4 | 14.6 | 4.9 | 15.4 | 17.1 | 5.6 | 34.0 | 34.2 | 34.3 | 9.1 | 34.9 | 36.4 | 14.0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bralewska, K.; Rogula-Kozłowska, W.; Bralewski, A. Size-Segregated Particulate Matter in a Selected Sports Facility in Poland. Sustainability 2019, 11, 6911. https://doi.org/10.3390/su11246911
Bralewska K, Rogula-Kozłowska W, Bralewski A. Size-Segregated Particulate Matter in a Selected Sports Facility in Poland. Sustainability. 2019; 11(24):6911. https://doi.org/10.3390/su11246911
Chicago/Turabian StyleBralewska, Karolina, Wioletta Rogula-Kozłowska, and Adrian Bralewski. 2019. "Size-Segregated Particulate Matter in a Selected Sports Facility in Poland" Sustainability 11, no. 24: 6911. https://doi.org/10.3390/su11246911
APA StyleBralewska, K., Rogula-Kozłowska, W., & Bralewski, A. (2019). Size-Segregated Particulate Matter in a Selected Sports Facility in Poland. Sustainability, 11(24), 6911. https://doi.org/10.3390/su11246911