Soil Properties Spatial Variability and Delineation of Site-Specific Management Zones Based on Soil Fertility Using Fuzzy Clustering in a Hilly Field in Jianyang, Sichuan, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Collection and Analysis of Soil Samples
2.3. Descriptive Statistics
2.4. Geostatistical Analysis
2.5. Principal Component Analysis
2.6. Fuzzy k-Means Clustering Algorithm
3. Results and Discussion
3.1. Variability of Soil Properties
3.2. Correlations Between Soil Properties
3.3. Soil Properties Spatial Distribution
3.4. Principal Component Analysis
3.5. Management Zones Delineation Using Clustering Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Safari, A.; Kavian, A.; Parsakhoo, A.; Saleh, I.; Jordán, A. Impact of different parts of skid trails on runoff and soil erosion in the Hyrcanian forest (northern Iran). Geoderma 2016, 263, 161–167. [Google Scholar] [CrossRef]
- Onojeghuo, A.O.; Blackburn, G.A.; Huang, J.; Kindred, D.; Huang, W. Applications of satellite ‘hyper-sensing’in Chinese agriculture: Challenges and opportunities. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 62–86. [Google Scholar] [CrossRef] [Green Version]
- Seutloali, K.E.; Beckedahl, H.R. Understanding the factors influencing rill erosion on roadcuts in the south eastern region of South Africa. Solid Earth 2015, 6, 633–641. [Google Scholar] [CrossRef] [Green Version]
- Borrelli, P.; Märker, M.; Schütt, B. Modelling post-tree-harvesting soil erosion and sediment deposition potential in the Turano River Basin (Italian Central Apennine). Land Degrad. Dev. 2015, 26, 356–366. [Google Scholar] [CrossRef]
- Taguas, E.; Guzmán, E.; Guzmán, G.; Vanwalleghem, T.; Gómez, J. Characteristics and importance of rill and gully erosion: A case study in a small catchment of a marginal olive grove. Cuad. De Investig. Geogr. 2015, 41, 107–126. [Google Scholar] [CrossRef] [Green Version]
- Rodrigo-Comino, J.; Seeger, M.; Senciales, J.; Ruiz-Sinoga, J.; Ries, J. Spatial and temporal variation of soil hydrological processes on steep slope vineyards (Ruwel-Mosel Valley, Gemany). Cuad. De Investig. Geogr. 2016, 42, 281–306. [Google Scholar] [CrossRef] [Green Version]
- Muñoz-Rojas, M.; Erickson, T.E.; Dixon, K.W.; Merritt, D.J. Soil quality indicators to assess functionality of restored soils in degraded semiarid ecosystems. Restor. Ecol. 2016, 24, S43–S52. [Google Scholar] [CrossRef]
- Ge, F.; Zhang, J.; Su, Z.; Nie, X. Response of changes in soil nutrients to soil erosion on a purple soil of cultivated sloping land. Acta Ecol. Sin. 2007, 27, 459–463. [Google Scholar] [CrossRef]
- Fitter, A.; Gilligan, C.; Hollingworth, K.; Kleczkowski, A.; Twyman, R.; Pitchford, J. Biodiversity and ecosystem function in soil. Funct. Ecol. 2005, 19, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Thapa, G.; Yila, O.M. Farmers’ land management practices and status of agricultural land in the Jos Plateau, Nigeria. Land Degrad. Dev. 2012, 23, 263–277. [Google Scholar] [CrossRef]
- Zhao, G.; Mu, X.; Wen, Z.; Wang, F.; Gao, P. Soil erosion, conservation, and eco-environment changes in the Loess Plateau of China. Land Degrad. Dev. 2013, 24, 499–510. [Google Scholar] [CrossRef]
- Davatgar, N.; Neishabouri, M.; Sepaskhah, A. Delineation of site specific nutrient management zones for a paddy cultivated area based on soil fertility using fuzzy clustering. Geoderma 2012, 173, 111–118. [Google Scholar] [CrossRef]
- Ferguson, R.B.; Hergert, G.W.; Schepers, J.; Gotway, C.; Cahoon, J.; Peterson, T. Site-specific nitrogen management of irrigated maize: Yield and soil residual nitrate effects. Soil Sci. Soc. Am. J. 2002, 66, 544–553. [Google Scholar] [CrossRef]
- Abd-Elmabod, S.K.; Ali, R.R.; Anaya-Romero, M.; de la Rosa, D. Evaluating soil contamination risks by using MicroLEIS DSS in El-Fayoum Province, Egypt. In Proceedings of the 2010 2nd International Conference on Chemical, Biological and Environmental Engineering, Cairo, Egypt, 2–4 November 2010; pp. 1–5. [Google Scholar]
- Mansour, H.A.; Abd-Elmabod, S.K.; Engel, B. Adaptation of modeling to the irrigation system and water management for corn growth and yield. Plant Arch. 2019, 19, 644–651. [Google Scholar]
- Far, S.T.; Rezaei-Moghaddam, K. Impacts of the precision agricultural technologies in Iran: An analysis experts’ perception & their determinants. Inf. Process. Agric. 2018, 5, 173–184. [Google Scholar]
- Oliver, M.E.A. An overview of precision agriculture. In Precision Agriculture for Sustainability and Environmental Protection; Routledge: Abingdon, UK, 2013; pp. 21–37. [Google Scholar]
- Buttafuoco, G.; Castrignanò, A.; Cucci, G.; Lacolla, G.; Lucà, F. Geostatistical modelling of within-field soil and yield variability for management zones delineation: A case study in a durum wheat field. Precis. Agric. 2017, 18, 37–58. [Google Scholar] [CrossRef]
- Mansour, H.A.; Jiandong, H.; Hongjuan, R.; Kheiry, A.N.; Abd-Elmabod, S.K. Influence of using automatic irrigation system and organic fertilizer treatments on faba bean water productivity. Int. J. 2019, 17, 250–259. [Google Scholar] [CrossRef]
- Castrignanò, A.; Buttafuoco, G.; Quarto, R.; Parisi, D.; Rossel, R.V.; Terribile, F.; Langella, G.; Venezia, A. A geostatistical sensor data fusion approach for delineating homogeneous management zones in Precision Agriculture. Catena 2018, 167, 293–304. [Google Scholar] [CrossRef]
- Mueller, T.; Hartsock, N.; Stombaugh, T.; Shearer, S.; Cornelius, P.; Barnhisel, R. Soil electrical conductivity map variability in limestone soils overlain by loess. Agron. J. 2003, 95, 496–507. [Google Scholar] [CrossRef]
- Saito, H.; McKenna, S.A.; Zimmerman, D.; Coburn, T.C. Geostatistical interpolation of object counts collected from multiple strip transects: Ordinary kriging versus finite domain kriging. Stoch. Environ. Res. Risk Assess. 2005, 19, 71–85. [Google Scholar] [CrossRef]
- Shaddad, S.M. Geostatistics and Proximal Soil Sensing for Sustainable Agriculture. In Sustainability of Agricultural Environment in Egypt: Part I; Springer: Chim, Switzerland, 2018; pp. 255–271. [Google Scholar]
- Brevik, E.C.; Calzolari, C.; Miller, B.A.; Pereira, P.; Kabala, C.; Baumgarten, A.; Jordán, A. Soil mapping, classification, and pedologic modeling: History and future directions. Geoderma 2016, 264, 256–274. [Google Scholar] [CrossRef]
- Bogunovic, I.; Pereira, P.; Brevik, E.C. Spatial distribution of soil chemical properties in an organic farm in Croatia. Sci. Total Environ. 2017, 584, 535–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shukla, A.K.; Sinha, N.K.; Tiwari, P.K.; Prakash, C.; Behera, S.K.; Lenka, N.K.; Singh, V.K.; Dwivedi, B.S.; Majumdar, K.; Kumar, A. Spatial distribution and management zones for sulphur and micronutrients in Shiwalik Himalayan Region of India. Land Degrad. Dev. 2017, 28, 959–969. [Google Scholar] [CrossRef]
- Abd-Elmabod, S.K.; Fitch, A.C.; Zhang, Z.; Ali, R.R.; Jones, L. Rapid urbanisation threatens fertile agricultural land and soil carbon in the Nile delta. J. Environ. Manag. 2019, 252, 109668. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elmabod, S.K.; Jordán, A.; Fleskens, L.; Phillips, J.D.; Muñoz-Rojas, M.; van der Ploeg, M.; Anaya-Romero, M.; El-Ashry, S.; de la Rosa, D. Modeling agricultural suitability along soil transects under current conditions and improved scenario of soil factors. In Soil Mapping and Process Modeling for Sustainable Land Use Management; Elsevier: Amsterdam, The Netherland, 2017; pp. 193–219. [Google Scholar]
- Abd-Elmabod, S.K.; Bakr, N.; Muñoz-Rojas, M.; Pereira, P.; Zhang, Z.; Cerdà, A.; Jordán, A.; Mansour, H.; De la Rosa, D.; Jones, L. Assessment of soil suitability for improvement of soil factors and agricultural management. Sustainability 2019, 11, 1588. [Google Scholar] [CrossRef] [Green Version]
- Yao, R.-J.; Yang, J.-S.; Zhang, T.-J.; Gao, P.; Wang, X.-P.; Hong, L.-Z.; Wang, M.-W. Determination of site-specific management zones using soil physico-chemical properties and crop yields in coastal reclaimed farmland. Geoderma 2014, 232, 381–393. [Google Scholar] [CrossRef]
- Ferguson, R.; Lark, R.; Slater, G. Approaches to management zone definition for use of nitrification inhibitors. Soil Sci. Soc. Am. J. 2003, 67, 937–947. [Google Scholar] [CrossRef]
- Khosla, R.; Shaver, T. Zoning in on nitrogen needs. Colo. State Univ. Agron. Newsl. 2001, 21, 24–26. [Google Scholar]
- Khosla, R.; Alley, M. Soil-specific nitrogen management on mid-Atlantic coastal plain soils. Better Crops 1999, 83, 6–7. [Google Scholar]
- Fleming, K.; Westfall, D.; Wiens, D.; Brodahl, M. Evaluating farmer defined management zone maps for variable rate fertilizer application. Precis. Agric. 2000, 2, 201–215. [Google Scholar] [CrossRef]
- Mzuku, M.; Khosla, R.; Reich, R.; Inman, D.; Smith, F.; MacDonald, L. Spatial variability of measured soil properties across site-specific management zones. Soil Sci. Soc. Am. J. 2005, 69, 1572–1579. [Google Scholar] [CrossRef] [Green Version]
- Nawar, S.; Corstanje, R.; Halcro, G.; Mulla, D.; Mouazen, A.M. Delineation of soil management zones for variable-rate fertilization: A review. In Advances in Agronomy; Elsevier: San Diego, CA, USA, 2017; Volume 143, pp. 175–245. [Google Scholar]
- Behera, S.K.; Mathur, R.K.; Shukla, A.K.; Suresh, K.; Prakash, C. Spatial variability of soil properties and delineation of soil management zones of oil palm plantations grown in a hot and humid tropical region of southern India. Catena 2018, 165, 251–259. [Google Scholar] [CrossRef]
- Mallarino, A.; Oyarzabal, E.; Hinz, P. Interpreting within-field relationships between crop yields and soil and plant variables using factor analysis. Precis. Agric. 1999, 1, 15–25. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: Oxford, NY, USA, 1997. [Google Scholar]
- Li, Y.; Shi, Z.; Li, F.; Li, H.-Y. Delineation of site-specific management zones using fuzzy clustering analysis in a coastal saline land. Comput. Electron. Agric. 2007, 56, 174–186. [Google Scholar] [CrossRef]
- Tisdale, S.L.; Nelson, W.L.; Beaton, J.D. Soil Fertility and Fertilizers; Collier Macmillan Publishers: London, UK, 1985. [Google Scholar]
- Chapin, F.S. Effects of plant traits on ecosystem and regional processes: A conceptual framework for predicting the consequences of global change. Ann. Bot. 2003, 91, 455–463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiménez, J.J.; Lorenz, K.; Lal, R. Organic carbon and nitrogen in soil particle-size aggregates under dry tropical forests from Guanacaste, Costa Rica—Implications for within-site soil organic carbon stabilization. Catena 2011, 86, 178–191. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.P.; Shao, M.A.; Wang, Y.Q. Spatial patterns of soil total nitrogen and soil total phosphorus across the entire Loess Plateau region of China. Geoderma 2013, 197, 67–78. [Google Scholar] [CrossRef]
- Gao, Y.; He, N.; Yu, G.; Chen, W.; Wang, Q. Long-term effects of different land use types on C, N, and P stoichiometry and storage in subtropical ecosystems: A case study in China. Ecol. Eng. 2014, 67, 171–181. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [Green Version]
- IPCC. The physical science basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, UK; Cambridge University Press: Cambridge, UK, 2007; pp. 337–383. [Google Scholar]
- Sardans, J.; Peñuelas, J. The role of plants in the effects of global change on nutrient availability and stoichiometry in the plant-soil system. Plant Physiol. 2012, 160, 1741–1761. [Google Scholar] [CrossRef] [Green Version]
- Paul, E.A. Soil Microbiology, Ecology and Biochemistry; Academic press: London/Oxford, UK; San Diego, CA/Waltham, MA, USA, 2014. [Google Scholar]
- Bui, E.N.; Henderson, B.L. C: N: P stoichiometry in Australian soils with respect to vegetation and environmental factors. Plant Soil 2013, 373, 553–568. [Google Scholar] [CrossRef]
- Peñuelas, J.; Sardans, J.; Rivas-ubach, A.; Janssens, I.A. The human-induced imbalance between C, N and P in Earth’s life system. Glob. Chang. Biol. 2012, 18, 3–6. [Google Scholar] [CrossRef]
- Tian, H.; Chen, G.; Zhang, C.; Melillo, J.M.; Hall, C.A. Pattern and variation of C: N: P ratios in China’s soils: A synthesis of observational data. Biogeochemistry 2010, 98, 139–151. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Indian, Ed.; Prentice Hall of India: New Delhi, India, 1973. [Google Scholar]
- Walkley, A.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Bremner, J. Determination of nitrogen in soil by the Kjeldahl method. J. Agric. Sci. 1960, 55, 11–33. [Google Scholar] [CrossRef]
- Alexander, T.; Robertson, A. Ascorbic acid as a reductant for total phosphorus determination in soils. Can. J. Soil Sci. 1968, 48, 217–218. [Google Scholar] [CrossRef]
- Chapman, H.D.; Pratt, P.F. Methods of analysis for soils, plants and waters. Soil Sci. 1962, 93, 68. [Google Scholar] [CrossRef] [Green Version]
- Olsen, S.R. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Dep. Agric. Circ. 1954, 939, 1–19. [Google Scholar]
- Piper, C.S. Soil and plant analysis: A laboratory manual of methods for the examination of soils and the determination of the inorganic constituents of plants; Hans Publishers: Bombay, India, 1966. [Google Scholar]
- Gee, G.W.; Bauder, J.W. Particle size analysis. In Methods of Soil Analysis: Part I, 2nd ed.; Klute, A., Ed.; Soil Science Society of America, American Society of Agronomy: Madison, WI, USA, 1986; Volume 9, pp. 383–411. [Google Scholar]
- Goovaerts, P. Geostatistical tools for characterizing the spatial variability of microbiological and physico-chemical soil properties. Biol. Fertil. Soils 1998, 27, 315–334. [Google Scholar] [CrossRef] [Green Version]
- Meul, M.; Van Meirvenne, M. Kriging soil texture under different types of nonstationarity. Geoderma 2003, 112, 217–233. [Google Scholar] [CrossRef]
- Triantafilis, J.; Odeh, I.; McBratney, A. Five geostatistical models to predict soil salinity from electromagnetic induction data across irrigated cotton. Soil Sci. Soc. Am. J. 2001, 65, 869–878. [Google Scholar] [CrossRef]
- Schepers, A.R.; Shanahan, J.F.; Liebig, M.A.; Schepers, J.S.; Johnson, S.H.; Luchiari, A. Appropriateness of management zones for characterizing spatial variability of soil properties and irrigated corn yields across years. Agron. J. 2004, 96, 195–203. [Google Scholar] [CrossRef] [Green Version]
- Minasny, B.; McBratney, A.B. A conditioned Latin hypercube method for sampling in the presence of ancillary information. Comput. Geosci. 2006, 32, 1378–1388. [Google Scholar] [CrossRef]
- Grunwald, S.; Osborne, T.; Reddy, K. Temporal trajectories of phosphorus and pedo-patterns mapped in Water Conservation Area 2, Everglades, Florida, USA. Geoderma 2008, 146, 1–13. [Google Scholar] [CrossRef]
- Boydell, B.; McBratney, A. Identifying potential within-field management zones from cotton-yield estimates. Precis. Agric. 2002, 3, 9–23. [Google Scholar] [CrossRef]
- Soil Survey Office of China. China Soil Survey Technique; Agricultural Press: Beijing, China, 1992. (In Chinese) [Google Scholar]
- Zhao, F.; Sun, J.; Ren, C.; Kang, D.; Deng, J.; Han, X.; Yang, G.; Feng, Y.; Ren, G. Land use change influences soil C, N, and P stoichiometry under ‘Grain-to-Green Program’in China. Sci. Rep. 2015, 5, 10195. [Google Scholar]
- Wang, X.; Ma, X.; Yan, Y. Effects of soil C: N: P stoichiometry on biomass allocation in the alpine and arid steppe systems. Ecol. Evol. 2017, 7, 1354–1362. [Google Scholar] [CrossRef]
- Wang, X.Z.; Liu, G.S.; Hu, H.C.; Wang, Z.H.; Liu, Q.H.; Liu, X.F.; Hao, W.H.; Li, Y.T. Determination of management zones for a tobacco field based on soil fertility. Comput. Electron. Agric. 2009, 65, 168–175. [Google Scholar]
- Karaman, M.; Ersahin, S.; Durak, A. Spatial variability of available phosphorus and site specific P fertilizer recommendations in a wheat field. In Plant Nutrition; Springer: Dordrecht, The Netherlands, 2001; pp. 876–877. [Google Scholar]
- Jakobsen, B.H. Soil spatial variability: Proceedings of a workshop of the ISSS and the SSSA Las Vegas, USA 30 november-1 december 1984/DR Nielsen and J. Bouma (Eds.). Geogr. Tidsskr. 1985. Available online: https://tidsskrift.dk/geografisktidsskrift/article/view/44191 (accessed on 16 October 2019).
- Ouyang, S.; Xiang, W.; Gou, M.; Lei, P.; Chen, L.; Deng, X. Variations in soil carbon, nitrogen, phosphorus and stoichiometry along forest succession in southern China. Phys. Chem. Earth 2018, 103, 28–34. [Google Scholar] [CrossRef] [Green Version]
- López-Granados, F.; Jurado-Expósito, M.; Atenciano, S.; García-Ferrer, A.; de la Orden, M.S.; García-Torres, L. Spatial variability of agricultural soil parameters in southern Spain. Plant Soil 2002, 246, 97–105. [Google Scholar] [CrossRef]
- Liu, G.; Wang, X.; Zhang, Z.; Zhang, C. Spatial variability of soil properties in a tobacco field of central China. Soil Sci. 2008, 173, 659–667. [Google Scholar]
- Jiang, H.; Liu, G.; Wang, X.; Song, W.; Zhang, R.; Zhang, R.; Hu, H.; Li, L. Delineation of site-specific management zones based on soil properties for a hillside field in central China. Arch. Agron. Soil Sci. 2012, 58, 1075–1090. [Google Scholar] [CrossRef]
- Cambardella, C.A.; Moorman, T.B.; Parkin, T.; Karlen, D.; Novak, J.; Turco, R.; Konopka, A. Field-scale variability of soil properties in central Iowa soils. Soil Sci. Soc. Am. J. 1994, 58, 1501–1511. [Google Scholar] [CrossRef]
- Kerry, R.; Oliver, M. Average variograms to guide soil sampling. Int. J. Appl. Earth Obs. Geoinf. 2004, 5, 307–325. [Google Scholar] [CrossRef]
- Shaddad, S.; Buttafuoco, G.; Elrys, A.; Castrignanò, A. Site-specific management of salt affected soils: A case study from Egypt. Sci. Total Environ. 2019, 688, 153–161. [Google Scholar] [CrossRef]
- Sharma, S. Applied Multivariate Techniques; Wiley: New York, NY, USA, 1996. [Google Scholar]
- Fridgen, J.J.; Kitchen, N.R.; Sudduth, K.A.; Drummond, S.T.; Wiebold, W.J.; Fraisse, C.W. Management zone analyst (MZA): Software for subfield management zone delineation. Agron. J. 2004, 96, 100–108. [Google Scholar] [CrossRef]
- Tripathi, R.; Nayak, A.; Shahid, M.; Lal, B.; Gautam, P.; Raja, R.; Mohanty, S.; Kumar, A.; Panda, B.; Sahoo, R. Delineation of soil management zones for a rice cultivated area in eastern India using fuzzy clustering. Catena 2015, 133, 128–136. [Google Scholar] [CrossRef]
Parameter * | Minimum | Maximum | Mean | Median | SD | Skewness | Kurtosis | CV (%) |
---|---|---|---|---|---|---|---|---|
AN | 13.13 | 49.88 | 35.42 | 35.88 | 7.28 | −0.49 | 0.28 | 20.55 |
AK | 100.00 | 210.00 | 147.10 | 145.00 | 22.80 | 0.50 | 0.39 | 15.50 |
AP | 5.80 | 38.29 | 17.02 | 15.71 | 7.79 | 1.13 | 0.91 | 45.75 |
pH | 7.85 | 8.31 | 8.13 | 8.13 | 0.09 | −0.33 | 0.24 | 1.13 |
TP | 0.54 | 1.11 | 0.83 | 0.82 | 0.13 | 0.16 | −0.59 | 15.59 |
TN | 0.62 | 1.43 | 0.98 | 0.98 | 0.17 | 0.19 | 0.10 | 16.92 |
SOC | 4.41 | 14.47 | 9.58 | 9.68 | 2.22 | −0.26 | −0.46 | 23.20 |
CN | 4.28 | 14.83 | 9.83 | 9.86 | 1.89 | −0.38 | 0.64 | 19.27 |
CP | 4.46 | 20.48 | 11.65 | 11.82 | 2.80 | 0.08 | 1.00 | 24.00 |
NP | 0.77 | 1.68 | 1.19 | 1.16 | 0.18 | 0.43 | 0.07 | 15.50 |
. | AN | AK | AP | pH | TP | TN | SOC | CN | CP | NP |
---|---|---|---|---|---|---|---|---|---|---|
AN | 1.000 | |||||||||
AK | 0.376 ** | 1.000 | ||||||||
AP | 0.109 | 0.450 ** | 1.000 | |||||||
pH | −0.271 ** | −0.427 ** | −0.399 ** | 1.000 | ||||||
TP | 0.500 ** | 0.372 ** | 0.372 ** | −0.283 ** | 1.000 | |||||
TN | 0.546 ** | 0.536 ** | 0.342 ** | −0.311 ** | 0.562 ** | 1.000 | ||||
SOC | 0.357 ** | 0.193 | 0.238 * | −0.147 | 0.274 ** | 0.572 ** | 1.000 | |||
CN | −0.026 | −0.207 * | −0.021 | 0.087 | −0.164 | −0.167 | 0.705 ** | 1.000 | ||
CP | 0.025 | −0.043 | −0.030 | 0.035 | −0.380 ** | 0.185 | 0.768 ** | 0.770 ** | 1.000 | |
NP | 0.106 | 0.206 * | −0.026 | −0.047 | −0.398 ** | 0.520 ** | 0.336 ** | −0.030 | 0.600 ** | 1.000 |
Variable | Model | Nugget | Partial Sill | Sill | Nugget/Sill | SDC | Range (m) | ME | MSSE |
---|---|---|---|---|---|---|---|---|---|
SOC | Stable | 3.950 | 3.050 | 7.000 | 0.5643 | Moderate | 679.4 | −0.013 | 1.046 |
TN | Spherical | 0.021 | 0.008 | 0.029 | 0.7241 | Moderate | 278.2 | −0.004 | 1.003 |
TP | Stable | 0.015 | 0.001 | 0.016 | 0.9375 | Weak | 134.0 | 0.001 | 1.019 |
pH | Spherical | 0.007 | 0.001 | 0.008 | 0.8750 | Weak | 679.4 | 0.003 | 1.064 |
AP | Spherical | 0.158 | 0.057 | 0.215 | 0.7349 | Moderate | 289.3 | −0.066 | 1.031 |
AN | Stable | 0.000 | 49.620 | 49.620 | 0.0000 | Strong | 116.1 | −0.008 | 1.027 |
AK | Spherical | 202.500 | 292.870 | 495.370 | 0.4088 | Moderate | 48.7 | −0.691 | 1.056 |
NP | Spherical | 0.030 | 0.003 | 0.033 | 0.9091 | Weak | 138.0 | 0.030 | 1.135 |
CP | Spherical | 6.476 | 2.825 | 9.301 | 0.6963 | Moderate | 679.4 | −0.031 | 1.111 |
CN | Spherical | 2.879 | 1.350 | 4.229 | 0.6808 | Moderate | 600.0 | −0.009 | 1.026 |
Principal Component | Eigen Values | Component Loading (%) | Cumulative Loading (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 3.328 | 33.285 | 33.285 | |||||||
2 | 2.686 | 26.864 | 60.149 | |||||||
3 | 1.384 | 13.842 | 73.991 | |||||||
4 | 1.045 | 10.450 | 84.441 | |||||||
5 | 0.677 | 6.771 | 91.212 | |||||||
6 | 0.476 | 4.762 | 95.974 | |||||||
7 | 0.373 | 3.729 | 99.703 | |||||||
8 | 0.018 | 0.182 | 99.885 | |||||||
9 | 0.007 | 0.073 | 99.957 | |||||||
10 | 0.004 | 0.043 | 100.000 | |||||||
Principal component loading for each variable | ||||||||||
AN | AK | AP | pH | TP | TN | SOC | C:N ratio | C:P ratio | N:P ratio | |
PC1 | 0.651 | 0.670 | 0.532 | −0.518 | 0.560 | 0.874 | 0.735 | 0.139 | 0.346 | 0.386 |
PC2 | −0.185 | −0.337 | −0.267 | 0.287 | −0.573 | −0.096 | 0.580 | 0.786 | 0.929 | 0.481 |
PC3 | 0.073 | −0.226 | 0.170 | 0.005 | 0.459 | −0.262 | 0.299 | 0.571 | −0.032 | −0.776 |
PC4 | 0.500 | −0.221 | −0.602 | 0.477 | 0.268 | 0.244 | 0.085 | −0.104 | −0.085 | 0.019 |
Management Zones | No. of Points | AN | AK | AP | pH | TP | TN | SOC | C:N Ratio | C:P Ratio | N:P Ratio |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 31 | 39.36 a | 155.65 a | 15.31 b | 8.11 ab | 0.84 a | 1.09 a | 9.03 b | 8.23 c | 10.98 b | 1.32 a |
2 | 44 | 36.64 a | 141.77 b | 15.37 b | 8.15 a | 0.85 a | 0.96 b | 10.66 a | 11.09 a | 12.63a | 1.14 b |
3 | 25 | 28.39 b | 145.88 ab | 22.04 a | 8.09 b | 0.79 a | 0.87 c | 8.37 b | 9.57 b | 10.74 b | 1.11 b |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Metwally, M.S.; Shaddad, S.M.; Liu, M.; Yao, R.-J.; Abdo, A.I.; Li, P.; Jiao, J.; Chen, X. Soil Properties Spatial Variability and Delineation of Site-Specific Management Zones Based on Soil Fertility Using Fuzzy Clustering in a Hilly Field in Jianyang, Sichuan, China. Sustainability 2019, 11, 7084. https://doi.org/10.3390/su11247084
Metwally MS, Shaddad SM, Liu M, Yao R-J, Abdo AI, Li P, Jiao J, Chen X. Soil Properties Spatial Variability and Delineation of Site-Specific Management Zones Based on Soil Fertility Using Fuzzy Clustering in a Hilly Field in Jianyang, Sichuan, China. Sustainability. 2019; 11(24):7084. https://doi.org/10.3390/su11247084
Chicago/Turabian StyleMetwally, Mohamed S., Sameh M. Shaddad, Manqiang Liu, Rong-Jiang Yao, Ahmed I. Abdo, Peng Li, Jiaoguo Jiao, and Xiaoyun Chen. 2019. "Soil Properties Spatial Variability and Delineation of Site-Specific Management Zones Based on Soil Fertility Using Fuzzy Clustering in a Hilly Field in Jianyang, Sichuan, China" Sustainability 11, no. 24: 7084. https://doi.org/10.3390/su11247084
APA StyleMetwally, M. S., Shaddad, S. M., Liu, M., Yao, R. -J., Abdo, A. I., Li, P., Jiao, J., & Chen, X. (2019). Soil Properties Spatial Variability and Delineation of Site-Specific Management Zones Based on Soil Fertility Using Fuzzy Clustering in a Hilly Field in Jianyang, Sichuan, China. Sustainability, 11(24), 7084. https://doi.org/10.3390/su11247084