Understanding Thermal Impact of Roads on Permafrost Using Normalized Spectral Entropy
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Region
2.2. Land Surface Temperature
2.3. Normalized Spectral Entropy
3. Results
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rockström, J.; Brasseur, G.; Hoskins, B.; Lucht, W.; Schellnhuber, J.; Kabat, P.; Nakicenovic, N.; Gong, P.; Schlosser, P.; Máñez Costa, M.; et al. Climate change: The necessary, the possible and the desirable Earth League climate statement on the implications for climate policy from the 5th IPCC Assessment. Earths Future 2014, 2, 606–611. [Google Scholar] [CrossRef] [Green Version]
- Tubiello, F.N.; Salvatore, M.; Ferrara, A.F.; House, J.; Federici, S.; Rossi, S.; Biancalani, R.; Condor Golec, R.D.; Jacobs, H.; Flammini, A.; et al. The Contribution of Agriculture, Forestry and other Land Use activities to Global Warming, 1990–2012. Glob. Chang. Biol. 2015, 21, 2655–2660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshikawa, K.; Hinzman, L.D. Shrinking thermokarst ponds and groundwater dynamics in discontinuous permafrost near Council, Alaska. Permafr. Periglac. Process. 2003, 14, 151–160. [Google Scholar] [CrossRef]
- Frauenfeld, O.W.; Zhang, T.; Barry, R.G. Interdecadal changes in seasonal freeze and thaw depths in Russia. J. Geophys. Res.-Atmos. 2004, 109, D05101. [Google Scholar] [CrossRef]
- Cheng, G.D.; Jin, H.J. Groundwater in the permafrost regions on the Qinghai-Tibet Plateau and it changes. Hydrogeol. Eng. Geol. 2013, 40, 1–11. [Google Scholar]
- Lu, Q.; Zhao, D.S.; Wu, S.H. Simulated responses of permafrost distribution to climate change on the Qinghai-Tibet Plateau. Sci. Rep. 2017, 7, 3845. [Google Scholar] [CrossRef]
- Cai, H.C.; Li, Y.; Yang, Y.P. Variation of Temperature and Permafrost along Qinghai-Tibet Railway. Chin. J. Rock Mech. Eng. 2016, 35, 1434–1444. [Google Scholar]
- Ran, Y.H.; Li, X.; Cheng, G.D. Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai-Tibet Plateau. Cryosphere 2018, 12, 595–608. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.Q.; Wu, Q.B.; Liu, Y.Z.; Zhang, Z.; Wu, G.L. Thermal accumulation mechanism of asphalt pavement in permafrost regions of the Qinghai-Tibet Plateau. Appl. Therm. Eng. 2018, 129, 345–353. [Google Scholar] [CrossRef]
- De Grandpre, I.; Fortier, D.; Stephani, E. Degradation of permafrost beneath a road embankment enhanced by heat advected in groundwater. Can. J. Earth Sci. 2012, 49, 953–962. [Google Scholar] [CrossRef]
- Oldenborger, G.A.; LeBlanc, A.M. Geophysical characterization of permafrost terrain at Iqaluit International Airport, Nunavut. J. Appl. Geophys. 2015, 123, 36–49. [Google Scholar] [CrossRef]
- Melvin, A.M.; Larsen, P.; Boehlert, B.; Neumann, J.E.; Chinowsky, P.; Espinet, X.; Martinich, J.; Baumann, M.S.; Rennels, L.; Bothner, A.; et al. Climate change damages to Alaska public infrastructure and the economics of proactive adaptation. Proc. Natl. Acad. Sci. USA 2017, 114, E122–E131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fortier, R.; LeBlanc, A.M.; Yu, W.B. Impacts of permafrost degradation on a road embankment at Umiujaq in Nunavik (Quebec), Canada. Can. Geotech. J. 2011, 48, 720–740. [Google Scholar] [CrossRef]
- Ciro, G.A.; Alfaro, M.C. Adaptation strategies for road embankments on permafrost affected by climate warming. In Proceedings of the 2006 IEEE EIC Climate Change Conference, Ottawa, ON, Canada, 10–12 May 2006; p. 10. [Google Scholar]
- Ghias, M.S.; Therrien, R.; Molson, J.; Lemieux, J.M. Controls on permafrost thaw in a coupled groundwater-flow and heat-transport system: Iqaluit Airport, Nunavut, Canada. Hydrogeol. J. 2017, 25, 657–673. [Google Scholar] [CrossRef]
- Liu, W.; Yu, W.; Hu, D.; Lu, Y.; Chen, L.; Yi, X.; Han, F. Crack damage investigation of paved highway embankment in the Tibetan Plateau permafrost environments. Cold Reg. Sci. Technol. 2019, 163, 78–86. [Google Scholar] [CrossRef]
- Liu, W.; Yu, W.; Fortier, R.; Chen, L.; Lu, Y.; Zhang, M.; Hu, D. Thermal effect of rainwater infiltration into a replicated road embankment in a cold environmental chamber. Cold Reg. Sci. Technol. 2019, 159, 47–57. [Google Scholar] [CrossRef]
- Yu, F.; Qi, J.L.; Yao, X.L.; Liu, Y.Z. Comparison of permafrost degradation under natural ground surfaces and embankments of the Qinghai-Tibet Highway. Cold Reg. Sci. Technol. 2015, 114, 1–8. [Google Scholar] [CrossRef]
- Jin, H.J.; Li, S.X.; Wang, S.L.; Zhao, L. Impacts of climatic change on permafrost and cold regions environments in China. Acta Geogr. Sin. 2000, 55, 161–173. [Google Scholar]
- Hachem, S.; Duguay, C.R.; Allard, M. Comparison of MODIS-derived land surface temperatures with ground surface and air temperature measurements in continuous permafrost terrain. Cryosphere 2012, 6, 51–69. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Zhang, B. MODIS-based estimation of air temperature of the Tibetan Plateau. J. Geogr. Sci. 2013, 23, 627–640. [Google Scholar] [CrossRef]
- Sun, J.; Southworth, J. Retrospective analysis of landscape dynamics using normalized spectral entropy. Remote Sens. Lett. 2013, 4, 1049–1056. [Google Scholar] [CrossRef]
- Zaccarelli, N.; Li, B.-L.; Petrosillo, I.; Zurlini, G. Order and disorder in ecological time-series: Introducing normalized spectral entropy. Ecol. Indic. 2013, 28, 22–30. [Google Scholar] [CrossRef]
- Ibisch, P.L.; Hoffmann, M.T.; Kreft, S.; Pe’er, G.; Kati, V.; Biber-Freudenberger, L.; DellaSala, D.A.; Vale, M.M.; Hobson, P.R.; Selva, N. A global map of roadless areas and their conservation status. Science 2016, 354, 1423–1427. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.L. Study on the Ecological Effect of Road Landscape. In Road Landscape Ecology Research; Beijing Normal University Publishing Group: Beijing, China, 2012; pp. 219–289. [Google Scholar]
- Yu, W.B.; Yi, X.; Niu, Y.Z.; Richard, F.; Mu, Y.H.; Zhang, J.M. Dynamic thermal regime of permafrost beneath embankment of Qinghai-Tibet Highway under the scenarios of changing structure and climate warming. Cold Reg. Sci. Technol. 2016, 126, 76–81. [Google Scholar]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Wang, B.; Ma, Y.; Ma, W. Estimation of land surface temperature retriecved from EOS/MODIS in Naqu area over Tibetan Plateau. J. Remote Sens. 2012, 16, 1289–1309. [Google Scholar]
- Famiglietti, C.A.; Fisher, J.B.; Halverson, G.; Borbas, E.E. Global Validation of MODIS Near-Surface Air and Dew Point Temperatures. Geophys. Res. Lett. 2018, 45, 7772–7780. [Google Scholar] [CrossRef] [Green Version]
- Bejan, A. Evolution in thermodynamics. Appl. Phys. Rev. 2017, 4, 011305. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Liu, F.; Zhang, J.; Hu, J.; Cao, Y. Information Entropy As a Basic Building Block of Complexity Theory. Entropy 2013, 15, 3396–3418. [Google Scholar] [CrossRef] [Green Version]
- Ferenets, R.; Tarmo, L.; Anier, A.; Jantti, V.; Melto, S.; Hovilehto, S. Comparison of entropy and complexity measures for the assessment of depth of sedation. IEEE Trans. Biomed. Eng. 2006, 53, 1067–1077. [Google Scholar] [CrossRef] [PubMed]
- Legendre, P.; Legendre, L. Multidimensional qualitative data. In Numerical Ecology (Developments in Environmental Modelling); Elsevier Science B.V.: Toronto, ON, Canada, 2012; pp. 208–216. [Google Scholar]
- Schreiber, T.; Schmitz, A. Improved surrogate data for nonlinearity tests. Phys. Rev. Lett. 1996, 77, 635–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreiber, T.; Schmitz, A. Surrogate time series. Phys. D 2000, 142, 346–382. [Google Scholar] [CrossRef] [Green Version]
- Press, W.H.; Teukolsky, S.A.; Vetterling, B.P.; Flannery, B.P. Random numbers; Fast Fourier Transform. In Numerical Recipes in C: The Art of Scientific Computing; Cambridge University Press: Cambridge, UK, 1992; pp. 290–296, 496–532. ISBN 0-521-43108-5. [Google Scholar]
- R-Core-Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Luyssaert, S.; Jammet, M.; Stoy, P.C.; Estel, S.; Pongratz, J.; Ceschia, E.; Churkina, G.; Don, A.; Erb, K.; Ferlicoq, M.; et al. Land management and land-cover change have impacts of similar magnitude on surface temperature. Nat. Clim. Chang. 2014, 4, 389–393. [Google Scholar] [CrossRef] [Green Version]
- Rangwala, I.; Miller, J.R. Climate change in mountains: A review of elevation-dependent warming and its possible causes. Clim. Chang. 2012, 114, 527–547. [Google Scholar] [CrossRef]
Category | Comparison Object | p-Value 1 |
---|---|---|
Land cover | High coverage grassland | 0.001 |
Medium coverage grassland | <0.001 | |
Low coverage grassland | <0.001 | |
Shrubbery | 0.306 | |
Unused land | <0.001 | |
Elevation | 3700–3900 m | 0.454 |
3900–41900 m | 0.200 | |
4100–4300 m | <0.001 | |
4300–4500 m | <0.001 | |
4500–4700 m | <0.001 | |
4700–4900 m | 0.004 | |
4900–5100 m | 0.045 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Zhang, H.; Zhao, F.; Sun, J. Understanding Thermal Impact of Roads on Permafrost Using Normalized Spectral Entropy. Sustainability 2019, 11, 7177. https://doi.org/10.3390/su11247177
Zhang C, Zhang H, Zhao F, Sun J. Understanding Thermal Impact of Roads on Permafrost Using Normalized Spectral Entropy. Sustainability. 2019; 11(24):7177. https://doi.org/10.3390/su11247177
Chicago/Turabian StyleZhang, Chi, Hong Zhang, Fuqiang Zhao, and Jing Sun. 2019. "Understanding Thermal Impact of Roads on Permafrost Using Normalized Spectral Entropy" Sustainability 11, no. 24: 7177. https://doi.org/10.3390/su11247177
APA StyleZhang, C., Zhang, H., Zhao, F., & Sun, J. (2019). Understanding Thermal Impact of Roads on Permafrost Using Normalized Spectral Entropy. Sustainability, 11(24), 7177. https://doi.org/10.3390/su11247177