Prediction of Technological Change under Shared Socioeconomic Pathways and Regional Differences: A Case Study of Irrigation Water Use Efficiency Changes in Chinese Provinces
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Methodology and Data for Hydro-Economic Classification
2.2.1. Conceptual Approach and Overview
- (1)
- Economic–institutional coping capacity (y-dimension): This represents the regional economic and institutional capacity to deal with water challenges. It also represents the social adaptability of a region, that is, the amount of social resources available for a region to adapt to the scarcity of natural resources. For example, Israel is short of water resources (per capita water resources are 389 m3), but it can maintain a developed modern society with a per capita gross domestic product of over 10,000 U.S. dollars because of its strong economic capacity and social adaptability [67].
- (2)
- Hydro-climatic complexity (x-dimension): This represents the magnitude/complexity of water challenges in terms of water availability and variability within and across years in a region. The hydrological system is an open, dynamic, and nonlinear complex system, which is influenced by multiple factors, such as climate, hydrometeorology, physiography, and human activity, and its long-run evolution involves both certainty and uncertainty [68]. Therefore, a region’s water challenges are dynamic and variable, with the relative location of a region in the HE quadrant tending to shift over time.
- (3)
- Hydro-economic quadrant: A two-dimensional hydro-economic quadrant space is divided into four parts. Taking the provincial scale as an example, provinces in the HE-1 quadrant (water secure, poor) are at a low-to-middle income level and face moderate hydrological challenges; provinces in the HE-2 quadrant (water secure, rich) are at a middle-to-high income level and face moderate hydrological challenges; provinces in the HE-3 quadrant (water stressed, rich) are at a middle-to-high income level and face substantial hydrological challenges; and provinces in the HE-4 quadrant (water stressed, poor) are at a low-to-middle income level and face substantial hydrological challenges.
2.2.2. Methodology for Indicator Calculation
- (1)
- For each indicator variable, five classes are defined by a relevant scale (with linear or logarithmic scales determined as appropriate), and the initial index value of each class is converted into the corresponding normalized interval [0, 0.2], [0.2, 0.4],…, [0.8, 1].
- (2)
- Then, we map each initial index/variable of = 1,..., , to the standardized index value by the following:
- determining the range of the initial index value for a province, ∈ [, ], and
- calculating the standardized index value according to the following formula:
- (3)
- Following the World Resources Institute’s aqueduct approach [69], an appropriate weight is set for each subindex in a nonlinear way according to the perceived importance of several classes. We selected the following weight scale:Weight: 1 = Very Low; 2 = Low; 4 = Medium; 8 = High; 16 = Very high.
2.3. A Water Use Scenario under SSPs Framework
2.4. Conditional Convergence Model
- (1)
- The efficiency level in a specific region gradually converges to the optimum.
- (2)
- There are two modes of technological development, namely technological transmission in advanced regions and technological catch-up in backward regions.
- (3)
- In the same period of time, the speed of improvement in the region with advanced technology is slower than that in the region with backward technology.
3. Scenario Determination and HE Evaluation
3.1. Scenario and Parameter Setting Under the SSPs–HE Framework
3.2. HE Classification Evaluation
4. Simulation and Results Analysis
4.1. Prediction of the Irrigation Water Use Efficiency of Each Province
4.2. Analysis for Typical HE Provinces
5. Conclusions and Suggestions
Author Contributions
Funding
Conflicts of Interest
References
- Nordhaus, W.D. Managing the Global Commons: The Economics of Climate Change; The MIT Press: Cambridge, MA, USA, 1994. [Google Scholar]
- Nordhaus, W.D. Projections and uncertainties about climate change in an era of minimal climate policies. Am. Econ. J. Econ. Policy 2018, 10, 333–360. [Google Scholar] [CrossRef] [Green Version]
- Romer, P.M. Increasing returns and long run growth. J. Political Econ. 1986, 94, 1002–1037. [Google Scholar] [CrossRef] [Green Version]
- Romer, P.M. Endogenous technological change. J. Political Econ. 1990, 98, S71–S102. [Google Scholar] [CrossRef] [Green Version]
- Cosgrove, W.J.; Loucks, D.P. Water management: Current and future challenges and research directions. Water Resour. Res. 2015, 51, 4823–4839. [Google Scholar] [CrossRef] [Green Version]
- Song, M.; Wang, R.; Zeng, X. Water resources utilization efficiency and influence factors under environmental restrictions. J. Clean. Prod. 2018, 184, 611–621. [Google Scholar] [CrossRef]
- Velasco-Muñoz, F.J.; Aznar-Sánchez, A.J.; Batlles-delaFuente, A.; Fidelibus, D.M. Sustainable Irrigation in Agriculture: An Analysis of Global Research. Water 2019, 11, 1758. [Google Scholar] [CrossRef] [Green Version]
- Velasco Muñoz, J.; Aznar-Sánchez, J.A.; Batlles de la Fuente, A.; Fidelibus, M. Rainwater Harvesting for Agricultural Irrigation: An Analysis of Global Research. Water 2019, 11, 1320. [Google Scholar] [CrossRef] [Green Version]
- Mbava, N.; Mutema, M.; Zengeni, R.; Shimelis, H.; Chaplot, V. Factors affecting crop water use efficiency: A worldwide meta-analysis. Agric. Water Manag. 2020, 228, 105878. [Google Scholar] [CrossRef]
- Abramovitz, M. Catching up, forging ahead, and falling behind. J. Econ. Hist. 1986, 46, 385–406. [Google Scholar] [CrossRef]
- Arrow, K.J. The economic implications of learning by doing. Rev. Econ. Stud. 1962, 29, 155–173. [Google Scholar] [CrossRef]
- Young, A. Learning by doing and the dynamic effects of international trade. Q. J. Econ. 1991, 106, 369–405. [Google Scholar] [CrossRef] [Green Version]
- Keller, W. Geographic Localization of International Technology Diffusion; NBER: Cambridge, MA, USA, 2000. [Google Scholar]
- Keller, W. International Technology Diffusion; NBER: Cambridge, MA, USA, 2001. [Google Scholar]
- Krugman, P. A model of innovation, technology transfer, and the world distribution of income. J. Political Econ. 1979, 87, 253–266. [Google Scholar] [CrossRef]
- LeSage, J.P.; Fischer, M.M. Estimates of the impact of static and dynamic knowledge spillovers on regional factor productivity. Int. Reg. Sci. Rev. 2012, 35, 103–127. [Google Scholar] [CrossRef]
- Barro, R.J. Convergence and modernisation. Econ. J. 2015, 125, 911–942. [Google Scholar] [CrossRef]
- Barro, R.J.; Sala-i-Martin, X. Economic Growth, Second Edition ed.; The MIT Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Coe, D.T.; Helpman, E.; Hoffmaister, A.W. North-south R&D spillovers. Econ. J. 1997, 107, 134–149. [Google Scholar]
- Romer, P.M. Crazy explanations for productivity slowdown. NBER Macroecon. Ann. 1987, 2, 163–202. [Google Scholar] [CrossRef] [Green Version]
- Molden, D.; de Fraiture, C. Major paths to increasing the productivity of irrigation water. In World Water Supply and Demand: 1995–2025; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2000; pp. 41–50. [Google Scholar]
- Purcell, B.; Associates Pty Ltd. Determining a Framework, Terms and Definitions for Water Use Efficiency in Irrigation; Land and Water Resources Research and Development Corporation: Canberra, Australia, 1999. [Google Scholar]
- Kang, W.; Kang, S. On the use of alternative water use efficiency parameters in dryland ecosystems: A review. J. Ecol. Environ. 2019, 43, 24. [Google Scholar] [CrossRef]
- Velasco-Muñoz, F.J.; Aznar-Sánchez, A.J.; Belmonte-Ureña, J.L.; López-Serrano, J.M. Advances in Water Use Efficiency in Agriculture: A Bibliometric Analysis. Water 2018, 10, 377. [Google Scholar] [CrossRef] [Green Version]
- Sharma, B.; Molden, D.; Cook, S. Water Use Efficiency in Agriculture: Measurement, Current Situation and Trends; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2015. [Google Scholar]
- Bobojonov, I.; Berg, E.; Franz-Vasdeki, J.; Martius, C.; Lamers, J.P.A. Income and irrigation water use efficiency under climate change: An application of spatial stochastic crop and water allocation model to Western Uzbekistan. Clim. Risk Manag. 2016, 13, 19–30. [Google Scholar] [CrossRef] [Green Version]
- Malek, K.; Adam, J.C.; Stöckle, C.O.; Peters, R.T. Climate change reduces water availability for agriculture by decreasing non-evaporative irrigation losses. J. Hydrol. 2018, 561, 444–460. [Google Scholar] [CrossRef]
- Mouratiadou, I.; Biewald, A.; Pehl, M.; Bonsch, M.; Baumstark, L.; Klein, D.; Popp, A.; Luderer, G.; Kriegler, E. The impact of climate change mitigation on water demand for energy and food: An integrated analysis based on the Shared Socioeconomic Pathways. Environ. Sci. Policy 2016, 64, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Pereira, H.; Marques, R.C. An analytical review of irrigation efficiency measured using deterministic and stochastic models. Agric. Water Manag. 2017, 184, 28–35. [Google Scholar] [CrossRef]
- Long, K.; Pijanowski, B. Is there a relationship between water scarcity and water use efficiency in China? A national decadal assessment across spatial scales. Land Use Policy 2017, 69, 502–511. [Google Scholar] [CrossRef]
- Du, Y.; Niu, W.; Gu, X.; Zhang, Q.; Cui, B.; Zhao, Y. Crop yield and water use efficiency under aerated irrigation: A meta-analysis. Agric. Water Manag. 2018, 210, 158–164. [Google Scholar] [CrossRef]
- Jensen, M.E. Beyond irrigation efficiency. Irrig. Sci. 2007, 25, 233–245. [Google Scholar] [CrossRef]
- Kifle, M.; Gebremicael, T.G.; Girmay, A.; Gebremedihin, T. Effect of surge flow and alternate irrigation on the irrigation efficiency and water productivity of onion in the semi-arid areas of North Ethiopia. Agric. Water Manag. 2017, 187, 69–76. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Q.; Yi, X.; Xiao, M. Study on the Horton fractal dimension with the irrigation canal system characteristics and effective utilization coefficient of irrigation water. Geogr. Res. 2014, 33, 789–800. [Google Scholar]
- Zhang, L.; Ma, Q.; Zhao, Y.; Wu, X.; Yu, W. Determining the influence of irrigation efficiency improvement on water use and consumption by conceptually considering hydrological pathways. Agric. Water Manag. 2019, 213, 674–681. [Google Scholar] [CrossRef]
- Berbel, J.; Gutiérrez-Martín, C.; Expósito, A. Impacts of irrigation efficiency improvement on water use, water consumption and response to water price at field level. Agric. Water Manag. 2018, 203, 423–429. [Google Scholar] [CrossRef]
- Grafton, R.Q.; Williams, J.; Perry, C.J.; Molle, F.; Ringler, C.; Steduto, P.; Udall, B.; Wheeler, S.A.; Wang, Y.; Garrick, D.; et al. The paradox of irrigation efficiency. Science 2018, 361, 748. [Google Scholar] [CrossRef] [Green Version]
- Ward, F.A. Economic impacts on irrigated agriculture of water conservation programs in drought. J. Hydrol. 2014, 508, 114–127. [Google Scholar] [CrossRef]
- Connolly, M.H.; Hagelman, R.R. Management implications of spatiotemporal non-stationarity in municipal water consumption patterns and drivers. Appl. Geogr. 2015, 65, 70–81. [Google Scholar] [CrossRef]
- Liu, H.; Li, H.; Ning, H.; Zhang, X.; Li, S.; Pang, J.; Wang, G.; Sun, J. Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato. Agric. Water Manag. 2019, 226, 105787. [Google Scholar] [CrossRef]
- Liu, X.; Shao, L.; Sun, H.; Chen, S.; Zhang, X. Responses of yield and water use efficiency to irrigation amount decided by pan evaporation for winter wheat. Agric. Water Manag. 2013, 129, 173–180. [Google Scholar] [CrossRef]
- Wang, D. Water use efficiency and optimal supplemental irrigation in a high yield wheat field. Field Crops Res. 2017, 213, 213–220. [Google Scholar] [CrossRef]
- Nazemi Rafi, Z.; Kazemi, F.; Tehranifar, A. Effects of various irrigation regimes on water use efficiency and visual quality of some ornamental herbaceous plants in the field. Agric. Water Manag. 2019, 212, 78–87. [Google Scholar] [CrossRef]
- Gorthi, A.; Volenec, J.J.; Welp, L.R. Stomatal response in soybean during drought improves leaf-scale and field-scale water use efficiencies. Agric. For. Meteorol. 2019, 276, 107629. [Google Scholar] [CrossRef]
- Liu, F.; Andersen, M.N.; Jensen, C.R. Capability of the ‘Ball-Berry’ model for predicting stomatal conductance and water use efficiency of potato leaves under different irrigation regimes. Sc. Hortic. 2009, 122, 346–354. [Google Scholar] [CrossRef]
- Misra, S.C.; Shinde, S.; Geerts, S.; Rao, V.S.; Monneveux, P. Can carbon isotope discrimination and ash content predict grain yield and water use efficiency in wheat? Agric. Water Manag. 2010, 97, 57–65. [Google Scholar] [CrossRef]
- Fischer, G.; Tubiello, F.N.; van Velthuizen, H.; Wiberg, D.A. Climate change impacts on irrigation water requirements: Effects of mitigation, 1990–2080. Technol. Forecast. Soc. Chang. 2007, 74, 1083–1107. [Google Scholar] [CrossRef] [Green Version]
- Hejazi, M.; Edmonds, J.; Clarke, L.; Kyle, P.; Davies, E.; Chaturvedi, V.; Wise, M.; Patel, P.; Eom, J.; Calvin, K.; et al. Long-term global water projections using six socioeconomic scenarios in an integrated assessment modeling framework. Technol. Forecast. Soc. Chang. 2014, 81, 205–226. [Google Scholar] [CrossRef]
- Multsch, S.; Elshamy, M.E.; Batarseh, S.; Seid, A.H.; Frede, H.G.; Breuer, L. Improving irrigation efficiency will be insufficient to meet future water demand in the Nile Basin. J. Hydrol. Reg. Stud. 2017, 12, 315–330. [Google Scholar] [CrossRef]
- Satoh, Y.; Kahil, T.; Byers, E.; Burek, P.; Fischer, G.; Tramberend, S.; Greve, P.; Flörke, M.; Eisner, S.; Hanasaki, N.; et al. Multi-model and multi-scenario assessments of Asian water futures: The Water Futures and Solutions (WFaS) initiative. Earth’s Future 2017, 5, 823–852. [Google Scholar] [CrossRef] [Green Version]
- Hanasaki, N.; Fujimori, S.; Yamamoto, T.; Yoshikawa, S.; Masaki, Y.; Hijioka, Y.; Kainuma, M.; Kanamori, Y.; Masui, T.; Takahashi, K.; et al. A global water scarcity assessment under Shared Socio-economic Pathways—Part 1: Water use. Hydrol. Earth Syst. Sci. 2013, 17, 2375–2391. [Google Scholar] [CrossRef] [Green Version]
- Kriegler, E.; O’Neill, B.C.; Hallegatte, S.; Kram, T.; Lempert, R.J.; Moss, R.H.; Wilbanks, T. The need for and use of socio-economic scenarios for climate change analysis: A new approach based on shared socio-economic pathways. Glob. Environ. Chang. 2012, 22, 807–822. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Kriegler, E.; Ebi, K.L.; Kemp-Benedict, E.; Riahi, K.; Rothman, D.S.; van Ruijven, B.J.; van Vuuren, D.P.; Birkmann, J.; Kok, K.; et al. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Glob. Environ. Chang. 2017, 42, 169–180. [Google Scholar] [CrossRef] [Green Version]
- O’Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L.; Hallegatte, S.; Carter, T.R.; Mathur, R.; van Vuuren, D.P. A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Clim. Chang. 2014, 122, 387–400. [Google Scholar] [CrossRef] [Green Version]
- Guo, A.; Ding, X.; Zhong, F.; Cheng, Q.; Huang, C. Predicting the future chinese population using shared socioeconomic pathways, the sixth national population census, and a PDE model. Sustainability 2019, 11, 3686. [Google Scholar] [CrossRef] [Green Version]
- Jiang, T.; Wang, Y.; Yuan, J.; Chen, Y.; Jing, C.; Wang, C.; Wu, X.; Zhao, C. Projection of population and economy in the Belt and Road countries (2020–2060). Clim. Chang. Res. 2018, 14, 155–164. [Google Scholar]
- Jiang, T.; Zhao, J.; Jing, C.; Cao, L.; Wang, Y.; Sun, H.; Wang, A.; Huang, J.; Su, B.; Wang, R. National and provincial population projected to 2100 under the shared socioeconomic pathways in China. Clim. Chang. Res. 2017, 13, 128–137. [Google Scholar]
- Wada, Y.; Flörke, M.; Hanasaki, N.; Eisner, S.; Fischer, G.; Tramberend, S.; Satoh, Y.; van Vliet, M.; Yillia, P.T.; Ringler, C.; et al. Modeling global water use for the 21st century: Water Futures and Solutions (WFaS) initiative and its approaches. Geosci. Model Dev. 2016, 9, 175–222. [Google Scholar] [CrossRef] [Green Version]
- Fischer, G.; Hizsnyik, E.; Tramberend, S.; Wiberg, D. Towards Indicators for Water Security—A Global Hydro-Economic Classification of Water Challenges; IIASA: Laxenburg, Austria, 2015. [Google Scholar]
- Burek, P.; Satoh, Y.; Fischer, G.; Kahil, M.T.; Scherzer, A.; Tramberend, S.; Nava, L.F.; Wada, Y.; Eisner, S.; Flörke, M.; et al. Water Futures and Solution; IIASA: Laxenburg, Austria, 2016. [Google Scholar]
- Ministry of Water Resources of the People’s Republic of China. 2018 China Water Resources Bulletin; Ministry of Water Resources of the People’s Republic of China: Beijing, China, 2019.
- The State Council of the People’s Republic of China. Views on the Implementation of the Strictest Water Resources Management System; The State Council of the People’s Republic of China: Beijing, China, 2012.
- China Irrigation and Drainage Development Center. 2015 China Irrigation and Drainage Development Report; China Irrigation and Drainage Development Center: Beijing, China, 2017. [Google Scholar]
- China Irrigation and Drainage Development Center. 2016 China Irrigation and Drainage Development Report; China Irrigation and Drainage Development Center: Beijing, China, 2018. [Google Scholar]
- Tal, A. Rethinking the sustainability of Israel’s irrigation practices in the Drylands. Water Res. 2016, 90, 387–394. [Google Scholar] [CrossRef]
- Ministry of Water Resources of the People’s Republic of China. 2016 China Water Resources Bulletin; Ministry of Water Resources of the People’s Republic of China: Beijing, China, 2017.
- OhIsson, L. Water conflicts and social resource scarcity. Phys. Chem. Earth Part B Hydrol. Oceans Atmos. 2000, 25, 213–220. [Google Scholar] [CrossRef]
- Lopes, V.A.R.; Fan, F.M.; Pontes PR, M.; Siqueira, V.A.; Collischonn, W.; da Motta Marques, D. A first integrated modelling of a river-lagoon large-scale hydrological system for forecasting purposes. J. Hydrol. 2018, 565, 177–196. [Google Scholar] [CrossRef]
- Reig, P.; Shiao, T.; Gassert, F. Aqueduct Water Risk Framework; WRI: Washington, DC, USA, 2013. [Google Scholar]
- Shiklomanov, I. International water resources association appraisal and assessment of world water resources. Water Int. 2000, 25, 11–32. [Google Scholar] [CrossRef]
- Dellink, R.; Chateau, J.; Lanzi, E.; Magné, B. Long-term economic growth projections in the Shared Socioeconomic Pathways. Glob. Environ. Chang. 2017, 42, 200–214. [Google Scholar] [CrossRef]
- Johansson, Å.; Guillemette, Y.; Murtin, F.; Turner, D.; Nicoletti, G.; de la Maisonneuve, C.; Bagnoli, P.; Bousquet, G.; Spinelli, F. Long-Term Growth Scenarios; OECD Publishing: Paris, France, 2013. [Google Scholar]
- Leimbach, M.; Kriegler, E.; Roming, N.; Schwanitz, J. Future growth patterns of world regions—A GDP scenario approach. Glob. Environ. Chang. 2017, 42, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Edwards, S. Openness, Productivity and Growth: What Do We Really Know? Econ. J. 1998, 108, 383–398. [Google Scholar] [CrossRef] [Green Version]
- Romer, P.M. Chapter 13—Two strategies for economic development: Using ideas and producing ideas. In The Strategic Management of Intellectual Capital; Klein, D.A., Ed.; Butterworth-Heinemann: Boston, MA, USA, 1998; pp. 211–238. [Google Scholar]
Administrative Region | Annual Average Precipitation (mm) | Total Water Resources (100 million m3) | Total Agricultural Irrigation Water Consumption (TAIWC; 100 million m3) | Irrigation Water Consumption per ha (IWCPH; m3) | Effective Utilization Coefficients of Irrigation Water (EUCIW; Scalar) |
---|---|---|---|---|---|
China | 730.0 | 32466.4 | TAIWC = 3318.9 | IWCPH = 5700 | EUCIW = 0.542 |
Beijing | 660.0 | 35.1 | TAIWC < 100 | IWCPH < 4500 | EUCIW > 0.60 |
Tianjin | 622.1 | 18.9 | TAIWC < 100 | IWCPH < 4500 | EUCIW > 0.60 |
Hebei | 595.9 | 208.3 | 100 < TAIWC < 200 | IWCPH < 4500 | EUCIW > 0.60 |
Shanxi | 615.4 | 134.1 | TAIWC < 100 | IWCPH < 4500 | 0.60 > EUCIW > 0.50 |
Inner Mongolia | 283.0 | 426.5 | 100 < TAIWC < 200 | 4500 < IWCPH < 7500 | 0.60 > EUCIW > 0.50 |
Liaoning | 755.4 | 331.6 | TAIWC < 100 | 4500 < IWCPH < 7500 | 0.60 > EUCIW > 0.50 |
Jilin | 731.1 | 488.8 | TAIWC < 100 | 4500 < IWCPH < 7500 | 0.60 > EUCIW > 0.50 |
Heilongjiang | 564.2 | 843.7 | TAIWC > 200 | 4500 < IWCPH < 7500 | 0.60 > EUCIW > 0.50 |
Shanghai | 1566.3 | 61.0 | TAIWC < 100 | 4500 < IWCPH < 7500 | EUCIW > 0.60 |
Jiangsu | 1410.5 | 741.7 | TAIWC > 200 | 4500 < IWCPH < 7500 | EUCIW > 0.60 |
Zhejiang | 1953.8 | 1323.3 | TAIWC < 100 | 4500 < IWCPH < 7500 | 0.60 > EUCIW > 0.50 |
Anhui | 1612.7 | 1245.2 | 100 < TAIWC < 200 | IWCPH < 4500 | 0.60 > EUCIW > 0.50 |
Fujian | 2503.3 | 2109.0 | TAIWC < 100 | 7500 < IWCPH < 12000 | 0.60 > EUCIW > 0.50 |
Jiangxi | 1996.7 | 2221.1 | 100 < TAIWC < 200 | 7500 < IWCPH < 12000 | 0.50 > EUCIW > 0.40 |
Shandong | 658.3 | 220.3 | 100 < TAIWC < 200 | IWCPH < 4500 | EUCIW > 0.60 |
Henan | 787.1 | 337.3 | 100 < TAIWC < 200 | IWCPH < 4500 | EUCIW > 0.60 |
Hubei | 1423.4 | 1498.0 | 100 < TAIWC < 200 | 4500 < IWCPH < 7500 | 0.60 > EUCIW > 0.50 |
Hunan | 1668.9 | 2196.6 | 100 < TAIWC < 200 | 7500 < IWCPH < 12000 | 0.60 > EUCIW > 0.50 |
Guangdong | 2357.6 | 2458.6 | 100 < TAIWC < 200 | 7500 < IWCPH < 12000 | 0.50 > EUCIW > 0.40 |
Guangxi | 1631.6 | 2178.6 | 100 < TAIWC < 200 | IWCPH > 12000 | 0.50 > EUCIW > 0.40 |
Hainan | 2341.5 | 489.9 | TAIWC < 100 | IWCPH > 12000 | 0.60 > EUCIW > 0.50 |
Chongqing | 1236.8 | 604.9 | TAIWC < 100 | 4500 < IWCPH < 7500 | 0.50 > EUCIW > 0.40 |
Sichuan | 921.3 | 2340.9 | 100 < TAIWC < 200 | 4500 < IWCPH < 7500 | 0.50 > EUCIW > 0.40 |
Guizhou | 1213.7 | 1066.1 | TAIWC < 100 | 4500 < IWCPH < 7500 | 0.50 > EUCIW > 0.40 |
Yunnan | 1295.9 | 2088.9 | TAIWC < 100 | 4500 < IWCPH < 7500 | 0.50 > EUCIW > 0.40 |
Tibet | 611.6 | 4642.2 | TAIWC < 100 | 7500 < IWCPH < 12000 | 0.50 > EUCIW > 0.40 |
Shaanxi | 626.2 | 271.5 | TAIWC < 100 | IWCPH < 4500 | 0.60 > EUCIW > 0.50 |
Gansu | 290.9 | 168.4 | TAIWC < 100 | 4500 < IWCPH < 7500 | 0.60 > EUCIW > 0.50 |
Qinghai | 304.7 | 612.7 | TAIWC < 100 | 7500 < IWCPH < 12000 | 0.50 > EUCIW > 0.40 |
Ningxia | 301.0 | 9.6 | TAIWC < 100 | 7500 < IWCPH < 12000 | 0.60 > EUCIW > 0.50 |
Class & Corresponding Normalized Interval | Personal Disposable Income (PDI; Dollars/Cap/Year) | Total Water Resources per Capita (TWRPC; m3/Cap/Year) | Intensity of Water Use (IWU; Scalar) | Dependency Share of External to Total Water Resources (DS; Scalar) |
---|---|---|---|---|
CL1, [0,0.2] | 0 < PDI < 2258 | 10000 < TWRPC < 20000 | 0 < IWU < 0.05 | 0.03 < DS < 0.30 |
CL2, [0.2,0.4] | 2258 < PDI < 3011 | 5000 < TWRPC < 10000 | 0.05 < IWU < 0.15 | 0.30 < DS < 0.45 |
CL3, [0.4,0.6] | 3011 < PDI < 4517 | 2000 < TWRPC < 5000 | 0.15 < IWU < 0.30 | 0.45 < DS < 0.55 |
CL4, [0.6,0.8] | 4517 < PDI < 7528 | 1000 < TWRPC < 2000 | 0.30 < IWU < 0.60 | 0.55 < DS < 0.70 |
CL5, [0.8,1] | 7528 < PDI < 13550 | 100 < TWRPC < 1000 | 0.60 < IWU < 1.00 | 0.70 < DS < 0.95 |
Path-Way | Irrigated Area & Crop Intensity | Water Use Efficiency | Convergence Level & Speed | Scenario Description |
---|---|---|---|---|
SSP1 | Low growth | High efficiency | High level & low speed | •A long-run development concept of openness, equality, and mutual benefit. •Rapid urbanization and fast technological diffusion. •Sustainable food systems: high agricultural production efficiency and a strong preference for low-meat diets. •The whole society has a good atmosphere of energy conservation and emission reduction. |
SSP2 | Medium growth | Medium efficiency | Medium level & very fast speed | •Moderate income growth and moderate urbanization. •Limited technological innovation and environmental protection policies and could not get rid of the middle-income trap. •Low agricultural production efficiency and a strong preference for meat consumption. •Growth in irrigation water use efficiency has slowed, and barely meets the 2030 target. |
SSP3 | High growth | Low efficiency | Low level & fast speed | •Regional fragmentation and incompatibility. •Backward economy and ineffective environmental policies, and technology is stuck in a groove. •High population growth, low urbanization, and unscientific urban planning. •High water consumption leads to less water use for irrigation and decrease in agricultural production. |
SSP4 | Low growth | High (developed)/ low (developing) | Medium level & medium speed | •For the regions with low hydro-climatic complexity and low income, the irrigation water use efficiency is low owing to the backward economy and limited investment in irrigation facilities. •For the regions with high income, the irrigation water use efficiency could maintain a high level owing to the strong economic coping capacity. •For the regions with the dual pressure of backward economy and hydro-climatic complexity, the irrigation water use efficiency is in a low level. •Technologies diffuse across the regions with different economic development level. |
SSP5 | High growth | High efficiency | High level & very low speed | •A conventional fossil-fueled pathway with the rapid capital accumulation and massive greenhouse gas emissions. •Strong technological progress in the agricultural sector. •Highly managed and resource intensive agro-ecosystems and water systems. |
Pathway | HE-1 | HE-2 | HE-3 | HE-4 |
---|---|---|---|---|
SSP1 | High | Medium-high | Medium-high | High |
SSP2 | Medium | Medium | Medium | Medium |
SSP3 | Medium-low | Low | Medium | Medium-low |
SSP4 | Low | Medium-high | Medium-high | Low |
SSP5 | High | High | High | High |
Pathway | HE-1 | HE-2 | HE-3 | HE-4 | ||||
---|---|---|---|---|---|---|---|---|
Convergence Target (Multiple of Benchmark Target) | Convergence Time (Years) | Convergence Target (Multiple of Benchmark Target) | Convergence Time (Years) | Convergence Target (Multiple of Benchmark Target) | Convergence Time (Years) | Convergence Target (Multiple of Benchmark Target) | Convergence Time (Years) | |
SSP1 | 1.1 | 100 | 1.1 | 50 | 1.1 | 50 | 1.1 | 100 |
SSP2 | 1.0 | 15 | 1.0 | 15 | 1.0 | 15 | 1.0 | 15 |
SSP3 | 0.9 | 30 | 0.9 | 30 | 1.0 | 15 | 0.9 | 50 |
SSP4 | 1.0 | 50 | 1.1 | 50 | 1.1 | 50 | 1.0 | 50 |
SSP5 | 1.1 | 100 | 1.1 | 100 | 1.1 | 100 | 1.1 | 100 |
Province | Personal Disposable Income (PDI) in 2016 (Dollars/Cap/Year) | The Mapping Value of the Y-Dimension (Economic–Institutional Capacity) | Province | Personal Disposable Income (PDI) in 2016 (Dollars/Cap/Year) | The Mapping Value of the Y-Dimension (Economic–Institutional Capacity) |
---|---|---|---|---|---|
Anhui | 3010.72 | 0.400 | Liaoning | 3920.28 | 0.521 |
Beijing | 7908.46 | 0.813 | Inner Mongolia | 3632.27 | 0.483 |
Fujian | 4156.38 | 0.552 | Ningxia | 2835.20 | 0.353 |
Gansu | 2208.62 | 0.196 | Qinghai | 2604.78 | 0.292 |
Guangdong | 4561.04 | 0.603 | Shandong | 3716.37 | 0.494 |
Guangxi | 2755.83 | 0.332 | Shanxi | 2867.81 | 0.362 |
Guizhou | 2276.49 | 0.205 | Shaanxi | 2841.45 | 0.355 |
Hainan | 3109.38 | 0.413 | Shanghai | 8175.68 | 0.822 |
Hebei | 2969.67 | 0.389 | Sichuan | 2831.59 | 0.352 |
Henan | 2776.61 | 0.338 | Tianjin | 5129.92 | 0.641 |
Heilongjiang | 2986.69 | 0.394 | Tibet | 2053.39 | 0.182 |
Hubei | 3279.98 | 0.436 | Xinjiang | 2763.30 | 0.334 |
Hunan | 3178.84 | 0.422 | Yunnan | 2517.19 | 0.269 |
Jilin | 3006.04 | 0.399 | Zhejiang | 5800.55 | 0.685 |
Jiangsu | 4828.16 | 0.621 | Chongqing | 3317.25 | 0.441 |
Jiangxi | 3027.50 | 0.402 | - | - | - |
Subindex of X-Dimension | TWRPC | IWU | DS | The Compound Index (Hydro-Climatic Complexity) | Subindex of X-Dimension | TWRPC | IWU | DS | The Compound Index (Hydro-Climatic Complexity) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Weight | 8 | 8 | 4 | I | Weight | 8 | 8 | 4 | I | ||
Province | Province | ||||||||||
Tianjin | 0.995 | 1.000 | 0.440 | 0.886 | Anhui | 0.599 | 0.511 | 0.000 | 0.444 | ||
Beijing | 0.986 | 1.000 | 0.204 | 0.835 | Guangdong | 0.584 | 0.436 | 0.000 | 0.408 | ||
Shandong | 0.973 | 0.986 | 0.088 | 0.801 | Hubei | 0.564 | 0.451 | 0.000 | 0.406 | ||
Ningxia | 0.991 | 1.000 | 0.000 | 0.796 | Chongqing | 0.603 | 0.356 | 0.000 | 0.384 | ||
Shanghai | 0.966 | 1.000 | 0.000 | 0.786 | Zhejiang | 0.576 | 0.374 | 0.000 | 0.380 | ||
Hebei | 0.960 | 0.938 | 0.006 | 0.761 | Hunan | 0.519 | 0.401 | 0.000 | 0.368 | ||
Henan | 0.944 | 0.837 | 0.007 | 0.714 | Sichuan | 0.544 | 0.328 | 0.000 | 0.349 | ||
Gansu | 0.879 | 0.852 | 0.000 | 0.692 | Guizhou | 0.533 | 0.288 | 0.000 | 0.329 | ||
Shanxi | 0.941 | 0.775 | 0.000 | 0.687 | Guangxi | 0.433 | 0.367 | 0.000 | 0.320 | ||
Jiangsu | 0.816 | 0.889 | 0.000 | 0.682 | Jiangxi | 0.411 | 0.321 | 0.000 | 0.293 | ||
Liaoning | 0.854 | 0.672 | 0.000 | 0.610 | Yunnan | 0.441 | 0.244 | 0.000 | 0.274 | ||
Shaanxi | 0.864 | 0.623 | 0.000 | 0.595 | Hainan | 0.386 | 0.284 | 0.000 | 0.268 | ||
Inner Mongolia | 0.662 | 0.697 | 0.100 | 0.564 | Fujian | 0.382 | 0.279 | 0.000 | 0.265 | ||
Heilongjiang | 0.585 | 0.679 | 0.000 | 0.506 | Qinghai | 0.193 | 0.172 | 0.000 | 0.146 | ||
Jilin | 0.642 | 0.561 | 0.000 | 0.481 | Tibet | 0.000 | 0.027 | 0.000 | 0.011 | ||
Xinjiang | 0.429 | 0.745 | 0.000 | 0.470 | - | - | - | - | - |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, A.; Jiang, D.; Zhong, F.; Ding, X.; Song, X.; Cheng, Q.; Zhang, Y.; Huang, C. Prediction of Technological Change under Shared Socioeconomic Pathways and Regional Differences: A Case Study of Irrigation Water Use Efficiency Changes in Chinese Provinces. Sustainability 2019, 11, 7103. https://doi.org/10.3390/su11247103
Guo A, Jiang D, Zhong F, Ding X, Song X, Cheng Q, Zhang Y, Huang C. Prediction of Technological Change under Shared Socioeconomic Pathways and Regional Differences: A Case Study of Irrigation Water Use Efficiency Changes in Chinese Provinces. Sustainability. 2019; 11(24):7103. https://doi.org/10.3390/su11247103
Chicago/Turabian StyleGuo, Aijun, Daiwei Jiang, Fanglei Zhong, Xiaojiang Ding, Xiaoyu Song, Qingping Cheng, Yongnian Zhang, and Chunlin Huang. 2019. "Prediction of Technological Change under Shared Socioeconomic Pathways and Regional Differences: A Case Study of Irrigation Water Use Efficiency Changes in Chinese Provinces" Sustainability 11, no. 24: 7103. https://doi.org/10.3390/su11247103
APA StyleGuo, A., Jiang, D., Zhong, F., Ding, X., Song, X., Cheng, Q., Zhang, Y., & Huang, C. (2019). Prediction of Technological Change under Shared Socioeconomic Pathways and Regional Differences: A Case Study of Irrigation Water Use Efficiency Changes in Chinese Provinces. Sustainability, 11(24), 7103. https://doi.org/10.3390/su11247103