The Impact of Market Condition and Policy Change on the Sustainability of Intra-Industry Information Diffusion in China
Abstract
:1. Introduction
2. Policy Changes in China’s Stock Market
3. Data and Methodology
3.1. Data
3.2. Descriptive Statistics
3.3. Vector Auto-regression (VAR)
4. Market Conditions and Intra-Industry Information Diffusion
4.1. Shorter Horizon of Market Conditions
4.2. Longer Horizon of Market Conditions
5. Policy Change and Intra-Industry Information Diffusion
5.1. Examining the Impact of Policy Changes
5.2. Additional Tests on the Impact of Policy Changes
5.2.1. The Time-series Change of Lead-lag Effects among Three Sub-periods
5.2.2. Potential Reasons on the Lead-lag Changes
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lo, A.W.; MacKinlay, A.C. When are contrarian profits due to stock market overreaction? Rev. Financ. Stud. 1990, 3, 175–205. [Google Scholar] [CrossRef]
- Chen, N.F.; Kan, R.; Miller, M.H. Are the Discounts on Closed-End Funds a Sentiment Index? J. Financ. 1993, 48, 795–800. [Google Scholar] [CrossRef]
- Hameed, A.; Kusnadi, Y. Stock Return Cross-Autocorrelations and Market Conditions in Japan. J. Bus. 2006, 79, 3029–3056. [Google Scholar] [CrossRef]
- Hou, K. Industry information diffusion and the lead-lag effect in stock returns. Rev. Financ. Stud. 2007, 20, 1113–1138. [Google Scholar] [CrossRef]
- Cohen, L.; Frazzini, A. Economic links and predictable returns. J. Financ. 2008, 63, 1977–2011. [Google Scholar] [CrossRef]
- Menzly, L.; Ozbas, O. Market Segmentation and Cross-predictability of Returns. J. Financ. 2010, 65, 1555–1580. [Google Scholar] [CrossRef]
- Zhang, Y.; Song, W.; Shen, D.; Zhang, W. Market reaction to internet news: Information diffusion and price pressure. Econ. Model. 2016, 56, 43–49. [Google Scholar] [CrossRef]
- Brennan, M.J.; Jegadeesh, N.; Swaminathan, B. Investment analysis and the adjustment of stock prices to common information. Rev. Financ. Stud. 1993, 6, 799–824. [Google Scholar] [CrossRef]
- Badrinath, S.G.; Kale, J.R.; Noe, T.H. Of shepherds, sheep, and the cross-autocorrelations in equity returns. Rev. Financ. Stud. 1995, 8, 401–430. [Google Scholar] [CrossRef]
- Chordia, T.; Swaminathan, B. Trading volume and cross-autocorrelations in stock returns. J. Financ. 2000, 55, 913–935. [Google Scholar] [CrossRef]
- McQueen, G.; Pinegar, M.; Thorley, S. Delayed reaction to good news and the cross-autocorrelation of portfolio returns. J. Financ. 1996, 51, 889–919. [Google Scholar] [CrossRef]
- Chang, E.C.; McQueen, G.R.; Pinegar, J.M. Cross-autocorrelation in Asian stock markets. Pac. Basin Financ. J. 1999, 7, 471–493. [Google Scholar] [CrossRef]
- Chen, C.X.; Rhee, S.G. Short sales and speed of price adjustment: Evidence from the Hong Kong stock market. J. Bank. Financ. 2010, 34, 471–483. [Google Scholar] [CrossRef]
- Merton, R.C. A simple model of capital market equilibrium with incomplete information. J. Financ. 1987, 42, 483–510. [Google Scholar] [CrossRef]
- Lin, A.Y.; Swanson, P.E. The effect of China’s reform policies on stock market information transmission. Q. J. Financ. Account. 2008, 47, 49–76. [Google Scholar]
- Bae, K.-H.; Ozoguz, A.; Tan, H.; Wirjanto, T.S.D. foreigners facilitate information transmission in emerging markets? J. Financ. Econ. 2012, 105, 209–227. [Google Scholar] [CrossRef]
- Mori, M. Information Diffusion in the US Real Estate Investment Trust Market. J. Real Estate Financ. Econ. 2015, 51, 190–214. [Google Scholar] [CrossRef]
- Hong, H.; Torous, W.; Valkanov, R.D. Do industries lead stock markets? J. Financ. Econ. 2007, 83, 367–396. [Google Scholar] [CrossRef]
- Cen, L.; Chan, K.; Dasgupta, S.; Gao, N. When the Tail Wags the Dog: Industry Leaders, Limited Attention, and Spurious Cross-Industry Information Diffusion. Manag. Sci. 2013, 59, 2566–2585. [Google Scholar] [CrossRef]
- Haque, T. Lead–Lag Effects in Australian Industry Portfolios. Asia-Pac. Financ. Mark. 2011, 18, 267–290. [Google Scholar] [CrossRef]
- Wang, C.; Xie, L. Information diffusion and overreaction: Evidence from the Chinese stock market. Emerg. Mark. Financ. Trade 2010, 46, 80–100. [Google Scholar] [CrossRef]
- Sjöö, B.; Zhang, J. Market segmentation and information diffusion in China’s stock markets. J. Multinatl. Financ. Manag. 2000, 10, 421–438. [Google Scholar] [CrossRef]
- China Statistics Press. Chinese Securities Registration and Settlement Statistical Yearbook; China Statistics Press: Beijing, China, 2015. [Google Scholar]
- Wu, Y. The Momentum Premium under the Influence of Information Uncertainty—Evidence from the Chinese Stock Market. Ph.D. Thesis, University of Southampton, Southampton, UK, 2012. [Google Scholar]
- Beltratti, A.; Bortolotti, B.; Caccavaio, M. The stock market reaction to the 2005 split share structure reform in China. Pac. Basin Financ. J. 2012, 20, 543–560. [Google Scholar] [CrossRef]
- Li, K.; Wang, T.; Cheung, Y.-L.; Jiang, P. Privatization and risk sharing: Evidence from the split share structure reform in China. Rev. Financ. Stud. 2011, 24, 2499–2525. [Google Scholar] [CrossRef]
- Carpenter, J.N.; Lu, F.; Whitelaw, R.F. The Real Value of China’s Stock Market; NBER Working Paper No. 20957; NBER: Cambridge, MA, USA, 2015. [Google Scholar]
- Diamond, D.W.; Verrecchia, R.E. Constraints on short-selling and asset price adjustment to private information. J. Financ. Econ. 1987, 18, 277–311. [Google Scholar] [CrossRef]
- Chang, E.C.; Luo, Y.; Ren, J. Short-selling, margin-trading, and price efficiency: Evidence from the Chinese market. J. Bank. Financ. 2014, 48, 411–424. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, S.; Xiong, H. Short sale constraints, disperse pessimistic beliefs and market efficiency—Evidence from the Chinese stock market. Econ. Model. 2014, 42, 333–342. [Google Scholar] [CrossRef]
- Boudoukh, J.; Richardson, M.P.; Whitelaw, R.F. A tale of three schools: Insights on autocorrelations of short-horizon stock returns. Rev. Financ. Stud. 1994, 7, 539–573. [Google Scholar] [CrossRef]
- Banz, R.W. The relationship between return and market value of common stocks. J. Financ. Econ. 1981, 9, 3–18. [Google Scholar] [CrossRef]
- Cooper, M.J.; Gutierrez, R.C.; Hameed, A. Market states and momentum. J. Financ. 2004, 59, 1345–1365. [Google Scholar] [CrossRef]
- Fama, E.F.; French, K.R. Size, value, and momentum in international stock returns. J. Financ. Econ. 2012, 105, 457–472. [Google Scholar] [CrossRef]
- Fama, E.F.; French, K.R. A five-factor asset pricing model. J. Financ. Econ. 2015, 116, 1–22. [Google Scholar] [CrossRef]
- Conrad, J.; Kaul, G. Time-variation in expected returns. J. Bus. 1988, 61, 409–425. [Google Scholar] [CrossRef]
- Gębka, B. Volume-and size-related lead–lag effects in stock returns and volatility: An empirical investigation of the Warsaw Stock Exchange. Int. Rev. Financ. Anal. 2008, 17, 134–155. [Google Scholar] [CrossRef]
- Hong, H.; Lim, T.; Stein, J.C. Bad news travels slowly: Size, analyst coverage, and the profitability of momentum strategies. J. Financ. 2000, 55, 265–295. [Google Scholar] [CrossRef]
- Doukas, J.A.; McKnight, P.J. European momentum strategies, information diffusion, and investor conservatism. Eur. Financ. Manag. 2005, 11, 313–338. [Google Scholar] [CrossRef]
- Yalçın, A. Gradual information diffusion and contrarian strategies. Q. Rev. Econ. Financ. 2008, 48, 579–604. [Google Scholar] [CrossRef]
- Da, Z.; Engelberg, J.; Gao, P. In search of attention. J. Financ. 2011, 66, 1461–1499. [Google Scholar] [CrossRef]
- Da, Z.; Engelberg, J.; Gao, P. The sum of all fears investor sentiment and asset prices. Rev. Financ. Stud. 2015, 28, 1–32. [Google Scholar] [CrossRef]
- Kang, J.; Liu, M.-H.; Ni, S.X. Contrarian and momentum strategies in the China stock market: 1993–2000. Pac. Basin Financ. J. 2002, 10, 243–265. [Google Scholar] [CrossRef]
- Kim, K.A.; Nofsinger, J.R. Behavioral finance in Asia. Pac. Basin Financ. J. 2008, 16, 1–7. [Google Scholar] [CrossRef]
- Tan, L.; Chiang, T.C.; Mason, J.R.; Nelling, E. Herding behavior in Chinese stock markets: An examination of A and B shares. Pac. Basin Financ. J. 2008, 16, 61–77. [Google Scholar] [CrossRef]
- Piotroski, J.D.; Wong, T. Institutions and information environment of Chinese listed firms. In Capitalizing China; Fan, J.F., Morck, R., Eds.; University of Chicago Press: Chicago, IL, USA, 2012. [Google Scholar]
Industry | Number of Firms |
---|---|
Automobiles parts | 127 |
Construction and materials | 202 |
Food producers | 95 |
Electronic equipment | 126 |
Industrial engineering | 230 |
Industrial metals and mining | 234 |
Pharmaceuticals and biotechnology | 161 |
Industry Portfolio | Mean | Std | Median | Max | Min | Kurtosis | Skewness | ADF Test | PP Test |
---|---|---|---|---|---|---|---|---|---|
Auto-big | 0.0005 | 0.048 | −0.0005 | 0.1580 | −0.1866 | 4.2936 | −0.0812 | −14.969 *** | −25.490 *** |
Auto-small | 0.00056 | 0.051 | 0.0026 | 0.1481 | −0.2524 | 5.0236 | −0.5042 | −23.492 *** | −23.614 *** |
Cons-big | 0.0002 | 0.047 | 0.0006 | 0.1523 | −0.2028 | 4.5305 | −0.2174 | −15.479 *** | −25.159 *** |
Cons-small | 0.0009 | 0.052 | 0.0048 | 0.1601 | −0.3004 | 5.5341 | −0.5967 | −24.146 *** | −24.158 *** |
Elec-big | 0.0003 | 0.047 | 0.0015 | 0.1822 | −0.1893 | 4.2391 | −0.1793 | −25.130 *** | −25.129 *** |
Elec-small | 0.0014 | 0.051 | 0.0056 | 0.1535 | −0.2241 | 4.9526 | −0.4652 | −24.822 *** | −24.823 *** |
Food-big | 0.0006 | 0.046 | 0.0024 | 0.1414 | −0.2388 | 4.5246 | −0.1952 | −24.630 *** | −24.630 *** |
Food-small | 0.0009 | 0.049 | 0.0036 | 0.1931 | 0.2543 | 5.4559 | −0.4885 | −24.121 *** | −24.172 *** |
Engi-big | 0.0001 | 0.049 | 6.82E-05 | 0.1608 | −0.1982 | 4.2426 | −0.0678 | −24.940 *** | −24.947 *** |
Engi-small | 0.0012 | 0.051 | 0.0040 | 0.1498 | −0.2764 | 5.4045 | -0.5923 | −24.221 *** | −24.279 *** |
Meta-big | −0.0006 | 0.049 | −0.0024 | 0.1793 | −0.1796 | 4.4632 | −0.0823 | −15.329 *** | −24.292 *** |
Meta-small | 0.0010 | 0.051 | 0.0034 | 0.1380 | −0.2672 | 4.8873 | −0.4950 | −14.906 *** | −23.702 *** |
Phar-big | 0.0014 | 0.042 | 0.0040 | 0.1656 | −0.1710 | 4.7004 | −0.0728 | −15.413 *** | −25.626 *** |
Phar-small | 0.0017 | 0.049 | 0.0039 | 0.1497 | −0.2486 | 5.2476 | −0.5787 | −15.234 *** | −24.081 *** |
Industry Portfolio | ρ0(j,B) | ρ0(j,S) | ρ1(j,B) | ρ1(j,S) | ρ2(j,B) | ρ2(j,S) | ρ3(j,B) | ρ3(j,S) | ρ4(j,B) | ρ4(j,S) |
---|---|---|---|---|---|---|---|---|---|---|
Auto-big | 1 | 0.814 | −0.029 | −0.082 | 0.163 | 0.053 | 0.065 | −0.049 | −0.038 | −0.013 |
Auto-small | 0.913 | 1 | 0.083 | 0.034 | −0.045 | 0.074 | 0.057 | 0.060 | 0.017 | −0.049 |
Cons-big | 1 | 0.831 | −0.022 | −0.062 | 0.134 | 0.045 | 0.071 | −0.034 | −0.083 | 0.010 |
Cons-small | 0.974 | 1 | 0.086 | 0.016 | −0.044 | 0.069 | 0.041 | 0.054 | −0.011 | −0.089 |
Elec-big | 1 | 0.869 | −0.023 | −0.026 | 0.113 | −0.001 | −0.002 | −0.032 | −0.123 | −0.043 |
Elec-small | 0.988 | 1 | 0.032 | −0.015 | −0.002 | 0.093 | 0.040 | 0.034 | 0.045 | −0.051 |
Food-big | 1 | 0.876 | −0.003 | −0.037 | 0.095 | 0.009 | 0.061 | −0.006 | −0.103 | 0.010 |
Food-small | 0.977 | 1 | 0.035 | 0.022 | −0.002 | 0.075 | 0.021 | 0.067 | −0.135 | −0.096 |
Engi-big | 1 | 0.854 | −0.016 | −0.069 | 0.116 | 0.034 | 0.091 | −0.004 | −0.113 | −0.014 |
Engi-small | 0.911 | 1 | 0.047 | 0.003 | −0.025 | 0.090 | 0.008 | 0.050 | 0.023 | −0.063 |
Meta-big | 1 | 0.819 | 0.020 | −0.049 | 0.122 | 0.042 | 0.058 | −0.033 | −0.091 | −0.022 |
Meta-small | 0.863 | 1 | 0.064 | 0.037 | −0.014 | 0.129 | 0.027 | 0.055 | 0.022 | −0.084 |
Phar-big | 1 | 0.753 | −0.039 | −0.076 | 0.148 | 0.035 | 0.053 | −0.003 | −0.097 | −0.016 |
Phar-small | 0.991 | 1 | 0.083 | 0.018 | −0.029 | 0.116 | 0.003 | 0.020 | 0.005 | −0.058 |
Industry | Conditional Vector Auto-Regression | |||||
---|---|---|---|---|---|---|
Small-up | Big-up | Small-down | Big-down | Cross-Equation Tests | ||
Panel A: The time-series Conditional VAR | ||||||
Automobiles parts | RS | −0.111 (0.315) | 0.582 *** (7.218) | −0.614 *** (6.164) | 0.654 *** (6.273) | Up: 0.652 |
RB | −0.410 ** (5.473) | 0.735 *** (13.527) | −0.666 *** (8.850) | 0.629 *** (7.048) | Down: 27.446 *** | |
Construction and materials | RS | −0.376 (2.254) | 0.748 *** (6.986) | −0.728 ** (6.175) | 0.750 *** (7.013) | Up: 15.393 *** |
RB | −0.364 (2.474) | 0.628 ** (5.710) | −0.693 ** (6.548) | 0.685 ** (5.822) | Down: 22.096 *** | |
Electronic equipment | RS | 0.065 (0.059) | 0.189 (0.386) | −0.286 (0.651) | 0.305 (0.682) | Up: 1.126 |
RB | −0.134 (0.289) | 0.240 (0.709) | −0.120 (0.131) | 0.043 (0.015) | Down: 1.324 | |
Food producers | RS | −0.413 (2.455) | 0.616 ** (4.233) | −0.610** (5.165) | 0.774 *** (6.821) | Up: 11.302 *** |
RB | −0.391 (2.570) | 0.498 * (3.226) | −0.615 ** (6.144) | 0.734 *** (7.168) | Down: 21.958 *** | |
Industrial engineering | RS | 0.052 (0.069) | 0.236 (1.066) | −0.264 (0.876) | 0.269 (1.141) | Up: 2.415 |
RB | −0.119 (0.397) | 0.379 * (2.983) | −0.241 (0.792) | 0.221 (0.690) | Down: 3.766* | |
Industrial metals and mining | RS | 0.148 (0.545) | 0.214 * (2.810) | −0.257 (1.293) | 0.318 * (2.773) | Up: 1.668 |
RB | −0.061 (−0.061) | 0.309 * (2.842) | −0.196 * (3.487) | 0.189 * (2.922) | Down: 4.374 ** | |
Pharmaceuticals and biotechnology | RS | 0.405 * (3.574) | 0.198 * (2.746) | −0.404 (2.380) | 0.521 * (3.006) | Up: 1.661 |
RB | 0.147 (0.661) | 0.072 (0.102) | −0.499 ** (5.108) | 0.500 ** (3.886) | Down: 11.532 *** | |
Panel B: The Panel Conditional VAR | ||||||
All sample industries | RS,i | 0.028 (0.12) | 0.296 *** (10.03) | −0.389 *** (14.61) | 0.420 *** (15.35) | Up: 23.70 *** |
RB,i | −0.159** (4.33) | 0.397 *** (20.66) | −0.359 *** (14.21) | 0.328 *** (10.69) | Down: 52.74 *** |
Industry | Conditional Vector Auto-Regression | |||||
---|---|---|---|---|---|---|
Small-up | Big-up | Small-down | Big-down | Cross-Equation Tests | ||
Panel A: The time-series Conditional VAR | ||||||
Automobiles parts | RS | −0.043 (0.050) | 0.386 * (3.400) | −0.637 *** (7.482) | 0.815 *** (11.269) | Up: 11.996 *** |
RB | −0.339 * (3.526) | 0.539 *** (7.498) | −0.698 *** (10.152) | 0.803 *** (12.342) | Down: 38.835 *** | |
Construction and materials | RS | −0.246 (0.943) | 0.521 * (3.667) | −0.770 *** (7.426) | 0.919 *** (8.935) | Up: 7.906 *** |
RB | −0.244 (1.080) | 0.430 * (2.902) | −0.753 *** (8.281) | 0.846 *** (8.826) | Down: 29.572 *** | |
Electronic equipment | RS | 0.068 (0.067) | 0.069 (0.056) | −0.276 (0.577) | 0.398 (1.071) | Up: 0.320 |
RB | −0.096 (0.156) | 0.109 (0.159) | −0.138 (0.165) | 0.140 (0.150) | Down: 1.943 | |
Food producers | RS | −0.246 (0.943) | 0.521 * (3.667) | −0.767 *** (7.426) | 0.919 *** (8.935) | Up: 7.907 *** |
RB | −0.244 (1.079) | 0.430 * (2.902) | −0.753 *** (8.281) | 0.846 *** (8.826) | Down: 29.901 *** | |
Industrial engineering | RS | 0.225 (1.368) | 0.018 (0.008) | −0.581 ** (4.203) | 0.701 ** (5.839) | Up: 0.110 |
RB | 0.049 (0.069) | 0.093 (0.229) | −0.529 * (3.739) | 0.613 ** (4.798) | Down: 12.902 *** | |
Industrial metals and mining | RS | 0.264 (1.643) | 0.029 * (3.020) | −0.341 * (2.515) | 0.490 ** (4.300) | Up: 0.272 |
RB | −0.078 (0.152) | 0.120 (0.360) | −0.299 (2.003) | 0.358 * (2.798) | Down: 11.146 *** | |
Pharmaceuticals and biotechnology | RS | 0.400 * (3.565) | 0.217 ** (4.689) | −0.318 * (1.978) | 0.486 ** (4.393) | Up: 1.074 |
RB | 0.054 (0.090) | 0.136 (0.380) | −0.297 (1.928) | 0.362 * (2.868) | Down: 7.246 *** | |
Panel B: The Panel Conditional VAR | ||||||
All sample industries | RS,i(t) | 0.143 (0.145) | 0.097 (1.20) | −0.493 *** (24.63) | 0.626 *** (34.62) | Up: 2.52 |
RB,i(t) | −0.044 ** (4.33) | 0.201 *** (20.66) | −0.465 *** (25.00) | 0.528 *** (28.07) | Down: 105.11 *** |
Industry | Three Sub-Pperiods | Cross-Equation Tests | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Small-P1 | Big-P1 | Small-P2 | Big-P2 | Small-P3 | Big-P3 | Test-P1 | Test-P2 | Test-P3 | ||
Panel A: The time-series Conditional VAR | ||||||||||
Automobiles parts | RS | −0.468 (1.664) | 0.373 (0.767) | −0.241 (1.598) | 0.523** (6.565) | −0.377 (1.345) | 0.636* (3.582) | 1.710 | 29.071 *** | 10.754 *** |
RB | −0.184 (0.293) | 0.250 (0.390) | −0.578 *** (10.473) | 0.755 *** (15.450) | −0.466 (2.344) | 0.519 * (2.712) | ||||
Construction and materials | RS | −0.693 (1.653) | 0.575 (0.663) | −0.345 (1.771) | 0.563 ** (4.126) | −0.644 * (2.953) | 0.830 ** (5.142) | 2.035 | 12.580 *** | 16.689 *** |
RB | −0.433 (0.753) | 0.295 (0.204) | −0.420 * (3.078) | 0.592** (5.335) | −0.665 * (3.673) | 0.673 ** (3.951) | ||||
Electronic equipment | RS | 0.425 (0.817) | 0.717 (2.190) | −0.153 (0.344) | 0.371 (1.723) | −0.368 (0.373) | 0.477 (0.544) | 4.191 ** | 4.920 ** | 0.907 |
RB | 0.275 (0.392) | −0.662 (2.131) | −0.256 (1.111) | 0.336 (1.616) | −0.139 (0.060) | 0.152 (0.063) | ||||
Food roducers | RS | −0.480 (0.797) | 0.215 (0.180) | 0.030 (0.011) | 0.148 (0.237) | −0.004 (0.068) | 0.027 (0.003) | 2.535 | 0.051 | 0.007 |
RB | −0.592 (1.364) | 0.383 (0.642) | 0.079 (0.090) | 0.030 (0.011) | 0.066 (0.026) | −0.017 (0.001) | ||||
Industrial engineering | RS | −0.489 (0.820) | 0.261 (0.187) | 0.110 (0.355) | 0.062 (0.108) | −0.502 (1.594) | 0.690 * (2.897) | 2.028 | 0.193 | 8.073 * |
RB | −0.597 (1.334) | 0.366 (0.403) | −0.021 (0.014) | 0.175 (0.927) | −0.462 (1.467) | 0.507 (1.699) | ||||
Industrial metals and mining | RS | −0.397 (1.682) | 0.146 (0.203) | 0.144 (0.541) | 0.082 (0.159) | −0.358 (1.171) | 0.580 * (2.880) | 2.199 | 0.066 | 8.731 *** |
RB | −0.335 (1.258) | 0.161 (0.258) | 0.029 (0.023) | 0.120 (0.354) | −0.430 (1.172) | 0.481 (2.077) | ||||
Pharmaceuticals and biotechnology | RS | −0.500 (0.708) | 0.262 (0.141) | −0.023 (0.014) | 0.307 (1.605) | 0.404 (1.526) | 0.406 (1.188) | 0.911 | 5.175 ** | 2.577 |
RB | −0.404 (0.640) | 0.252 (0.181) | −0.244 (2.158) | 0.455 ** (4.905) | 0.192 (0.478) | 0.245 (0.600) | ||||
Panel B: The Panel Conditional VAR | ||||||||||
All sample industries | RS,i(t) | −0.353 ** (5.07) | 0.112 (0.41) | −0.048 (0.38) | 0.267 *** (9.64) | −0.262 * (3.62) | 0.421 *** (8.47) | 4.84 ** | 30.25 *** | 35.05 *** |
RB,i(t) | −0.272 * (3.43) | 0.077 (0.23) | −0.206 *** (7.72) | 0.352 *** (19.12) | −0.303 ** (5.52) | 0.343 ** (6.45) |
Sub-period1: Jan 2002–Feb 2005 | |||
Cross-equation tests | |||
R S,i(t-k) | R B,i(t-k) | ||
RS,i(t) | −0.454 *** (16.99) | 0.069 (0.33) | 11.86 *** |
RB,i(t) | −0.347 *** (12.46) | 0.058 (0.29) | |
Sub-period2: Mar 2005–Jan 2010 | |||
Cross-equation tests | |||
R S,i(t-k) | R B,i(t-k) | ||
RS,i(t) | −0.070 (0.47) | 0.277 ** (6.27) | 20.75 *** |
RB,i(t) | −0.227 ** (5.71) | 0.359 *** (12.16) | |
Sub-period3: Feb 2010–Dec 2013 | |||
Cross-equation tests | |||
R S,i(t-k) | R B,i(t-k) | ||
RS,i(t) | −0.282 *** (6.84) | 0.438 *** (15.01) | 43.02 *** |
RB,i(t) | −0.304 *** (8.38) | 0.340 *** (9.55) |
Sub-Period | Mean | Std | Comparison Sub-Period | Mean Difference |
---|---|---|---|---|
Sub-period 1 | −0.313 | 1.669 | Sub-period 2 | −0.711** |
Sub-period 3 | −1.009** | |||
Sub-period 2 | 0.398 | 1.562 | Sub-period 1 | 0.711** |
Sub-period 3 | −0.298 | |||
Sub-period 3 | 0.696 | 1.517 | Sub-period 1 | 1.009** |
Sub-period 2 | 0.298 | |||
F-test | 12.459 *** | 2.658* |
Variables | Mean | Std | Max | Min | F-Test | |
---|---|---|---|---|---|---|
Sub-period 1: Jan 2002–Feb 2005 | Mean | Variance | ||||
Market-return | −0.029 | 0.106 | 0.152 | −0.218 | 1.529 | 12.206 *** |
Market-capitalization | 41032 | 4867 | 50417 | 31590 | 41.792 *** | 72.619 *** |
Market-trading volume | 414 | 179 | 682 | 137 | 31.087 *** | 34.727 *** |
Proportion-institutional | 0.0056 | 8.64E-05 | 0.0057 | 0.0055 | 48.305 *** | 62.510 *** |
Proportion-individual | 0.9943 | 8.64E-05 | 0.9945 | 0.9943 | 48.305 *** | 62.510 *** |
Sub-period 2: Mar 2005–Jan 2010 | ||||||
Market-return | 0.056 | 0.221 | 0.425 | -0.416 | ||
Market-capitalization | 151824 | 87563 | 327140 | 32430 | ||
Market-trading volume | 2552 | 1334 | 4454 | 506 | ||
Proportion-institutional | 0.0052 | 0.0059 | 0.0059 | 0.0046 | ||
Proportion-individual | 0.9947 | 0.00042 | 0.9954 | 0.9941 | ||
Sub-period 3: Feb 2010–Dec 2013 | ||||||
Market-return | −0.026 | 0.101 | 0.101 | −0.260 | ||
Market-capitalization | 233433 | 22013 | 277662 | 195138 | ||
Market- trading volume | 3226 | 956 | 5015 | 1961 | ||
Proportion- institutional | 0.0046 | 4.58E-05 | 0.0047 | 0.0045 | ||
Proportion-individual | 0.9953 | 4.58E-05 | 0.9954 | 0.9953 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, C.; Lean, H.H.; Ahmad, Z.; Wong, W.-K. The Impact of Market Condition and Policy Change on the Sustainability of Intra-Industry Information Diffusion in China. Sustainability 2019, 11, 1037. https://doi.org/10.3390/su11041037
Dong C, Lean HH, Ahmad Z, Wong W-K. The Impact of Market Condition and Policy Change on the Sustainability of Intra-Industry Information Diffusion in China. Sustainability. 2019; 11(4):1037. https://doi.org/10.3390/su11041037
Chicago/Turabian StyleDong, Chi, Hooi Hooi Lean, Zamri Ahmad, and Wing-Keung Wong. 2019. "The Impact of Market Condition and Policy Change on the Sustainability of Intra-Industry Information Diffusion in China" Sustainability 11, no. 4: 1037. https://doi.org/10.3390/su11041037
APA StyleDong, C., Lean, H. H., Ahmad, Z., & Wong, W. -K. (2019). The Impact of Market Condition and Policy Change on the Sustainability of Intra-Industry Information Diffusion in China. Sustainability, 11(4), 1037. https://doi.org/10.3390/su11041037