Decomposition Analysis of Factors that Drive the Changes of Major Air Pollutant Emissions in China at a Multi-Regional Level
Abstract
:1. Introduction
2. Method and Data
3. Empirical Results
3.1. Holistic Analysis
3.2. Regional Analysis
3.2.1. Regional Emission Efficiency Effect
3.2.2. Regional Energy Intensity Effect
3.2.3. Regional Population Structure Effect
3.2.4. Regional Relative Income Effect
3.2.5. National Economic Growth Effect
4. Discussions
4.1. The Regional Emission Efficiency Effect was the Key Curbing Factor
4.2. The Regional Energy Intensity Effect Curbed APEs
4.3. The Regional Population Structure and Regional Relative Income had a Small Effect on APEs
4.4. The National Economic Growth Effect was the Key Promoting Factor
5. Conclusions and Policy Implications
Author Contributions
Funding
Conflicts of Interest
References
- Ministry of Ecology and Environment of the People’s Republic of China. Available online: http://www.mee.gov.cn/ (accessed on 27 January 2019).
- Gao, J.H.; Woodward, A.; Vardoulakis, S.; Kovats, S.; Wilkinson, P.; Li, L.P.; Xu, L.; Li, J.; Yang, J.; Li, J.; et al. Haze, public health and mitigation measures in China: A review of the current evidence for further policy response. Sci. Total Environ. 2017, 578, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Guttikunda, S.K.; Carmichael, G.R.; Wang, Y.; Liu, Z.; Stanier, C.; Saide, P.E.; Yu, M. Health impacts and economic losses assessment of the 2013 severe haze event in Beijing area. Sci. Total Environ. 2015, 511, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Peng, H.; Temulun, T.; Liu, L.Q.; Mao, J.; Lu, Z.N.; Chen, H. How harmful is air pollution to economic development? New evidence from PM2.5 concentrations of Chinese cities. J. Clean. Prod. 2018, 172, 743–757. [Google Scholar] [CrossRef]
- Maji, K.J.; Ye, W.F.; Arora, M.; Nagendra, S.M.S. PM2.5-related health and economic loss assessment for 338 Chinese cities. Environ. Int. 2018, 121, 392–403. [Google Scholar] [CrossRef]
- Lu, Q.; Zheng, J.Y.; Ye, S.Q.; Shen, X.L.; Yuan, Z.B.; Yin, S.S. Emission trends and source characteristics of SO2, NOx, PM10 and VOCs in the Pearl River Delta region from 2000 to 2009. Atmos. Environ. 2013, 76, 11–20. [Google Scholar] [CrossRef]
- Xue, Y.F.; Tian, H.Z.; Yan, J.; Zhou, Z.; Wang, J.L.; Nie, L.; Pan, T.; Zhou, J.R.; Hua, S.B.; Wang, Y.; et al. Temporal trends and spatial variation characteristics of primary air pollutants emissions from coal-fired industrial boilers in Beijing, China. Environ. Pollut. 2016, 213, 717–726. [Google Scholar] [CrossRef]
- Chen, C.X.; Chen, F.; Cheng, Z.; Chan, Q.N.; Kook, S.H.; Yeoh, G.H. Emissions characteristics of NOx and SO2 in the combustion of microalgae biomass using a tube furnace. J. Energy Inst. 2017, 90, 806–812. [Google Scholar] [CrossRef]
- Shi, Y.H.; Matsunaga, T.; Yamaguchi, Y.; Zhao, A.; Li, Z.Q.; Gu, X.F. Long-term trends and spatial patterns of PM2.5-induced premature mortality in South and Southeast Asia from 1999 to 2014. Sci. Total Environ. 2018, 631–632, 1504–1514. [Google Scholar] [CrossRef]
- Miao, W.J.; Huang, X.; Song, Y. An economic assessment of the health effects and crop yield losses caused by air pollution in mainland China. J. Environ. Sci. 2017, 56, 102–113. [Google Scholar] [CrossRef]
- Guo, H.B.; Chen, M.X. Short-term effect of air pollution on asthma patient visits in Shanghai area and assessment of economic costs. Ecotoxicol. Environ. Saf. 2018, 161, 184–189. [Google Scholar] [CrossRef]
- Li, L.; Lei, Y.L.; Wu, S.M.; Huang, Z.Y.; Luo, T.J.; Wang, Y.F.; Chen, J.B.; Yan, D. Evaluation of future energy consumption on PM2.5 emissions and public health economic loss in Beijing. J. Clean. Prod. 2018, 187, 1115–1128. [Google Scholar] [CrossRef]
- Wei, J.C.; Guo, X.M.; Marinova, D.; Fan, J. Industrial SO2 pollution and agricultural losses in China: Evidence from heavy air polluters. J. Clean. Prod. 2014, 64, 404–413. [Google Scholar] [CrossRef] [Green Version]
- Khaniabadi, Y.O.; Polosa, R.; Chuturkova, R.Z.; Daryanoosh, M.; Goudarzie, G.; Borgini, A.; Tittarelli, A.; Basiri, H.; Armini, H.; Nourmoradi, H.; et al. Human health risk assessment due to ambient PM10 and SO2 by an air quality modeling technique. Process Saf. Environ. Prot. 2017, 111, 346–354. [Google Scholar] [CrossRef]
- Yin, H.; Pizzol, M.; Xu, L.Y. External costs of PM2.5 pollution in Beijing, China: Uncertainty analysis of multiple health impacts and costs. Environ. Pollut. 2017, 226, 356–369. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Ji, H.B. Microscopic morphology and seasonal variation of health effect arising from heavy metals in PM2.5 and PM10: One-year measurement in a densely populated area of urban Beijing. Atmos. Res. 2018, 212, 213–226. [Google Scholar] [CrossRef]
- Xu, S.C.; He, Z.X.; Long, R.Y. Factors that influence carbon emissions due to energy consumption in China: Decomposition analysis using LMDI. Appl. Energy 2014, 127, 182–193. [Google Scholar] [CrossRef]
- Xu, S.C.; Zhang, W.W.; He, Z.X.; Han, H.M.; Long, R.Y.; Chen, H. Decomposition analysis of the decoupling indicator of carbon emissions due to fossil energy consumption from economic growth in China. Energy Effic. 2017, 10, 1365–1380. [Google Scholar] [CrossRef]
- Xu, W.J.; Li, J.X.; Zhang, W.H.; Wang, Z.X.; Wu, J.J.; Ge, X.J.; Wu, J.L.; Gao, Y.; Xie, Y.L.; Ying, D.W.; et al. Emission of sulfur dioxide from polyurethane foam and respiratory health effects. Environ. Pollut. 2018, 242, 90–97. [Google Scholar] [CrossRef]
- Liu, Y.S.; Zhou, Y.; Wu, W.X. Assessing the impact of population, income and technology on energy consumption and industrial pollutant emissions in China. Appl. Energy 2015, 155, 904–917. [Google Scholar] [CrossRef]
- Liu, C.; Hong, T.; Li, H.F.; Wang, L.L. From club convergence of per capita industrial pollutant emissions to industrial transfer effects: An empirical study across 285 cities in China. Energy Policy 2018, 121, 300–313. [Google Scholar] [CrossRef]
- Xu, B.; Luo, L.Q.; Lin, B.Q. A dynamic analysis of air pollution emissions in China: Evidence from nonparametric additive regression models. Ecol. Indic. 2016, 63, 346–358. [Google Scholar] [CrossRef]
- Chen, H.; Huang, Y.; Shen, H.Z.; Chen, Y.L.; Ru, M.Y.; Chen, Y.C.; Lin, N.; Su, S.; Zhuo, S.J.; Zhong, Q.R.; et al. Modeling temporal variations in global residential energy consumption and pollutant emissions. Appl. Energy 2016, 184, 820–829. [Google Scholar] [CrossRef]
- Xu, S.C.; Miao, Y.M.; Gao, C.; Long, R.Y.; Chen, H.; Zhao, B.; Wang, S.X. Regional differences in impacts of economic growth and urbanization on air pollutants in China based on provincial panel estimation. J. Clean. Prod. 2019, 208, 340–352. [Google Scholar] [CrossRef]
- Gill, A.R.; Viswanathan, K.K.; Hassan, S. The Environmental Kuznets Curve (EKC) and the environmental problem of the day. Renew. Sustain. Energy Rev. 2018, 81, 1636–1642. [Google Scholar] [CrossRef]
- Dong, K.Y.; Sun, R.J.; Dong, C.; Li, H.; Zeng, X.J.; Ni, G.H. Environmental Kuznets curve for PM2.5 emissions in Beijing, China: What role can natural gas consumption play? Ecol. Indic. 2018, 93, 591–601. [Google Scholar] [CrossRef]
- Xu, S.C.; Li, Y.W.; Miao, Y.M.; Gao, C.; He, Z.X.; Shen, W.X.; Long, R.Y.; Chen, C.; Zhao, B.; Wang, S.X. Regional differences in nonlinear impacts of economic growth, export and FDI on air pollutants in China based on provincial panel data. J. Clean. Prod. 2019, 228, 455–466. [Google Scholar] [CrossRef]
- Wang, Y.; Lai, N.; Mao, G.Z.; Zuo, J.; John, C.; Crittenden, J.; Jin, Y.; Juan, M.C. Air pollutant emissions from economic sectors in China: A linkage analysis. Ecol. Indic. 2017, 77, 250–260. [Google Scholar] [CrossRef] [Green Version]
- Ou, J.M.; Meng, J.; Zheng, J.Y.; Mi, Z.F.; Bian, Y.H.; Yu, X.; Liu, J.R.; Guan, D.B. Demand-driven air pollutant emissions for a fast-developing region in China. Appl. Energy 2017, 204, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Shen, S.D.; Wang, C. Decomposition analysis on the air pollutant baseline emission factors in China’s power sector. Energy Procedia 2017, 105, 3355–3362. [Google Scholar] [CrossRef]
- Guan, Y.N.; Chen, G.Y.; Cheng, Z.J.; Yan, B.B.; Hou, L.A. Air pollutant emissions from straw open burning: A case study in Tianjin. Atmos. Environ. 2017, 171, 155–164. [Google Scholar] [CrossRef]
- Cheng, M.M.; Zhi, G.R.; Tang, W.; Liu, S.J.; Dang, H.G.; Guo, Z.; Du, J.H.; Du, X.H.; Zhang, W.Q.; Zhang, Y.J.; et al. Air pollutant emission from the underestimated households’ coal consumption source in China. Sci. Total Environ. 2017, 580, 641–650. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.W.; Zhang, M.; Zhou, M. Using LMDI method to analyze transport sector CO2 emissions in China. Energy 2011, 36, 5909–5915. [Google Scholar] [CrossRef]
- Cansino, J.M.; Sánchez-Braza, A.; Rodríguez-Arévalo, M.L. Driving forces of Spain׳s CO2 emissions: A LMDI decomposition approach. Renew. Sustain. Energy Rev. 2015, 48, 749–759. [Google Scholar] [CrossRef]
- Gu, B.H.; Tan, X.C.; Zeng, Y.; Mu, Z.K. CO2 Emission Reduction Potential in China’s Electricity Sector: Scenario Analysis Based on LMDI Decomposition. Energy Procedia 2015, 75, 2436–2447. [Google Scholar] [CrossRef] [Green Version]
- Shao, S.; Yang, L.L.; Gan, C.H.; Cao, J.H.; Geng, Y.; Guan, D.B. Using an extended LMDI model to explore techno-economic drivers of energy-related industrial CO2 emission changes: A case study for Shanghai (China). Renew. Sustain. Energy Rev. 2016, 55, 516–536. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, B.; Lopez, N.S.A.; Biona, J.B.M.; Chiu, A.S.F.; Blesl, M. Driving forces of Iran’s CO2 emissions from energy consumption: An LMDI decomposition approach. Appl. Energy 2017, 206, 804–814. [Google Scholar] [CrossRef]
- Moutinho, V.; Madaleno, M.; Inglesi-Lotz, R.; Dogan, E. Factors affecting CO2 emissions in top countries on renewable energies: A LMDI decomposition application. Renew. Sustain. Energy Rev. 2018, 90, 605–622. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.Y.; Zeng, W.H. Research on the Contribution of Structure Adjustment on SO2 Emissions Reduction—Case Study Shijingshan District, Beijing. Procedia Environ. Sci. 2013, 18, 849–855. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Wang, S.J.; Zhang, W.Z.; Li, J.M.; Zou, Y.F. Impacts of energy consumption, energy structure, and treatment technology on SO2 emissions: A multi-scale LMDI decomposition analysis in China. Appl. Energy 2016, 184, 714–726. [Google Scholar] [CrossRef]
- Wang, Y.; Han, R.; Kubota, J. Is there an Environmental Kuznets Curve for SO2 emissions? A semi-parametric panel data analysis for China. Renew. Sustain. Energy Rev. 2016, 54, 1182–1188. [Google Scholar] [CrossRef]
- He, S.B.; Yan, T.; Zhou, H.R. Decomposition and Spatial Clustering Analysis of China’s SO2 Emissions. Procedia Comp. Sci. 2016, 91, 1064–1072. [Google Scholar] [CrossRef] [Green Version]
- Lyu, W.; Li, Y.; Guan, D.; Zhao, H.; Zhang, Q.; Liu, Z. Driving forces of Chinese primary air pollution emissions: An index decomposition analysis. J. Clean. Prod. 2016, 133, 136–144. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Shuai, C.; Bian, J.; Chen, X.; Wu, Y.; Shen, L. Socioeconomic factors of PM2.5 concentrations in 152 Chinese cities: Decomposition analysis using LMDI. J. Clean. Prod. 2019, 218, 96–107. [Google Scholar] [CrossRef]
- Song, C.J.; Liu, Q.L.; Gu, S.; Wang, Q. The impact of China’s urbanization on economic growth and pollutant emissions: An empirical study based on input-output analysis. J. Clean. Prod. 2018, 198, 1289–1301. [Google Scholar] [CrossRef]
- Antanasijević, D.; Pocajt, V.; Perić-Grujić, A.; Ristić, M. Multiple-input–multiple-output general regression neural networks model for the simultaneous estimation of traffic-related air pollutant emissions. Atmos. Pollut. Res. 2018, 9, 388–397. [Google Scholar] [CrossRef]
- Li, M.; Li, C.; Zhang, M. Exploring the spatial spillover effects of industrialization and urbanization factors on pollutants emissions in China’s Huang-Huai-Hai region. J. Clean. Prod. 2018, 195, 154–162. [Google Scholar] [CrossRef]
- Zhu, L.; Gan, Q.M.; Liu, Y.; Yan, Z.J. The impact of foreign direct investment on SO2 emissions in the Beijing-Tianjin-Hebei region: A spatial econometric analysis. J. Clean. Prod. 2017, 166, 189–196. [Google Scholar] [CrossRef]
- Ang, B.W. The LMDI approach to decomposition analysis: A practical guide. Energy Policy 2005, 33, 867–871. [Google Scholar] [CrossRef]
- Kim, S. LMDI Decomposition analysis of energy consumption in the Korean manufacturing sector. Sustainability 2017, 9, 202. [Google Scholar] [CrossRef] [Green Version]
- Jia, J.; Jian, H.; Xie, D.; Gu, Z.; Chen, C. Multi-scale decomposition of energy-related industrial carbon emission by an extended logarithmic mean Divisia index: A case study of Jiangxi, China. Energy Effic. 2019, 12, 2161–2186. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.C.; Gao, C.; Miao, Y.M.; Shen, W.X.; Long, R.Y.; Chen, H.; Zhao, B.; Wang, S.X. Calculation and decomposition of China’s embodied air pollutants in Sino-US trade. J. Clean. Prod. 2019, 209, 978–994. [Google Scholar] [CrossRef]
- Xu, S.C.; Han, H.M.; Zhang, W.W.; Zhang, Q.Q.; Long, R.Y.; Chen, H.; He, Z.X. Analysis of regional contributions to the national carbon intensity in China in different Five-Year Plan periods. J. Clean. Prod. 2017, 145, 209–220. [Google Scholar] [CrossRef]
- China Environment Protection Database. Available online: http://hbk.cei.cn/aspx/Left_DB.aspx?ID=5 (accessed on 18 November 2018).
- Zhao, B. Assessing the nonlinear response of fine particles to precursor emissions: Development and application of an extended response surface modeling technique V1.0. Geosci. Model Dev. 2015, 8, 115–128. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B. Change in household fuels dominates the decrease in PM2.5 exposure and premature mortality in China in 2005–2015. Proc. Natl. Acad. Sci. USA 2018, 115, 12401–12406. [Google Scholar] [CrossRef] [Green Version]
- He, Z.X.; Xu, S.C.; Shen, W.X.; Long, R.Y.; Chen, H. Impact of urbanization on energy related CO2 emission at different development levels: Regional difference in China based on panel estimation. J. Clean Prod. 2017, 140, 1719–1730. [Google Scholar] [CrossRef]
- Li, W.B.; Chen, N. Absolute income, relative income and environmental concern: Evidence from different regions in China. J. Clean. Prod. 2018, 187, 9–17. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, M.; Wang, J.C. Direct rebound effect on urban residential electricity use: An empirical study in China. Renew. Sustain. Energy Rev. 2014, 30, 124–132. [Google Scholar] [CrossRef]
- Rafaj, P.; Amann, M. Decomposing air pollutant emissions in Asia: Determinants and projections. Energies 2018, 11, 1299. [Google Scholar] [CrossRef] [Green Version]
- Circular of the State Council on printing and distributing the 11th Five Year Plan for National Environmentalprotection. Available online: http://www.gov.cn/zhengce/content/2008-03/28/content_4877.htm (accessed on 8 May 2019).
- Circular of the State Council on Printing and Distributing the 12th Five Year Plan for National Environmental Protection. 12 May. Available online: http://www.gov.cn/zhengce/content/2011-12/20/content_4661.htm (accessed on 12 May 2019).
- Zhao, B.; Wang, S.X.; Liu, H.; Xu, J.Y.; Fu, K.; Klimont, Z.; Hao, J.M.; He, K.B.; Cofala, J.; Amann, M. NOx in China: Histor ical trends and future perspectives. Atmos. Chem. Phys. 2013, 13, 9869–9897. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.C.; Zhang, W.W.; Li, Q.B.; Zhao, B.; Wang, S.X.; Long, R.Y. Decomposition analysis of the factors that influence energy related air pollutant emission changes in China using the SDA method. Sustainability 2017, 9, 1742. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.C.; Zhang, L.; Liu, Y.T.; Zhang, W.W.; He, Z.X.; Long, R.Y.; Chen, H. Determination of the factors that influence increments in CO2 emissions in Jiangsu, China using the SDA method. J. Clean. Prod. 2017, 142, 3061–3074. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, J.; Zhang, B.; Bi, J.; Jiang, H. Can China comply with its 12th five-year plan on industrial emissions control: A structural decomposition analysis? Environ. Sci. Technol. 2015, 49, 4816–4824. [Google Scholar] [CrossRef] [PubMed]
- Song, M.L.; Song, Y.Q.; Yu, H.Y.; Wang, Z.Y. Calculation of China’s environmental efficiency and relevant hierarchical cluster analysis from the perspective of regional differences. Math. Comp. Model. 2013, 58, 1084–1094. [Google Scholar] [CrossRef]
- Song, M.L.; Zhang, L.L.; An, Q.X.; Wang, Z.Y.; Li, Z. Statistical analysis and combination forecasting of environmental efficiency and its influential factors since China entered the WTO: 2002-2010-2012. J. Clean. Prod. 2013, 42, 42–51. [Google Scholar] [CrossRef]
- Song, M.L.; Song, Y.Q.; An, Q.X.; Yu, H.Y. Review of environmental efficiency and its influencing factors in China: 1998–2009. Renew. Sustain. Energy Rev. 2013, 20, 8–14. [Google Scholar] [CrossRef]
- Chen, J.D.; Song, M.L.; Xu, L. Evaluation of environmental efficiency in China using data envelopment analysis. Ecol. Indic. 2015, 52, 577–583. [Google Scholar] [CrossRef]
- Dong, K.Y.; Sun, R.J.; Hochman, G.; Li, H. Energy intensity and energy conservation potential in China: A regional comparison perspective. Energy 2018, 155, 782–795. [Google Scholar] [CrossRef]
- Tan, R.P.; Lin, B.Q. What factors lead to the decline of energy intensity in China’s energy intensive industries? Energy Econ. 2018, 71, 213–221. [Google Scholar] [CrossRef]
- Huang, J.B.; Du, D.; Tao, Q.Z. An analysis of technological factors and energy intensity in China. Energy Policy 2017, 109, 1–9. [Google Scholar] [CrossRef]
- Zeng, X.T.; Tong, Y.F.; Cui, L.; Kong, X.M.; Sheng, Y.N.; Chen, L.; Li, Y.P. Population-production-pollution nexus based air pollution management model for alleviating the atmospheric crisis in Beijing, China. J. Environ. Manag. 2017, 197, 507–521. [Google Scholar] [CrossRef]
- Wang, W.X.; Yu, B.; Yao, X.L.; Niu, T.; Zhang, C.T. Can technological learning significantly reduce industrial air pollutants intensity in China?—Based on a multi-factor environmental learning curve. J. Clean. Prod. 2018, 185, 137–147. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y.S. Does population have a larger impact on carbon dioxide emissions than income? Evidence from a cross-regional panel analysis in China. Appl. Energy 2016, 180, 800–809. [Google Scholar] [CrossRef]
- Du, G.; Liu, S.Z.; Lei, N.; Huang, Y. A test of environmental Kuznets curve for haze pollution in China: Evidence from the penal data of 27 capital cities. J. Clean. Prod. 2018, 205, 821–827. [Google Scholar] [CrossRef]
- Du, W.; Li, X.Y.; Chen, Y.C.; Shen, G.F. Household air pollution and personal exposure to air pollutants in rural China—A review. Environ. Pollut. 2018, 237, 625–638. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.F.; Zhang, Y.; Li, C.; Bai, Y.; Zhang, D.M.; Xue, C.Y.; Liu, G.Q. Air pollutant emissions and mitigation potential through the adoption of semi-coke coals and improved heating stoves: Field evaluation of a pilot intervention program in rural China. Environ. Pollut. 2018, 240, 661–669. [Google Scholar] [CrossRef]
- Chang, M.; Zheng, J.; Inoue, Y.; Tian, X.; Gan, T.T. Comparative analysis on the socioeconomic drivers of industrial air-pollutant emissions between Japan and China: Insights for the further-abatement period based on the LMDI method. J. Clean. Prod. 2018, 189, 240–250. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, C.S.; Wang, S.H.; Li, S.J. Impacts of energy consumption structure, energy intensity, economic growth, urbanization on PM2.5 concentrations in countries globally. Appl. Energy 2018, 230, 94–105. [Google Scholar] [CrossRef]
- Wang, Z.H.; Feng, C. Sources of production inefficiency and productivity growth in China: A global data envelopment analysis. Energy Econ. 2015, 49, 380–389. [Google Scholar] [CrossRef]
- Xu, S.C.; He, Z.X.; Long, R.Y.; Chen, H.; Han, H.M.; Zhang, W.W. Comparative analysis of the regional contributions to carbon emissions in China. J. Clean. Prod. 2016, 127, 406–441. [Google Scholar] [CrossRef]
Variable | Definition |
---|---|
AP | Total air pollutants |
APi | Air pollutants from region i |
Ei | Fossil energy use for region i |
G | National GDP |
Gi | Region i’s GDP |
P | National population |
Pi | Population in region i |
APIi | Air pollutant emission efficiency for region i |
EIi | Energy intensity for region i |
PIi | Population proportion for region i |
RIi | GDP per capita for region i |
NI | National GDP per capita |
Variable | Definition | Unit |
---|---|---|
Regional emission efficiency | Air pollutants divided by fossil energy use for a certain region | 104t/tce |
Regional energy intensity | Fossil energy use divided by GDP for a certain region | tce/104RMB |
Regional population structure | Ratio of regional population to the national total | % |
Regional relative income | Regional income per capita divided by national income per capita |
SO2 | Northern Region | Eastern Region | Central Region | Southern Region | Southwestern Region | Northwestern Region | Northeastern Region |
---|---|---|---|---|---|---|---|
2005–2007 | ↓ | 🠋 | ↓ | 🠋 | ↓ | ↓ | ↓ |
2007–2009 | 🠋 | 🠋 | 🠋 | ↓ | 🠋 | 🠋 | ↓ |
2009–2011 | ↓ | ↓ | ↓ | 🠋 | ↓ | ↓ | ↓ |
2011–2013 | ⇣ | ⇣ | ⇣ | ⇣ | ⇣ | ⇣ | ⇣ |
2013–2015 | ⇣ | ⇣ | ⇣ | ⇣ | ⇣ | ⇣ | ⇣ |
NOx | Northern Region | Eastern Region | Central Region | Southern Region | Southwestern Region | Northwestern Region | Northeastern Region |
2005–2007 | ⇣ | ⇣ | ⇣ | ⇣ | ⇣ | ⇣ | ⇣ |
2007–2009 | ↓ | 🠋 | ↓ | ↓ | ↓ | ↓ | ↓ |
2009–2011 | 🠋 | 🠋 | ↓ | ↓ | ↓ | ↓ | ↓ |
2011–2013 | ↓ | ↓ | ↑ | ↓ | ⇡ | ⇣ | ⇣ |
2013–2015 | ↓ | ↓ | ↓ | ⇣ | ⇣ | ↓ | ↓ |
PM2.5 | Northern Region | Eastern Region | Central Region | Southern Region | Southwestern Region | Northwestern Region | Northeastern Region |
2005–2007 | 🠋 | 🠋 | 🠋 | 🠋 | 🠋 | ↓ | ↓ |
2007–2009 | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ | ↓ |
2009–2011 | 🠋 | 🠋 | 🠋 | 🠋 | 🠋 | 🠋 | 🠋 |
2011–2013 | ↓ | ↓ | ↑ | ⇣ | ⇣ | ⇣ | ⇣ |
2013–2015 | ↓ | ↓ | ⇣ | ⇣ | ⇣ | ⇣ | ⇣ |
SO2 | Northern Region | Eastern Region | Central Region | Southern Region | Southwestern Region | Northwestern Region | Northeastern Region |
---|---|---|---|---|---|---|---|
2005–2007 | 🠋 | 🠋 | ↓ | ⇣ | ↓ | ⇣ | ⇣ |
2007–2009 | 🠋 | 🠋 | 🠋 | ↓ | 🠋 | ↓ | ⇣ |
2009–2011 | 🠋 | 🠋 | 🠋 | ⇡ | 🠋 | ↓ | ↓ |
2011–2013 | 🠋 | 🠋 | 🠋 | ↓ | 🠋 | ↓ | ↓ |
2013–2015 | ⇣ | ⇣ | ⇣ | ⇣ | ↓ | ⇣ | ⇣ |
NOx | Northern Region | Eastern Region | Central Region | Southern Region | Southwestern Region | Northwestern Region | Northeastern Region |
2005–2007 | ↓ | ↓ | ↓ | ↓ | ⇣ | ⇣ | ⇣ |
2007–2009 | 🠋 | 🠋 | 🠋 | ↓ | ↓ | ↓ | ↓ |
2009–2011 | 🠋 | 🠋 | 🠋 | ↓ | 🠋 | ↓ | ↓ |
2011–2013 | 🠋 | 🠋 | 🠋 | ↓ | 🠋 | ⇣ | 🠋 |
2013–2015 | ⇣ | ⇣ | ⇣ | ⇣ | ↓ | ⇣ | ⇣ |
PM2.5 | Northern Region | Eastern Region | Central Region | Southern Region | Southwestern Region | Northwestern Region | Northeastern Region |
2005–2007 | 🠋 | 🠋 | 🠋 | ↓ | 🠋 | ↓ | 🠋 |
2007–2009 | 🠋 | 🠋 | 🠋 | ⇣ | ↓ | ⇣ | ↓ |
2009–2011 | 🠋 | 🠋 | 🠋 | ↑ | 🠋 | 🠋 | 🠋 |
2011–2013 | ↓ | 🠋 | 🠋 | ↓ | ↓ | ⇣ | ↓ |
2013–2015 | ⇣ | ⇣ | ⇣ | ⇣ | ↓ | ⇣ | ⇣ |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Miao, Y.; Li, Y.; Li, Y.; Ma, X.; Xu, S.; Wang, S. Decomposition Analysis of Factors that Drive the Changes of Major Air Pollutant Emissions in China at a Multi-Regional Level. Sustainability 2019, 11, 7113. https://doi.org/10.3390/su11247113
Yang J, Miao Y, Li Y, Li Y, Ma X, Xu S, Wang S. Decomposition Analysis of Factors that Drive the Changes of Major Air Pollutant Emissions in China at a Multi-Regional Level. Sustainability. 2019; 11(24):7113. https://doi.org/10.3390/su11247113
Chicago/Turabian StyleYang, Jun, Yongmei Miao, Yunfan Li, Yiwen Li, Xiaoxue Ma, Shichun Xu, and Shuxiao Wang. 2019. "Decomposition Analysis of Factors that Drive the Changes of Major Air Pollutant Emissions in China at a Multi-Regional Level" Sustainability 11, no. 24: 7113. https://doi.org/10.3390/su11247113
APA StyleYang, J., Miao, Y., Li, Y., Li, Y., Ma, X., Xu, S., & Wang, S. (2019). Decomposition Analysis of Factors that Drive the Changes of Major Air Pollutant Emissions in China at a Multi-Regional Level. Sustainability, 11(24), 7113. https://doi.org/10.3390/su11247113