Forecasting Repair Schedule for Building Components Based on Case-Based Reasoning and Fuzzy-AHP
Abstract
:1. Introduction
2. Preliminary Research
2.1. Literature Review
2.2. Case-Based Reasoning
2.3. Fuzzy-Analytic Hierarchy Process (Fuzzy-AHP)
3. Model Development
3.1. Database Construction
3.2. Attribute Selection
3.3. Attribute Weight Calculation Based on Fuzzy-AHP
3.4. Case Retrieval Based on CBR
4. Experiment
4.1. Experimental Process
4.2. Results and Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Definitions of Attributes
References
- Kwon, N.; Song, K.; Park, M.; Jang, Y.; Yoon, I.; Ahn, Y. Preliminary service life estimation model for MEP components using case-based reasoning and genetic algorithm. Sustainability 2019, 11, 3074. [Google Scholar] [CrossRef] [Green Version]
- Au-Yong, C.P.; Ali, A.S.; Ahmad, F. Significant Characteristics of Scheduled and Condition-Based Maintenance in Office Buildings. J. Perform. Constr. Facil. 2013, 28, 257–263. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Han, S.; Hyun, C. Minimizing Fluctuation of the Maintenance, Repair, and Rehabilitation Cost Profile of a Building. J. Perform. Constr. Facil. 2015, 30, 04015034. [Google Scholar] [CrossRef]
- Kim, S.; Lee, S.; Ahn, Y. Evaluating Housing Maintenance Costs with Loss-Distribution Approach in South Korean Apartment Housing. J. Manag. Eng. 2019, 35, 04018062. [Google Scholar] [CrossRef]
- Grussing, M.N.; Liu, L.Y. Knowledge-Based Optimization of Building Maintenance, Repair, and Renovation Activities to Improve Facility Life Cycle Investments. J. Perform. Constr. Facil. 2013, 28, 539–548. [Google Scholar] [CrossRef]
- Ministry of Land, Infrastructure and Transport (MOLIT). Statistics Annual Report; MOLIT: Sejong, Korea, 2019.
- Ministry of Land, Infrastructure and Transport (MOLIT). Statistics Annual Report; MOLIT: Sejong, Korea, 2018.
- Ministry of Land, Infrastructure and Transport (MOLIT). Statistics Annual Report; MOLIT: Sejong, Korea, 2017.
- Balaras, C.A.; Droutsa, K.; Dascalaki, E.; Kontoyiannidis, S. Deterioration of European apartment buildings. Energy Build. 2005, 37, 515–527. [Google Scholar] [CrossRef]
- Housing, Planning and Lands, Building. Building Management and Maintenance: Public Consultation on Mandatory Building Inspection; Housing, Planning and Lands Bureau: Hong Kong, China, 2005. [Google Scholar]
- Morgado, J.; Flores-Colen, I.; de Brito, J.; Silva, A. Maintenance planning of pitched roofs in current buildings. J. Constr. Eng. Manag. 2017, 143, 05017010. [Google Scholar] [CrossRef]
- Yau, Y. Collectivism and activism in housing management in Hong Kong. Habitat Int. 2011, 35, 327–334. [Google Scholar] [CrossRef]
- Ministry of Land, Infrastructure and Transport (MOLIT). Multi-Family Housing Management Act; MOLIT: Sejong, Korea, 2019.
- Lee, K.H.; Park, G.S.; Chae, C.U. A Study on the Repair Time of the Construction Type in the Apartment Housings. J. Korean Hous. Assoc. 2011, 22, 83–92. [Google Scholar] [CrossRef]
- Kim, J.; Son, J. A study on estimation status and improvement plan of the repair and replacement cycle of a building. J. Korea Inst. Build. Constr. 2010, 10, 193–198. [Google Scholar] [CrossRef] [Green Version]
- Palmer, D. Maintenance Planning and Scheduling Handbook; McGraw-Hill: New York, NY, USA, 1999. [Google Scholar]
- Park, S.; Ahn, Y.; Lee, S. Analyzing the finishing works service life pattern of public housing in South Korea by probabilistic approach. Sustainability 2018, 10, 4469. [Google Scholar] [CrossRef] [Green Version]
- Shohet, I.M.; Puterman, M.; Gilboa, E. Deterioration patterns of building cladding components for maintenance management. Constr. Manag. Econ. 2002, 20, 305–314. [Google Scholar] [CrossRef]
- Lee, S.; Ahn, Y. Analyzing the long-term service life of MEP using the probabilistic approach in residential buildings. Sustainability 2018, 10, 3803. [Google Scholar] [CrossRef] [Green Version]
- Motawa, I.; Almarshad, A. A knowledge-based BIM system for building maintenance. Autom. Constr. 2013, 29, 173–182. [Google Scholar] [CrossRef]
- Shohet, I.M.; Lavy, S. Development of an integrated healthcare facilities management model. Facilities 2004, 22, 129–140. [Google Scholar] [CrossRef]
- Silva, A.; de Brito, J.; Gaspar, P.L. Service life prediction model applied to natural stone wall claddings (directly adhered to the substrate). Constr. Build. Mater. 2011, 25, 3674–3684. [Google Scholar] [CrossRef]
- Ghodoosi, F.; Abu-Samra, S.; Zeynalian, M.; Zayed, T. Maintenance Cost Optimization for Bridge Structures Using System Reliability Analysis and Genetic Algorithms. J. Constr. Eng. Manag. 2017, 144, 04017116. [Google Scholar] [CrossRef]
- Ji, S.H.; Park, M.; Lee, H.S.; Ahn, J.; Kim, N.; Son, B. Military Facility Cost Estimation System Using Case-Based Reasoning in Korea. J. Comput. Civ. Eng. 2010, 25, 218–231. [Google Scholar] [CrossRef] [Green Version]
- Morcous, G.; Rivard, H.; Hanna, A.M. Case-Based Reasoning System for Modeling Infrastructure Deterioration. J. Comput. Civ. Eng. 2002, 16, 104–114. [Google Scholar] [CrossRef]
- Hong, T.; Hyun, C.; Moon, H. CBR-based cost prediction model-II of the design phase for multi-family housing projects. Expert Syst. Appl. 2011, 38, 2797–2808. [Google Scholar] [CrossRef]
- Dikmen, I.; Birgonul, M.T.; Gur, A.K. A case-based decision support tool for bid mark-up estimation of international construction projects. Autom. Constr. 2007, 17, 30–44. [Google Scholar] [CrossRef]
- Kwon, N.; Park, M.; Lee, H.S.; Ahn, J.; Kim, S. Construction Noise Prediction Model Based on Case-Based Reasoning in the Preconstruction Phase. J. Constr. Eng. Manag. 2017, 143, 04017008. [Google Scholar] [CrossRef]
- Goh, Y.M.; Chua, D.K.H. Case-Based Reasoning for Construction Hazard Identification: Case Representation and Retrieval. J. Constr. Eng. Manag. 2009, 135, 1181–1189. [Google Scholar] [CrossRef]
- Ji, S.H.; Park, M.; Lee, H.S. Case Adaptation Method of Case-Based Reasoning for Construction Cost Estimation in Korea. J. Constr. Eng. Manag. 2012, 138, 43–52. [Google Scholar] [CrossRef]
- Ahn, J.; Ji, S.H.; Park, M.; Lee, H.S.; Kim, S.; Suh, S.W. The attribute impact concept: Applications in case-based reasoning and parametric cost estimation. Autom. Constr. 2014, 43, 195–203. [Google Scholar] [CrossRef]
- Kim, B.S.; Hong, T. Revised Case-Based Reasoning Model Development Based on Multiple Regression Analysis for Railroad Bridge Construction. J. Constr. Eng. Manag. 2012, 138, 154–162. [Google Scholar] [CrossRef]
- Kwon, N.; Lee, J.; Park, M.; Yoon, I.; Ahn, Y. Performance evaluation of distance measurement methods for construction noise prediction using case-based reasoning. Sustainability 2019, 11, 871. [Google Scholar] [CrossRef] [Green Version]
- Pereira, E.; Hermann, U.; Han, S.; AbouRizk, S. Case-Based Reasoning Approach for Assessing Safety Performance Using Safety-Related Measures. J. Constr. Eng. Manag. 2018, 144, 04018088. [Google Scholar] [CrossRef]
- Arditi, D.; Tokdemir, O.B. Comparison of case-based reasoning and artificial neural networks. J. Comput. Civ. Eng. 1999, 13, 162–169. [Google Scholar] [CrossRef]
- Jin, R.; Cho, K.; Hyun, C.; Son, M. MRA-based revised CBR model for cost prediction in the early stage of construction projects. Expert Syst. Appl. 2012, 39, 5214–5222. [Google Scholar] [CrossRef]
- An, S.H.; Kim, G.H.; Kang, K.I. A case-based reasoning cost estimating model using experience by analytic hierarchy process. Build. Environ. 2007, 42, 2573–2579. [Google Scholar] [CrossRef]
- Doğan, S.Z.; Arditi, D.; Murat Günaydin, H. Using Decision Trees for Determining Attribute Weights in a Case-Based Model of Early Cost Prediction. J. Constr. Eng. Manag. 2008, 134, 146–152. [Google Scholar] [CrossRef] [Green Version]
- Doğan, S.Z.; Arditi, D.; Günaydın, H.M. Determining Attribute Weights in a CBR Model for Early Cost Prediction of Structural Systems. J. Constr. Eng. Manag. 2006, 132, 1092–1098. [Google Scholar] [CrossRef] [Green Version]
- Koo, C.; Hong, T.; Hyun, C.; Koo, K. A CBR-based hybrid model for predicting a construction duration and cost based on project characteristics in multi-family housing projects. Can. J. Civ. Eng. 2010, 37, 739–752. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process; McGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Shapira, A.; Goldenberg, M. AHP-Based Equipment Selection Model for Construction Projects. J. Constr. Eng. Manag. 2005, 131, 1263–1273. [Google Scholar] [CrossRef]
- Hastak, M.; Halpin, D.W. Assessment of life-cycle benefit-cost of composites in construction. J. Compos. Constr. 2000, 4, 103–111. [Google Scholar] [CrossRef]
- Kaya, T.; Kahraman, C. Multicriteria renewable energy planning using an integrated fuzzy VIKOR & AHP methodology: The case of Istanbul. Energy 2010, 35, 2517–2527. [Google Scholar]
- Chan, H.K.; Sun, X.; Chung, S.H. When should fuzzy analytic hierarchy process be used instead of analytic hierarchy process? Decis. Support Syst. 2019, 125, 113114. [Google Scholar] [CrossRef]
- Kwon, N.; Cho, J.; Lee, H.S.; Yoon, I.; Park, M. Compensation Cost Estimation Model for Construction Noise Claims Using Case-Based Reasoning. J. Constr. Eng. Manag. 2019, 145, 04019047. [Google Scholar] [CrossRef]
- Stenbeck, T. Budgeting Performance-Based Winter Maintenance: Snow Influence on Highway Maintenance Cost. J. Infrastruct. Syst. 2009, 15, 251–260. [Google Scholar] [CrossRef]
- Ali, A.S.; Kamaruzzaman, S.N.; Sulaiman, R.; Cheong Peng, Y. Factors affecting housing maintenance cost in Malaysia. J. Facil. Manag. 2010, 8, 285–298. [Google Scholar] [CrossRef] [Green Version]
- Shohet, I.M. Key performance indicators for maintenance of health-care facilities. Facilities 2003, 21, 5–12. [Google Scholar] [CrossRef]
- Ahn, J.; Park, M.; Lee, H.S.; Ahn, S.J.; Ji, S.H.; Song, K.; Son, B.S. Covariance effect analysis of similarity measurement methods for early construction cost estimation using case-based reasoning. Autom. Constr. 2017, 81, 254–266. [Google Scholar] [CrossRef]
- Du, J.; Bormann, J. Improved similarity measure in case-based reasoning with global sensitivity analysis: An example of construction quantity estimating. J. Comput. Civ. Eng. 2014, 28, 04014020. [Google Scholar] [CrossRef]
- Vu, D.H.; Muttaqi, K.M.; Agalgaonkar, A.P. A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables. Appl. Energy 2015, 140, 385–394. [Google Scholar] [CrossRef] [Green Version]
- Bal, A.K.; Prasad, D.; Pamintuan, M.A.U.; Mammen-Prasad, E.; Petrova, A. Timing of intravenous immunoglobulin treatment and risk of coronary artery abnormalities in children with Kawasaki disease. Pediatr. Neonatol. 2014, 55, 387–392. [Google Scholar] [CrossRef] [Green Version]
- Salleh, S.S.; Aziz, N.A.A.; Mohamad, D.; Omar, M. Combining Mahalanobis and Jaccard Distance to Overcome Similarity Measurement Constriction on Geometrical Shapes. Int. J. Comput. Sci. Issues 2012, 9, 124–132. [Google Scholar]
- Kwon, N.; Song, K.; Ahn, Y.; Park, M.; Jang, Y. Maintenance cost prediction for aging residential buildings based on case-based reasoning and genetic algorithm. J. Build. Eng. 2020, 28, 101006. [Google Scholar] [CrossRef]
- Liao, T.W. An investigation of a hybrid CBR method for failure mechanisms identification. Eng. Appl. Artif. Intell. 2004, 123–134. [Google Scholar] [CrossRef]
- Kim, S.; Kim, H. A new metric of absolute percentage error for intermittent demand forecasts. Int. J. Forecast. 2016, 32, 669–679. [Google Scholar] [CrossRef]
- Lewis, C.D. Industrial and Business Forecasting Methods: A Practical Guide to Exponential Smoothing and Curve Fitting; Butterworth-Heinemann: London, UK, 1982. [Google Scholar]
- Rabl, A. Air pollution and buildings: An estimation of damage costs in France. Environ. Impact Assess. Rev. 1999, 19, 361–385. [Google Scholar] [CrossRef]
Authors | Research Objective | Target | Methodology | Considered Factors for Maintenance Plan | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | ||||
Lee and Ahn (2018) | To establish maintenance plan for analyzing service life pattern | Residential Building (MEP component) | Probabilistic, Monte-Carlo Simulation | × | × | × | − | − | − | − | − | − |
Park et al. (2018) | To establish maintenance plan for analyzing service life pattern | Public Housing (Component of finishing work) | Probabilistic, Monte-Carlo Simulation | × | × | × | − | − | − | − | − | − |
Kim et al. (2018) | To evaluate maintenance cost | Apartment building | Probabilistic, Monte-Carlo Simulation | × | × | × | × | × | − | × | − | − |
Shohet and Lavy (2004) | To support the planning of FM activities | Healthcare Facilities | Statistical, Case-based reasoning | − | − | − | × | × | × | × | − | − |
Motawa and Almarshad (2013) | To support preventive/corrective maintenance decision | Building | Qualitative, Case-based reasoning | − | − | − | − | − | × | − | − | × |
Silva et al. (2011) | To establish a model for the service life prediction | Building (Natural stone wall claddings) | Mathematical (Index of the degradation severity) | − | − | − | − | − | − | − | × | − |
Ghodoosi et al. (2017) | To develop framework that predicts the cost-effective intervention schedule | Infrastructure (Bridge) | Mathematical, Genetic algorithm | − | − | − | − | − | − | − | × | − |
Grussing and Liu (2013) | To optimize the selection of building MR&R activities | Facility (Building) | Mathematical, Genetic algorithm | × | − | − | × | − | − | − | × | − |
Maintenance Item | Building Component |
---|---|
Building exterior | roof, exterior, exterior windows and doors |
Building interior | ceiling, interior wall, stair, floor |
Outdoor facilities | outdoor facilities |
Electricity, fire safety, elevator and home networks | elevator and lift, security/crime prevention facility, spare power facility, substation, lightning protection facility and outdoor lighting, communication and broadcast, extinguishment facility, fire detection facility |
Water supply, sanitation, gas and ventilation | drainage facility, water supply facility, gas facility, ventilation facility |
Heating and hot water | heating facility, hot water supply facility |
Linguistic Terms | Score |
---|---|
Absolute strong (AS) | (2, 2.5, 3) |
Very strong (VS) | (1.5, 2, 2.5) |
Fairly strong (FS) | (1, 1.5, 2) |
Slightly strong (SS) | (1, 1, 1.5) |
Equal | (1, 1, 1) |
Slightly weak (SW) | (0.66, 1, 1) |
Fairly weak (FW) | (0.5, 0.66, 1) |
Very weak (VW) | (0.4, 0.5, 0.66) |
Absolutely weak (AW) | (0.33, 0.4, 0.5) |
Building-Related Attributes (First Hierarchy: 0.3915) | Second Hierarchy Weights | Final Weights | |||||
---|---|---|---|---|---|---|---|
Attribute | A1 | A2 | A3 | A4 | A5 | ||
A1 | (1, 1, 1) | (0.75, 1.01, 1.18) | (0.70, 0.94, 1.22) | (0.76, 0.99, 1.19) | (0.61, 0.84, 1.03) | 0.1870 | 0.0732 |
A2 | (0.85, 0.99, 1.33) | (1, 1, 1) | (0.73, 1, 1.21) | (0.79, 0.99, 1.24) | (0.59, 0.79, 1) | 0.1892 | 0.0741 |
A3 | (0.82, 1.07, 1.44) | (0.83, 1, 1.37) | (1, 1, 1) | (0.84, 0.98, 1.12) | (0.71, 0.82, 1.04) | 0.1955 | 0.0765 |
A4 | (0.84, 1.01, 1.32) | (0.80, 1.01, 1.27) | (0.90, 1.02, 1.19) | (1, 1, 1) | (0.71, 0.87, 1.07) | 0.1959 | 0.0767 |
A5 | (0.97, 1.19, 1.63) | (1, 1.27, 1.71) | (0.96, 1.21, 1.41) | (0.93, 1.15, 1.41) | (1, 1, 1) | 0.2324 | 0.0910 |
Maintenance-Related Attributes (First Hierarchy: 0.6085) | Second Hierarchy Weights | Final Weights | ||||
---|---|---|---|---|---|---|
Attribute | A6 | A7 | A8 | A9 | ||
A6 | (1, 1, 1) | (0.58, 0.73, 0.96) | (0.67, 0.84, 1.09) | (0.52, 0.68, 0.85) | 0.1988 | 0.1210 |
A7 | (1.04, 1.37, 1.72) | (1, 1, 1) | (0.62, 0.81, 1.04) | (0.54, 0.72, 0.92) | 0.2323 | 0.1414 |
A8 | (0.92, 1.20, 1.49) | (0.97, 1.23, 1.61) | (1, 1, 1) | (0.65, 0.81, 1.03) | 0.2575 | 0.1567 |
A9 | (1.18, 1.47, 1.92) | (1.09, 1.39, 1.84) | (0.97, 1.23, 1.53) | (1, 1, 1) | 0.3114 | 0.1895 |
k-Nearest Neighbors | ||||
---|---|---|---|---|
Error rate | 3-NN | 5-NN | 7-NN | 10-NN |
MAPE (%) | 8.48 | 9.35 | 9.84 | 10.52 |
Case Number | Input Attributes | ||||||||
---|---|---|---|---|---|---|---|---|---|
A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | |
1 | 21.09% | 262.23% | 2 | 15 | 427 | 39,674.82 m2 | 1992 | 0.7385 | 6 |
2 | 15.99% | 179.89% | 8 | 14 | 541 | 66,648.68 m2 | 1984 | 6313.257 | 17 |
3 | 15.02% | 143.25% | 3 | 15 | 210 | 21,360.9 m2 | 1986 | 2.7912 | 13 |
4 | 24.34% | 284.68% | 3 | 18 | 249 | 28,323.93 m2 | 1993 | 8.5871 | 6 |
5 | 17.38% | 249.85% | 10 | 21 | 1056 | 108,460 m2 | 1990 | 14.7886 | 4 |
6 | 19.62% | 194.86% | 6 | 13 | 364 | 38,506 m2 | 1992 | 3.3399 | 8 |
7 | 22.38% | 269.36% | 5 | 15 | 336 | 34,805.77 m2 | 1991 | 2.0974 | 8 |
8 | 31.79% | 378.54% | 1 | 20 | 232 | 24,629.49 m2 | 1995 | 1.0576 | 11 |
9 | 39.94% | 559.69% | 1 | 22 | 199 | 23,140 m2 | 1995 | 7.1305 | 1 |
10 | 20.16% | 297.47% | 2 | 23 | 437 | 48,556.27 m2 | 1997 | 2.2563 | 26 |
11 | 22.67% | 359.02% | 6 | 23 | 538 | 44,020.28 m2 | 1999 | 0.7586 | 3 |
12 | 22.79% | 278% | 3 | 15 | 397 | 38,663.01 m2 | 1998 | 7.8253 | 6 |
13 | 21.51% | 190.79% | 12 | 12 | 1070 | 71,411.89 m2 | 1996 | 2.6526 | 9 |
14 | 27.48% | 310.71% | 5 | 25 | 876 | 92,645.76 m2 | 1994 | 4.5306 | 18 |
15 | 25.24% | 210% | 17 | 12 | 818 | 113,198 m2 | 1995 | 2.5301 | 2 |
16 | 20.22% | 234.58% | 6 | 13 | 824 | 52,241.71 m2 | 1987 | 2.1694 | 20 |
17 | 14.45% | 143.37% | 5 | 13 | 296 | 119,739.7 m2 | 1978 | 2.8229 | 17 |
18 | 18.02% | 242.78% | 6 | 15 | 742 | 73,398.42 m2 | 1991 | 4.2581 | 2 |
19 | 17.37% | 191.71% | 25 | 15 | 3481 | 2,374,050 m2 | 1990 | 0.5972 | 2 |
20 | 21.01% | 198.22% | 10 | 15 | 700 | 62,776.43 m2 | 1998 | 3.2524 | 3 |
Case Number | Case Similarity | |||
---|---|---|---|---|
3-NN | 5-NN | 7-NN | 10-NN | |
T1 | 99.47 | 99.42 | 99.38 | 99.31 |
T2 | 92.50 | 90.65 | 89.55 | 88.71 |
T3 | 99.15 | 99.04 | 98.95 | 98.75 |
T4 | 99.29 | 99.20 | 99.12 | 99.06 |
T5 | 98.44 | 98.44 | 98.40 | 98.34 |
T6 | 99.14 | 99.1 | 99.07 | 99.01 |
T7 | 99.35 | 99.28 | 99.24 | 99.19 |
T8 | 99.16 | 98.90 | 98.76 | 98.62 |
T9 | 97.62 | 97.56 | 97.49 | 97.39 |
T10 | 97.94 | 97.77 | 97.66 | 97.52 |
T11 | 99.06 | 98.99 | 98.94 | 98.87 |
T12 | 99.27 | 99.19 | 99.13 | 99.07 |
T13 | 98.71 | 98.62 | 98.57 | 98.50 |
T14 | 98.22 | 98.08 | 97.98 | 97.85 |
T15 | 98.88 | 98.75 | 98.64 | 98.55 |
T16 | 98.51 | 98.33 | 98.21 | 98.04 |
T17 | 98.07 | 97.76 | 97.58 | 97.39 |
T18 | 99.00 | 98.98 | 98.96 | 98.91 |
T19 | 89.89 | 89.72 | 89.58 | 89.40 |
T20 | 99.43 | 99.40 | 99.37 | 99.31 |
Average | 98.05 | 97.86 | 97.73 | 97.59 |
Case Number | Actual Repair Time | Repair Time (Year) | Differences | Mean Absolute Percentage Error (MAPE, %) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Predicted Repair Time | Predicted Repair Time | Predicted Repair Time | |||||||||||
3-NN | 5-NN | 7-NN | 10-NN | 3-NN | 5-NN | 7-NN | 10-NN | 3-NN | 5-NN | 7-NN | 10-NN | ||
T1 | 19 | 19.33 | 19.8 | 19.86 | 19.5 | −0.33 | −0.8 | −0.86 | −0.5 | 5.26 | 6.32 | 7.52 | 7.89 |
T2 | 27 | 17.67 | 19.4 | 21.57 | 22.9 | 9.33 | 7.6 | 5.43 | 4.1 | 34.57 | 28.15 | 21.16 | 16.67 |
T3 | 25 | 25.33 | 25.6 | 26.14 | 25.9 | −0.33 | −0.6 | −1.14 | −0.9 | 1.33 | 2.4 | 4.57 | 5.2 |
T4 | 19 | 17.67 | 18.4 | 18.57 | 18.5 | 1.33 | 0.6 | 0.43 | 0.5 | 7.02 | 5.26 | 5.26 | 4.74 |
T5 | 21 | 23 | 22.2 | 22 | 22 | −2 | −1.2 | −1.00 | −1 | 9.52 | 7.62 | 7.48 | 7.62 |
T6 | 19 | 18.67 | 19.4 | 19.43 | 19.5 | 0.33 | −0.4 | −0.43 | −0.5 | 5.26 | 6.32 | 6.77 | 5.79 |
T7 | 22 | 20 | 20.2 | 20 | 19.8 | 2 | 1.8 | 2.00 | 2.2 | 9.09 | 8.18 | 9.09 | 10 |
T8 | 17 | 16 | 15.4 | 15.57 | 15.4 | 1 | 1.6 | 1.43 | 1.6 | 5.88 | 9.41 | 8.40 | 10.59 |
T9 | 17 | 15.33 | 15.6 | 15.57 | 15.2 | 1.67 | 1.4 | 1.43 | 1.8 | 9.80 | 8.24 | 8.40 | 10.59 |
T10 | 14 | 13.33 | 14.6 | 14.43 | 15.3 | 0.67 | −0.6 | −0.43 | −1.3 | 9.52 | 12.86 | 15.31 | 17.86 |
T11 | 13 | 12.67 | 12.6 | 12.29 | 12.7 | 0.33 | 0.4 | 0.71 | 0.3 | 2.56 | 3.08 | 5.49 | 5.38 |
T12 | 23 | 22.67 | 23.6 | 23.29 | 22.9 | 0.33 | −0.6 | −0.29 | 0.1 | 1.45 | 4.35 | 3.73 | 3.91 |
T13 | 15 | 14.67 | 15.8 | 15.29 | 15.1 | 0.33 | −0.8 | −0.29 | −0.1 | 6.67 | 10.67 | 9.52 | 10 |
T14 | 17 | 15.67 | 15.2 | 14.71 | 14.8 | 1.33 | 1.8 | 2.29 | 2.2 | 7.84 | 10.59 | 13.45 | 12.94 |
T15 | 17 | 16.33 | 16 | 16.43 | 16.6 | 0.67 | 1 | 0.57 | 0.4 | 7.84 | 8.24 | 8.40 | 8.24 |
T16 | 24 | 23.67 | 24 | 24.71 | 24.6 | 0.33 | 0 | −0.71 | −0.6 | 4.17 | 5 | 6.55 | 6.67 |
T17 | 33 | 29.33 | 28.6 | 28.29 | 28.1 | 3.67 | 4.4 | 4.71 | 4.9 | 11.11 | 13.33 | 14.29 | 14.85 |
T18 | 20 | 21 | 21 | 20.71 | 20.5 | −1 | 1 | −0.71 | −0.5 | 5.50 | 5.00 | 6.43 | 5.50 |
T19 | 21 | 22 | 24.8 | 22.57 | 22.7 | −1 | −3.8 | −1.57 | −1.7 | 17.46 | 25.71 | 27.89 | 22.38 |
T20 | 23 | 23 | 23.4 | 23.14 | 23.2 | 0 | −0.4 | −0.14 | −0.2 | 0.00 | 3.48 | 3.11 | 3.48 |
Mean absolute percentage error (MAPE) | 8.07 | 9.21 | 9.64 | 9.51 |
NN | Building Components | Repair Frequency | |||||||
---|---|---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | ||
1 | 1 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 4 |
2 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 3 |
3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 3 |
4 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 0 | 3 |
5 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 2 |
6 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 |
7 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 2 | 4 |
8 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 2 |
9 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 3 |
10 | 1 | 0 | 0 | 3 | 0 | 0 | 0 | 1 | 5 |
% | 16.13% | 9.68% | 3.23% | 32.26% | 12.90% | 6.45% | 3.22% | 16.13% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Kwon, N.; Ahn, Y. Forecasting Repair Schedule for Building Components Based on Case-Based Reasoning and Fuzzy-AHP. Sustainability 2019, 11, 7181. https://doi.org/10.3390/su11247181
Park S, Kwon N, Ahn Y. Forecasting Repair Schedule for Building Components Based on Case-Based Reasoning and Fuzzy-AHP. Sustainability. 2019; 11(24):7181. https://doi.org/10.3390/su11247181
Chicago/Turabian StylePark, Sojin, Nahyun Kwon, and Yonghan Ahn. 2019. "Forecasting Repair Schedule for Building Components Based on Case-Based Reasoning and Fuzzy-AHP" Sustainability 11, no. 24: 7181. https://doi.org/10.3390/su11247181
APA StylePark, S., Kwon, N., & Ahn, Y. (2019). Forecasting Repair Schedule for Building Components Based on Case-Based Reasoning and Fuzzy-AHP. Sustainability, 11(24), 7181. https://doi.org/10.3390/su11247181