Semi-Dry Carbonation Process Using Fly Ash from Solid Refused Fuel Power Plant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Semi-Dry Carbonation Reactor
2.3. Characterizations
3. Results
4. Discussions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Plaza, M.G.; Pevida, C.; Arenillas, A.; Rubiera, F.; Pis, J.J. CO2 capture by adsorption with nitrogen enriched carbons. Fuel 2007, 14, 2204–2212. [Google Scholar] [CrossRef]
- Yang, H.; Xu, Z.; Fan, M.; Gupta, R.; Slimane, R.B.; Bland, A.E.; Wright, I. Progress in carbon dioxide separation and capture: A review. J. Environ. Sci. 2008, 20, 14–27. [Google Scholar] [CrossRef]
- Al-Shawabkeh, A.; Matsuda, H.; Hasatani, M. Comparative reactivity of treated FBC- and PCC-fly ash for SO2 removal. Can. J. Chem. Eng. 1995, 15, 193–201. [Google Scholar]
- Davini, P. Flue gas treatment by activated carbon obtained from oil-fired fly ash. Carbon 2002, 40, 1973–1979. [Google Scholar] [CrossRef]
- Lu, G.Q.; Do, D.D. Adsorption properties of fly ash particles for NOx removal from flue gases. Fuel Process Technol. 1991, 27, 95–107. [Google Scholar] [CrossRef]
- Rubel, A.; Andrews, R.; Gonzalez, R.; Groppo, J.; Robl, T. Adsorption of Hg and NOx on coal by-products. Fuel 2005, 84, 911–916. [Google Scholar] [CrossRef]
- Florin, N.; Fennell, P. Synthetic CaO-based sorbent for CO2 capture. Energy Procedia 2011, 4, 830–838. [Google Scholar] [CrossRef]
- Han, S.-J.; Yoo, M.; Kim, D.-W.; Wee, J.-H. Carbon dioxide capture using calcium hydroxide aqueous solution as the absorbent. Energy Fuels 2011, 25, 3825–3834. [Google Scholar] [CrossRef]
- Manovic, V.; Anthony, E.J. Lime-based sorbents for high-temperature CO2 capture-a review of sorbent modification methods. Int. J. Environ. Res. Public Health 2010, 7, 3129–3140. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, R.; Ning, T.; Lal, R. Higher CO2 absorption using a new class of calcium hydroxide (Ca(OH)2) nanoparticles. Environ. Chem. Lett. 2018, 16, 1095–1100. [Google Scholar] [CrossRef]
- Skoufa, Z.; Antzara, A.; Heracleous, E.; Lemonidou, A.A. Evaluating the activity and stability of CaO-based sorbents for post-combustion CO2 capture in fixed-bed reactor experiments. Energy Procedia 2016, 86, 171–180. [Google Scholar] [CrossRef]
- Ibrahim, A.-R.; Vuningoma, J.B.; Huang, Y.; Wang, H.; Li, J. Rapid carbonation for calcite from a solid-liquid-gas system with an imidazolium-based ionic liquid. Int. J. Mol. Sci. 2014, 15, 11350–11363. [Google Scholar] [CrossRef] [PubMed]
- Solieman, A.A.A.; Dijkstra, J.W.; Haije, W.G.; Cobden, P.D.; van den Brink, R.W. Calcium oxide for CO2 capture: Operational window and efficiency penalty in sorption-enhanced steam methane reforming. Int. J. Greenh. Gas Control 2009, 3, 393–400. [Google Scholar] [CrossRef]
- Derevschikov, V.S.; Lysikov, A.L.; Okunev, A.G. CaO/Y2O3 pellets for reversible CO2 capture in sorption enhanced reforming process. Catal. Sustain. Energy 2012, 1, 53–59. [Google Scholar] [CrossRef]
- Shi, J.; Li, Y.; Zhang, Q.; Ma, X.; Duan, L.; Zhou, X. CO2 capture performance of a novel synthetic CaO/sepiolite sorbent at calcium looping conditions. Appl. Energy 2017, 203, 412–421. [Google Scholar] [CrossRef]
- Garg, A.; Smith, R.; Hill, D.; Simms, N.; Pollard, S. Wastes as co-fuels: The policy framework for solid recovered fuel (SRF) in Europe, with UK implications. Environ. Sci. Technol. 2007, 41, 4868–4874. [Google Scholar] [CrossRef] [PubMed]
- Loo, L.; Maaten, B.; Konist, A.; Siirde, A.; Neshumayev, D.; Pihu, T. Carbon dioxide emission factors for oxy-fuel CFBC and aqueous carbonation of the Ca-rich oil shale ash. Energy Procedia 2017, 128, 144–149. [Google Scholar] [CrossRef]
- Dananjayan, R.R.T.; Kandasamy, P.; Andimuthu, R. Direct mineral carbonation of coal fly ash for CO2 sequestration. J. Clean. Prod. 2016, 112, 4173–4182. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Saffari, M.; Milani, D.; Montoya, A.; Valix, M.; Abbas, A. Sustainable transformation of fly ash industrial waste into a construction cement blend via CO2 carbonation. J. Clean. Prod. 2017, 156, 660–669. [Google Scholar] [CrossRef]
- Wang, C.; Jia, L.; Tan, Y.; Anthony, E.J. Carbonation of fly ash in oxy-fuel CFB combustion. Fuel 2008, 87, 1108–1114. [Google Scholar] [CrossRef]
- Hoschek, G. Gehlenite stability in the system CaO-Al2O3-SiO2-H2O-CO2. Contrib. Mineral. Petrol. 1974, 47, 245–254. [Google Scholar] [CrossRef]
- Chun, Y.M.; Naik, T.R.; Kraus, R.N. Carbon dioxide sequestration in concrete in different curing environments. In Proceedings of the Conference on Sustainable Construction Materials and Technologies, Coventry, UK, 11–13 June 2007; pp. 18–24. [Google Scholar]
- Siriruang, C.; Toochinda, P.; Julnipitawong, P. CO2 capture using fly ash from coal fired power plant and applications of CO2-captured fly ash as a mineral admixture for concrete. J. Environ. Manag. 2016, 170, 70–78. [Google Scholar] [CrossRef] [PubMed]
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | N2O | K2O | SO3 | P2O5 | Cl | |
---|---|---|---|---|---|---|---|---|---|---|
Fly Ash | 24.9 | 13.2 | 2.56 | 17.1 | 1.82 | 13.1 | 2.36 | 1.29 | 2.96 | 12.8 |
Bottom Ash | 85.0 | 2.90 | 0.87 | 7.27 | 0.50 | 1.01 | 0.35 | 0.18 | 0.94 | 0.2 |
Pb | Cd | As | Hg | Cu | |
---|---|---|---|---|---|
Fly Ash | 785 | 33 | N.D. | N.D. | 5620 |
Bottom Ash | 74 | N.D. | N.D. | N.D. | 2240 |
Periclase | Lime | Calcite | Anhydrite | Quartz | Mullite | Hematite | Gehlenite | Halite | Sylvite |
---|---|---|---|---|---|---|---|---|---|
0.89 | 0.40 | 3.02 | 7.57 | 12.78 | 0.54 | 2.27 | 24.58 | 42.46 | 5.48 |
Samples | Periclase | Lime | Calcite | Anhydrite | Quartz | Mullite | Hematite | Gehlenite | Halite | Sylvite |
---|---|---|---|---|---|---|---|---|---|---|
25-W/A | 0.35 | 0.00 | 14.13 | 1.68 | 18.07 | 0.28 | 2.14 | 22.50 | 40.79 | 0.06 |
50-W/A | 0.88 | 0.14 | 21.31 | 1.92 | 18.91 | 0.65 | 3.66 | 23.03 | 26.03 | 3.21 |
75-W/A | 0.58 | 0.06 | 26.16 | 2.12 | 17.34 | 0.72 | 3.31 | 23.25 | 25.15 | 1.30 |
100-W/A | 0.95 | 0.24 | 21.98 | 2.25 | 9.32 | 2.47 | 0.82 | 24.01 | 37.96 | 0.00 |
Samples | Periclase | Lime | Calcite | Anhydrite | Quartz | Mullite | Hematite | Gehlenite | Halite | Sylvite |
---|---|---|---|---|---|---|---|---|---|---|
10-C/A | 0.34 | 0.00 | 15.21 | 1.56 | 14.32 | 1.09 | 1.22 | 25.11 | 40.79 | 0.06 |
20-C/A | 0.34 | 0.02 | 19.46 | 1.33 | 11.35 | 0.84 | 1.39 | 24.39 | 38.34 | 2.54 |
50-C/A | 0.38 | 0.01 | 19.86 | 1.12 | 14.84 | 0.33 | 0.91 | 22.55 | 38.72 | 1.17 |
100-C/A | 0.95 | 0.24 | 21.98 | 2.25 | 13.17 | 2.47 | 0.82 | 24.01 | 37.96 | 0.00 |
Samples | Periclase | Lime | Calcite | Anhydrite | Quartz | Mullite | Hematite | Gehlenite | Halite | Sylvite |
---|---|---|---|---|---|---|---|---|---|---|
10-C/A | 0.34 | 0.00 | 15.21 | 1.56 | 14.32 | 1.09 | 1.22 | 25.11 | 40.79 | 0.06 |
20-C/A | 0.34 | 0.02 | 19.46 | 1.33 | 11.35 | 0.84 | 1.39 | 24.39 | 38.34 | 2.54 |
50-C/A | 0.38 | 0.01 | 19.86 | 1.12 | 14.84 | 0.33 | 0.91 | 22.55 | 38.72 | 1.17 |
100-C/A | 0.95 | 0.24 | 21.98 | 2.25 | 13.17 | 2.47 | 0.82 | 24.01 | 37.96 | 0.00 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.H.; Kwon, W.T. Semi-Dry Carbonation Process Using Fly Ash from Solid Refused Fuel Power Plant. Sustainability 2019, 11, 908. https://doi.org/10.3390/su11030908
Kim JH, Kwon WT. Semi-Dry Carbonation Process Using Fly Ash from Solid Refused Fuel Power Plant. Sustainability. 2019; 11(3):908. https://doi.org/10.3390/su11030908
Chicago/Turabian StyleKim, Jung Hyun, and Woo Teck Kwon. 2019. "Semi-Dry Carbonation Process Using Fly Ash from Solid Refused Fuel Power Plant" Sustainability 11, no. 3: 908. https://doi.org/10.3390/su11030908
APA StyleKim, J. H., & Kwon, W. T. (2019). Semi-Dry Carbonation Process Using Fly Ash from Solid Refused Fuel Power Plant. Sustainability, 11(3), 908. https://doi.org/10.3390/su11030908