Monitoring Mining Disturbance and Restoration over RBM Site in South Africa Using LandTrendr Algorithm and Landsat Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Satellite Data
2.3. Implementation of LandTrendr in GEE and Its Association with Mining Disturbance and Rehabilitation
2.4. Validation
3. Results and Discussion
3.1. Overall Spatiotemporal Patterns of Vegetation at RBM Mine 1984–2018
3.2. Annual Progression of Mining Operations over RBM between 1984–2018
3.3. Temporal Profile of NDVI at Different Sites over the RBM Mine
3.4. Validation
3.5. Research Limitations
4. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Swart, E. The South African legislative framework for mine closure. J. S. Afr. Inst. Min. Metall. 2003, 103, 489–492. [Google Scholar]
- Tanner, P. Guidelines for the Rehabilitation of Mined Land; Chamber of Mines South Africa Press: Johannesburg, South Africa, 2007. [Google Scholar]
- Casey, J.P. The Future of Mining in South Africa. 2019. Available online: https://www.mining–technology.com/features/the–future–of–mining–in–south–africa/ (accessed on 30 August 2019).
- Ott, T. Finding the interface between mining, people, and biodiversity: A case study at Richards Bay Minerals. J. S. Afr. Inst. Min. Metall. 2017, 117, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Sincovich, A.; Gregory, T.; Wilson, A.; Brinkman, S. The social impacts of mining on local communities in Australia. Rural Soc. 2018, 27, 18–34. [Google Scholar] [CrossRef]
- Zhang, A.; Moffat, K. A balancing act: The role of benefits, impacts and confidence in governance in predicting acceptance of mining in Australia. Resour. Policy 2015, 44, 25–34. [Google Scholar] [CrossRef]
- Pourret, O.; Lange, B.; Bonhoure, J.; Colinet, G.; Decrée, S.; Mahy, G.; Séleck, M.; Shutcha, M.; Faucon, M.P. Assessment of soil metal distribution and environmental impact of mining in Katanga (Democratic Republic of Congo). Appl. Geochem. 2016, 64, 43–55. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468, 843–853. [Google Scholar] [CrossRef]
- Sonter, L.J.; Moran, C.J.; Barrett, D.J.; Soares–Filho, B.S. Processes of land use change in mining regions. J. Clean. Prod. 2014, 84, 494–501. [Google Scholar] [CrossRef]
- Elmqvist, T.; Folke, C.; Nyström, M.; Peterson, G.; Bengtsson, J.; Walker, B.; Norberg, J. Response diversity, ecosystem change, and resilience. Front. Ecol. Environ. 2003, 1, 488–494. [Google Scholar] [CrossRef]
- Petropoulos, G.P.; Partsinevelos, P.; Mitraka, Z. Change detection of surface mining activity and reclamation based on a machine learning approach of multi–temporal Landsat TM imagery. Geocarto Int. 2013, 28, 323–342. [Google Scholar] [CrossRef]
- Latifovic, R.; Fytas, K.; Chen, J.; Paraszczak, J. Assessing land cover change resulting from large surface mining development. Int. J. Appl. Earth Obs. Geoinform. 2005, 7, 29–48. [Google Scholar] [CrossRef]
- Gesch, D.B. Analysis of multi-temporal geospatial data sets to assess the landscape effects of surface mining. In Proceedings of the National Meeting of the American Society of Mining and Reclamation, Lexington, KY, USA, 19–23 June 2005; pp. 415–432. [Google Scholar]
- Du, H.; Cui, R.; Zhou, G.; Shi, Y.; Xu, X.; Fan, W.; Lü, Y. The responses of Moso bamboo (Phyllostachys heterocycla var. pubescens) forest aboveground biomass to Landsat TM spectral reflectance and NDVI. Acta Ecol. Sin. 2010, 30, 257–263. [Google Scholar] [CrossRef]
- De Simoni, B.S.; Leite, M.G.P. Assessment of rehabilitation projects results of a gold mine area using landscape function analysis. Appl. Geogr. 2019, 108, 22–29. [Google Scholar] [CrossRef]
- Kariyawasam, N.; Raval, S.; Shamsoddini, A. Incorporating Remote Sensing as a Tool to Assist rehabilitation monitoring in a dolomite mining operation in South Australia. In Proceedings of the XXV FIG INTERNATIONAL CONGRESS, Kuala Lumpur, Malaysia, 16–21 June 2014; International Federation of Surveyors (FIG) Press: Kuala Lumpur, Malaysia, 2014; pp. 1–13. Available online: http://www.fig.net/pub/fig2014/papers/ts08b/TS08B_kariyawasam_raval_et_al_6966.pdf (accessed on 19 September 2019).
- Whiteside, T.G.; Bartolo, R.E. A robust object-based woody cover extraction technique for monitoring mine site revegetation at scale in the monsoonal tropics using multispectral RPAS imagery from different sensors. Int. J. Appl. Earth Obs. Geoinform. 2018, 73, 300–312. [Google Scholar] [CrossRef]
- Raval, S.; Merton, R.N.; Laurence, D. Satellite Based Mine Rehabilitation Monitoring Using WorldView-2 Imagery. Min. Technol. 2013, 122, 200–207. [Google Scholar] [CrossRef]
- Coppin, P.; Jonckheere, I.; Nackaerts, K.; Muys, B.; Lambin, E. Review article digital change detection methods in ecosystem monitoring: A review. Int. J. Remote Sens. 2004, 25, 1565–1596. [Google Scholar] [CrossRef]
- Straker, J.; Blazecka, M.; Sharman, K.; Woelk, S.; Boorman, S.; Kuschminder, J. Use of remote sensing in reclamation assessment. In Proceedings of the 28th Annual Mine Reclamation Symposium, Teck Cominco’s Bullmoose Mine Site, Cranbrook, BC, Canada, 23 June 2004. [Google Scholar]
- Bao, N.; Lechner, A.M.; Johansen, K.; Ye, B. Object-based classification of semi-arid vegetation to support mine rehabilitation and monitoring. J. Appl. Remote Sens. 2014, 8, 083564. [Google Scholar] [CrossRef]
- Bonifazi, G.; Cutaia, L.; Massacci, P.; Roselli, I. Monitoring of abandoned quarries by remote sensing and in situ surveying. Ecol. Model. 2003, 170, 213–218. [Google Scholar] [CrossRef]
- Sen, S.; Zipper, C.E.; Wynne, R.H.; Donovan, P.F. Identifying revegetated mines as disturbance/recovery trajectories using an interannual Landsat chronosequence. Photogramm. Eng. Remote Sens. 2012, 78, 223–235. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary–scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Andréfouët, S.; Cohen, W.B.; Gómez, C.; Griffiths, P.; Hais, M.; Healey, S.P.; Helmer, E.H.; Hostert, P.; Lyons, M.B.; et al. Bringing an ecological view of change to Landsat-based remote sensing. Front. Ecol. Environ. 2014, 12, 339–346. [Google Scholar] [CrossRef]
- Pericak, A.A.; Thomas, C.J.; Kroodsma, D.A.; Wasson, M.F.; Ross, M.R.; Clinton, N.E.; Campagna, D.J.; Franklin, Y.; Bernhardt, E.S.; Amos, J.F. Mapping the yearly extent of surface coal mining in Central Appalachia using Landsat and Google Earth Engine. PLoS ONE 2018, 13, 0197758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Z. Change detection using Landsat time series: A review of frequencies, preprocessing, algorithms, and applications. ISPRS J. Photogramm. Remote Sens. 2017, 130, 370–384. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Pflugmacher, D.; Cohen, W.B.; Kennedy, R.E.; Yang, Z. Using Landsat-derived disturbance and recovery history and Lidar to map forest biomass dynamics. Remote Sens. Environ. 2014, 151, 124–137. [Google Scholar] [CrossRef]
- Yang, Y.; Erskine, P.D.; Lechner, A.M.; Mulligan, D.; Zhang, S.; Wang, Z. Detecting the dynamics of vegetation disturbance and recovery in surface mining area via Landsat imagery and LandTrendr algorithm. J. Clean. Prod. 2018, 178, 353–362. [Google Scholar] [CrossRef]
- Minnemeyer, S.; Laestadius, L.; Potapov, P.; Sizer, N.; Saint-Laurent, C. Atlas of Forest Landscape Restoration Opportunities; World Resources Institute Press: Washington, DC, USA, 2014. [Google Scholar]
- Macdonald, S.E.; Landhäusser, S.M.; Skousen, J.; Franklin, J.; Frouz, J.; Hall, S.; Jacobs, D.F.; Quideau, S. Forest restoration following surface mining disturbance: Challenges and solutions. New For. 2015, 46, 703–732. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.A.E.; Smith, Y.C.E.; Downs, C.T. Indian Ocean coastal thicket is of high conservation value for preserving taxonomic and functional diversity of forest-dependent bird communities in a landscape of restricted forest availability. For. Ecol. Manag. 2017, 390, 157–165. [Google Scholar] [CrossRef]
- Grainger, M.J. An Evaluation of Coastal Dune Forest Restoration in Northern KwaZulu-Natal. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2011. [Google Scholar]
- Limpitlaw, D.; Aken, M.; Lodewijks, H.; Viljoen, J. Post-mining rehabilitation, land use and pollution at collieries in South Africa. In Proceedings of the Colloquium: Sustainable Development in the Life of Coal Mining, South African Institute of Mining and Metallurgy, Boksburg, South Africa, 13 July 2005. [Google Scholar]
- West, A.; Bond, W.; Midgley, J.J. Dune forest succession on old lands: Implications for post-mining restoration. Towards sustainable management based on scientific understanding of natural forests and woodlands. In Proceedings of the Natural Forests and Woodlands Symposium II, Department of Water Affairs and Forestry, Knysna, South Africa, 5–9 September 1999; pp. 35–39. [Google Scholar]
- Williams, G.E.; Steenkamp, J.D. Heavy Minerals Processing at Richards Bay Minerals; South African Pyrometallurgy; Jones, R.T., Ed.; South African Institute of Mining and Metallurgy: Johannesburg, South Africa, 2006. [Google Scholar]
- DWAF (Department of Water Affairs and Forestry). Water Resource Protection and Assessment Policy Implementation Process. Resource Directed Measures for Protection of Water Resource: Methodology for the Determination of the Ecological Water Requirements for Estuaries; Department of Water Affairs and Forestry: Pretoria, South Africa, 2004.
- Moll, J.B. Studies on Dune Rehabilitation Techniques for Mined Areas at Richards Bay, Natal. Ph.D. Thesis, Rhodes University, Grahamstown, South Africa, 1992. [Google Scholar]
- Lubke, R.A.; Avis, A.M.; Moll, J.B. Post-mining rehabilitation of coastal sand dunes in Zululand South Africa. Landsc. Urban Plan. 1996, 34, 335–345. [Google Scholar] [CrossRef]
- Wooley, L. An Assessment of the Conservation Status of Coastal Dune Forest in the Maputaland Centre of Endemism using Landsat TM imagery. Master’s Thesis, University of Pretoria, Pretoria, South Africa, 2003. [Google Scholar]
- Choi, Y.; Nieto, A. Optimal haulage routing of off-road dump trucks in construction and mining sites using Google Earth and a modified least-cost path algorithm. Autom. Constr. 2011, 20, 982–997. [Google Scholar] [CrossRef]
- Kennedy, R.; Yang, Z.; Gorelick, N.; Braaten, J.; Cavalcante, L.; Cohen, W.; Healey, S. Implementation of the LandTrendr algorithm on Google Earth Engine. Remote Sens. 2018, 10, 691. [Google Scholar] [CrossRef] [Green Version]
- Cohen, W.B.; Yang, Z.; Healey, S.P.; Kennedy, R.E.; Gorelick, N. A LandTrendr multispectral ensemble for forest disturbance detection. Remote Sens. Environ. 2018, 205, 131–140. [Google Scholar] [CrossRef]
- Runge, A.; Groose, G. Applying both Landsat and Sentinl-2 data to Landtrendr for detection of landscape change trends in Arctic permafrost regions. In Proceedings of the ESA Living Planet Symposium, Milan, Italy, 13–17 May 2019. [Google Scholar]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Kennedy, R.E.; Cohen, W.B.; Schroeder, T.A. Trajectory-based change detection for automated characterization of forest disturbance dynamics. Remote Sens. Environ. 2007, 110, 370–386. [Google Scholar] [CrossRef]
- Yu, L.; Gong, P. Google Earth as a virtual globe tool for Earth science applications at the global scale: Progress and perspectives. Int. J. Remote Sens. 2012, 33, 3966–3986. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, A.D.; Lowe, B. Random forest algorithm for land cover classification. Pattern Recognit. Lett. 2016, 27, 294–300. [Google Scholar]
- Balzter, H.; Cole, B.; Thiel, C.; Schmullius, C. Mapping CORINE land cover from Sentinel-1A SAR and SRTM digital elevation model data using Random Forests. Remote Sens. 2015, 7, 14876–14898. [Google Scholar] [CrossRef] [Green Version]
- Unger, D.R.; Hung, I.K.; Kulhavy, D.L. Accuracy assessment of land cover maps of forests within an urban and rural environment. For. Sci. 2013, 60, 591–602. [Google Scholar] [CrossRef]
- Peerbhay, K.; Mutanga, O.; Lottering, R.; Ismail, R. Mapping Solanum mauritianum plant invasions using WorldView-2 imagery and unsupervised random forests. Remote Sens. Environ. 2016, 182, 39–48. [Google Scholar] [CrossRef]
- Weisser, P.J.; Marques, F. Gross vegetation changes in the dune area between Richards Bay and the Mfolozi River, 1937–1974. Bothalia 1979, 12, 711–721. [Google Scholar] [CrossRef]
- Olivier, P.I.; van Aarde, R.J.; Lombard, A.T. The use of habitat suitability models and species–area relationships to predict extinction debts in coastal forests, South Africa. Divers. Distrib. 2013, 19, 1353–1365. [Google Scholar] [CrossRef]
- Pranato, A.K.; Gikes, B.; Mengler, F.C. The use of remotely sensed data to analyze spatial and temporal trends in patchiness within rehabilitated bauxite mines in the Darling Range. In Proceedings of the 3rd Australian New Zealand Soils Conference, University of Sydney, Sydney, Australia, 5–9 December 2004. [Google Scholar]
- Macfarlane, A.S. Of sun, shells, sand, and sea. J. S. Afr. Min Metall. 2019, 119, 5–6. [Google Scholar]
- Xulu, S.; Peerbhay, K.; Gebreslasie, M.; Ismail, R. Drought influence on forest plantations in Zululand, South Africa, using MODIS time series and climate data. Forest 2018, 9, 528. [Google Scholar] [CrossRef] [Green Version]
- Nhamo, L. Trends and Outlook: Agricultural Water Management in Southern Africa; SADC Agwater Profiles; International Water Management Institute (IWMI), Southern Africa Regional Office: Pretoria, South Africa, 2015. [Google Scholar]
- Xulu, S.; Peerbhay, K.; Gebreslasie, M.; Ismail, R. Unsupervised clustering of forest response to drought stress in Zululand region, South Africa. Forest 2019, 10, 531. [Google Scholar] [CrossRef] [Green Version]
- Mbatha, N.; Xulu, S. Time series analysis of MODIS–derived NDVI for the Hluhluwe-Imfolozi Park, South Africa: Impact of recent intense drought. Climate 2018, 6, 95. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, N. Application of NDVI in vegetation monitoring using GIS and remote sensing in northern Ethiopian highlands. Abyss J. Sci. Technol. 2016, 1, 12–17. [Google Scholar]
- Campbell, J.B.; Wynne, R.H. Introduction to Remote Sensing, 5th ed.; Guilford Press: New York, NY, USA, 2011. [Google Scholar]
- Vasuki, Y.; Yu, L.; Holden, E.J.; Kovesi, P.; Wedge, D.; Grigg, A.H. The spatial-temporal patterns of land cover changes due to mining activities in the Darling Range, Western Australia: A Visual Analytics Approach. Ore Geol. Rev. 2019, 108, 23–32. [Google Scholar] [CrossRef]
- Krause, R.D.; Synman, L.G. Rehabilitation and mine closure liability: An assessment of accountability of the systems to communities. In Proceedings of the 9th International Conference of Mine Closure, Sandton, Johannesburg, South Africa, 1–3 October 2014. [Google Scholar]
- Lechner, A.M.; Baumgartl, T.; Matthew, P. The impact of underground longwall mining on prime agricultural land: A review and research agenda. Land Degrad. Dev. 2016, 27, 1650–1663. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dlamini, L.Z.D.; Xulu, S. Monitoring Mining Disturbance and Restoration over RBM Site in South Africa Using LandTrendr Algorithm and Landsat Data. Sustainability 2019, 11, 6916. https://doi.org/10.3390/su11246916
Dlamini LZD, Xulu S. Monitoring Mining Disturbance and Restoration over RBM Site in South Africa Using LandTrendr Algorithm and Landsat Data. Sustainability. 2019; 11(24):6916. https://doi.org/10.3390/su11246916
Chicago/Turabian StyleDlamini, Lubanzi Z. D., and Sifiso Xulu. 2019. "Monitoring Mining Disturbance and Restoration over RBM Site in South Africa Using LandTrendr Algorithm and Landsat Data" Sustainability 11, no. 24: 6916. https://doi.org/10.3390/su11246916
APA StyleDlamini, L. Z. D., & Xulu, S. (2019). Monitoring Mining Disturbance and Restoration over RBM Site in South Africa Using LandTrendr Algorithm and Landsat Data. Sustainability, 11(24), 6916. https://doi.org/10.3390/su11246916