Methods to Assess the Impacts and Indirect Land Use Change Caused by Telecoupled Agricultural Supply Chains: A Review
Abstract
:1. Introduction
2. Materials and Methods
- System boundary definition: The ability of assessment methods to represent actual impacts highly depends on the broadness of the system boundaries. We evaluated the capacity of methods to account for both top-down (global scale) and bottom-up (local scale) dynamics. Truncation points either limit the capacity of models to capture specific global interactions affecting the system under study or cause models to lack granularity and the capacity to capture important fine-scale dynamics [13,30].
- Integratedness: The extent to which a given method is capable of incorporating social and economic dimensions along with the environmental ones, as suggested by the triple bottom line criteria of sustainability, is analyzed [31].
- Telecoupling dynamics: The capacity of methods to account for complex dynamics arising within telecoupled systems such as indirect impacts, feedback loops, spillovers, leakage, rebound effects, time lags, legacy effects and non-linearities is analyzed [9].
3. Results
3.1. Life Cycle Assessment
3.1.1. General Description
3.1.2. General Limitations
3.1.3. Suitability for Telecoupled Systems
3.2. Footprints and Related Indicators
3.2.1. General Description
3.2.2. General Limitations
3.2.3. Suitability for Telecoupled Systems
3.3. Deterministic Equilibrium Models
3.3.1. General Description
3.3.2. General Limitations
3.3.3. Suitability for Telecoupled Systems
3.4. Rule and Process-Based Models
3.4.1. General Description
3.4.2. General Limitations
3.4.3. Suitability for Telecoupled Systems
3.5. Land Use Models
3.5.1. General Description
3.5.2. General Limitations
3.5.3. Suitability for Telecoupled Systems
4. Discussion
4.1. Systems Boundaries
4.2. Hybrid Models to Assess Telecoupled Impacts
4.3. Long-Term Impacts
4.4. Geographic Heterogeneity
4.5. Suitability for Different User Types and Hands-On Approach
4.6. Reference Points for Sustainability
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schaffartzik, A.; Haberl, H.; Kastner, T.; Wiedenhofer, D.; Eisenmenger, N.; Erb, K.H. Trading land: A review of approaches to accounting for upstream land requirements of traded products. J. Ind. Ecol. 2015, 19, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Ramos, S.; Larrinaga, L.; Albinarrate, U.; Jungbluth, N.; Ingolfsdottir, G.M.; Yngvadottir, E.; Landquist, B.; Woodhouse, A.; Olafsdottir, G.; Esturo, A.; et al. SENSE tool: Easy-to-use web-based tool to calculate food product environmental impact. Int. J. Life Cycle Assess. 2016, 21, 710–721. [Google Scholar] [CrossRef]
- Henders, S.; Ostwald, M. Accounting methods for international land-related leakage and distant deforestation drivers. Ecol. Econ. 2014, 99, 21–28. [Google Scholar] [CrossRef]
- Webber, M.; Labaste, P. Using Value Chain Approaches in Agribusiness and Agriculture in Sub-Saharan Africa: A Methodological Guide. Tools that Make Value Chains Work: Discussion and Cases; The World Bank: Washington, DC, USA, 2007. [Google Scholar]
- Fasse, A.C.; Grote, U.; Winter, E. Value Chain Analysis: Methodologies in Context of Environment and Trade Research; Hannover Economic Papers (HEP); Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät: Hannover, Germany, 2009. [Google Scholar]
- Borsato, E.; Tarolli, P.; Marinello, F. Sustainable patterns of main agricultural products combining different footprint parameters. J. Clean. Prod. 2018, 179, 357–367. [Google Scholar] [CrossRef]
- Rebitzer, G.; Ekvall, T.; Frischknecht, R.; Hunkeler, D.; Norris, G.; Rydberg, T.; Schmidt, W.P.; Suh, S.; Weidema, B.P.; Pennington, D.W. Life cycle assessment Part 1: Framework, goal and scope definition, inventory analysis, and applications. Environ. Int. 2004, 30, 701–720. [Google Scholar] [CrossRef] [PubMed]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Folke, C.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; George, P.S.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Chang. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Liu, J.; Hull, V.; Batistella, M.; DeFries, R.; Dietz, T.; Fu, F.; Hertel, T.W.; Izaurralde, R.C.; Lambin, E.F.; Li, S.; et al. Framing Sustainability in a Telecoupled World. Ecol. Soc. 2013, 18, 26. [Google Scholar] [CrossRef]
- Verburg, P.H.; Crossman, N.; Ellis, E.C.; Heinimann, A.; Hostert, P.; Mertz, O.; Nagendra, H.; Sikor, T.; Erb, K.H.; Golubiewski, N.; et al. Land system science and sustainable development of the earth system: A global land project perspective. Anthropocene 2015, 12, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Hoekstra, A.Y.; Wiedmann, T.O. Humanity’s unsustainable environmental footprint. Science 2014, 344, 1114–1117. [Google Scholar] [CrossRef]
- Chaplin-Kramer, R.; Sim, S.; Hamel, P.; Bryant, B.; Noe, R.; Mueller, C.; Rigarlsford, G.; Kulak, M.; Kowal, V.; Sharp, R.; et al. Life cycle assessment needs predictive spatial modelling for biodiversity and ecosystem services. Nat. Commun. 2017, 8, 1–8. [Google Scholar] [CrossRef]
- Onat, N.; Kucukvar, M.; Halog, A.; Cloutier, S. Systems Thinking for Life Cycle Sustainability Assessment: A Review of Recent Developments, Applications, and Future Perspectives. Sustainability 2017, 9, 706. [Google Scholar] [CrossRef]
- Ness, B.; Urbel-Piirsalu, E.; Anderberg, S.; Olsson, L. Categorising tools for sustainability assessment. Ecol. Econ. 2007, 60, 498–508. [Google Scholar] [CrossRef]
- Herva, M.; Franco, A.; Carrasco, E.F.; Roca, E. Review of corporate environmental indicators. J. Clean. Prod. 2011, 19, 1687–1699. [Google Scholar] [CrossRef] [Green Version]
- Čuček, L.; Klemeš, J.J.; Kravanja, Z. A review of footprint analysis tools for monitoring impacts on sustainability. J. Clean. Prod. 2012, 34, 9–20. [Google Scholar] [CrossRef]
- Bruckner, M.; Fischer, G.; Tramberend, S.; Giljum, S. Measuring telecouplings in the global land system: A review and comparative evaluation of land footprint accounting methods. Ecol. Econ. 2015, 114, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Verburg, P.H.; Dearing, J.A.; Dyke, J.G.; van der Leeuw, S.; Seitzinger, S.; Steffen, W.; Syvitski, J. Methods and approaches to modelling the Anthropocene. Glob. Environ. Chang. 2016, 39, 328–340. [Google Scholar] [CrossRef] [Green Version]
- Millington, J.; Xiong, H.; Peterson, S.; Woods, J. Integrating Modelling Approaches for Understanding Telecoupling: Global Food Trade and Local Land Use. Land 2017, 6, 56. [Google Scholar] [CrossRef]
- Filatova, T.; Verburg, P.H.; Parker, D.C.; Stannard, C.A. Spatial agent-based models for socio-ecological systems: Challenges and prospects. Environ. Model. Softw. 2013, 45, 1–7. [Google Scholar] [CrossRef]
- Turner, K.; Lenzen, M.; Wiedmann, T.; Barrett, J. Examining the global environmental impact of regional consumption activities—Part 1: A technical note on combining input-output and ecological footprint analysis. Ecol. Econ. 2007, 62, 37–44. [Google Scholar] [CrossRef]
- Meyfroidt, P.; Chowdhury, R.; De Bremond, A.; Ellis, E.C.; Erb, K.-H.; Filatova, T.; Garrett, R.D.; Grove, J.M.; Heinimann, A.; Kuemmerle, T.; et al. Middle-range theories of land system change. Glob. Environ. Chang. 2018, 53, 52–67. [Google Scholar] [CrossRef]
- Lambin, E.F.; Gibbs, H.K.; Heilmayr, R.; Carlson, K.M.; Fleck, L.C.; Garrett, R.D.; Le Polain De Waroux, Y.; McDermott, C.L.; McLaughlin, D.; Newton, P.; et al. The role of supply-chain initiatives in reducing deforestation. Nat. Clim. Chang. 2018, 8, 109–116. [Google Scholar] [CrossRef]
- Albareda, L.; Lozano, J.M.; Ysa, T. Public policies on corporate social responsibility: The role of governments in Europe. J. Bus. Ethics 2007, 74, 391–407. [Google Scholar] [CrossRef]
- Lenzen, M.; Murray, J.; Sack, F.; Wiedmann, T. Shared producer and consumer responsibility—Theory and practice. Ecol. Econ. 2007, 61, 27–42. [Google Scholar] [CrossRef]
- Vermeir, I.; Verbeke, W. Sustainable food consumption: Exploring the consumer “attitude–Behavioral intention” gap. J. Agric. Environ. Ethics 2006, 19, 169–194. [Google Scholar] [CrossRef]
- Cummins, S.; Reilly, T.M.; Carlson, L.; Grove, S.J.; Dorsch, M.J. Investigating the Portrayal and Influence of Sustainability Claims in an Environmental Advertising Context. J. Macromark. 2014, 34, 332–348. [Google Scholar] [CrossRef]
- Rasmussen, L.V.; Coolsaet, B.; Martin, A.; Mertz, O.; Pascual, U.; Corbera, E.; Dawson, N.; Fisher, J.A.; Franks, P.; Ryan, C.M. Social-ecological outcomes of agricultural intensification. Nat. Sustain. 2018, 275–282. [Google Scholar] [CrossRef]
- Lambin, E.F.; Meyfroidt, P. Land use transitions: Socio-ecological feedback versus socio-economic change. Land Use Policy 2010, 27, 108–118. [Google Scholar] [CrossRef]
- Filatova, T.; Polhill, J.G.; van Ewijk, S. Regime shifts in coupled socio-environmental systems: Review of modelling challenges and approaches. Environ. Model. Softw. 2016, 75, 333–347. [Google Scholar] [CrossRef]
- Sala, S.; Ciuffo, B.; Nijkamp, P. A systemic framework for sustainability assessment. Ecol. Econ. 2015, 119, 314–325. [Google Scholar] [CrossRef] [Green Version]
- Guinée, J.; Heijungs, R.; Huppes, G.; Zamagni, A.; Masoni, P.; Buonamici, R.; Ekvall, T.; Rydberg, T. Life Cycle Assessment: Past, Present, and Future. Environ. Sci. Technol. 2011, 45, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Hellweg, S.; Canals, L.M.I. Emerging approaches, challenges and opportunities in life cycle assessment. Science 2014, 344, 1109–1113. [Google Scholar] [CrossRef] [PubMed]
- Earles, J.M.; Halog, A. Consequential life cycle assessment: A review. Int. J. Life Cycle Assess. 2011, 16, 445–453. [Google Scholar] [CrossRef]
- European Commission, Joint Research Centre, Institute for Environment and Sustainability. International Reference Life Cycle Data System (ILCD) Handbook—General Guide for Life Cycle Assessment—Detailed Guidance; European Commission: Ispra, Italy, 2010; ISBN 978-92-79-19092-6. [Google Scholar]
- Yang, Y.; Heijungs, R. On the use of different models for consequential life cycle assessment. Int. J. Life Cycle Assess. 2018, 23, 751–758. [Google Scholar] [CrossRef]
- Reap, J.; Roman, F.; Duncan, S.; Bras, B. A survey of unresolved problems in life cycle assessment. Part 2: Impact assessment and interpretation. Int. J. Life Cycle Assess. 2008, 13, 374–388. [Google Scholar] [CrossRef]
- UNEP/SETAC Life Cycle Initiative. Global Guidance for Life Cycle Impact Assessment Indicators: Volume 1; Frischknecht, R., Jolliet, O., Eds.; United Nations Environment Programme: Nairobi, Kenya, 2016; ISBN 978-92-807-3630-4. Available online: https://www.lifecycleinitiative.org/training-resources/global-guidance-lcia-indicators-v-1/ (accessed on 5 December 2018).
- Hauschild, M.Z.; Goedkoop, M.; Guinée, J.; Heijungs, R.; Huijbregts, M.; Jolliet, O.; Margni, M.; De Schryver, A.; Humbert, S.; Laurent, A.; et al. Identifying best existing practice for characterization modeling in life cycle impact assessment. Int. J. Life Cycle Assess. 2013, 18, 683–697. [Google Scholar] [CrossRef]
- Steinmann, Z.J.N.; Schipper, A.M.; Hauck, M.; Huijbregts, M.A.J. How Many Environmental Impact Indicators Are Needed in the Evaluation of Product Life Cycles? Environ. Sci. Technol. 2016, 50, 3913–3919. [Google Scholar] [CrossRef] [PubMed]
- Jolliet, O.; Antón, A.; Boulay, A.-M.; Cherubini, F.; Fantke, P.; Levasseur, A.; McKone, T.E.; Michelsen, O.; Milà i Canals, L.; Motoshita, M.; et al. Global guidance on environmental life cycle impact assessment indicators: Impacts of climate change, fine particulate matter formation, water consumption and land use. Int. J. Life Cycle Assess. 2018. [Google Scholar] [CrossRef]
- Curran, M.; De Baan, L.; De Schryver, A.M.; Van Zelm, R.; Hellweg, S.; Koellner, T.; Sonnemann, G.; Huijbregts, M.A.J. Toward meaningful endpoints of biodiversity in Life Cycle Assessment. Environ. Sci. Technol. 2011, 45, 70–79. [Google Scholar] [CrossRef]
- De Haes, U.; Heijungs, R.; Suh, S.; Huppes, G. Three strategies to overcome the limitations of LCA. J. Ind. Ecol. 2004, 8, 19–32. [Google Scholar] [CrossRef]
- Castellani, V.; Benini, L.; Sala, S.; Pant, R. A distance-to-target weighting method for Europe 2020. Int. J. Life Cycle Assess. 2016, 21, 1159–1169. [Google Scholar] [CrossRef] [Green Version]
- Guinée, J.B. Life Cycle Sustainability Assessment: What Is It and What Are Its Challenges? In Taking Stock of Industrial Ecology; Clift, R., Druckman, A., Eds.; Springer: Basel, Switzerland, 2016; pp. 1–362. ISBN 9783319205717. [Google Scholar]
- Dreyer, L.; Hauschild, M.; Schierbeck, J. A Framework for Social Life Cycle Impact Assessment. Int. J. Life Cycle Assess. 2006, 11, 88–97. [Google Scholar] [CrossRef]
- Hutchins, M.J.; Sutherland, J.W. An exploration of measures of social sustainability and their application to supply chain decisions. J. Clean. Prod. 2008, 16, 1688–1698. [Google Scholar] [CrossRef]
- UNEP Setac Life Cycle Initiative. Guidelines for Social Life Cycle Assessment of Products. 2009. Available online: http://www.unep.fr/shared/publications/pdf/dtix1164xpa-guidelines_slca.pdf (accessed on 5 December 2018).
- Curran, M.A. Life Cycle Assessment: A review of the methodology and its application to sustainability. Curr. Opin. Chem. Eng. 2013, 2, 273–277. [Google Scholar] [CrossRef]
- Kloverpris, J.; Wenzel, H.; Nielsen, P.H. Life cycle inventory modelling of land use induced by crop consumption—Part 1: Conceptual analysis and methodological proposal. Int. J. Life Cycle Assess. 2008, 13, 13–21. [Google Scholar] [CrossRef]
- Van Zelm, R.; van der Velde, M.; Balkovic, J.; Čengić, M.; Elshout, P.M.F.; Koellner, T.; Núñez, M.; Obersteiner, M.; Schmid, E.; Huijbregts, M.A.J. Spatially explicit life cycle impact assessment for soil erosion from global crop production. Ecosyst. Serv. 2018, 30, 220–227. [Google Scholar] [CrossRef]
- Koellner, T.; Scholz, R.W. Assessment of land use impacts on the natural environment. Part 1: An analytical framework for pure land occupation and land use change. Int. J. Life Cycle Assess. 2007, 12, 16–23. [Google Scholar] [CrossRef]
- Loiseau, E.; Aissani, L.; Le Féon, S.; Laurent, F.; Cerceau, J.; Sala, S.; Roux, P. Territorial Life Cycle Assessment (LCA): What exactly is it about? A proposal towards using a common terminology and a research agenda. J. Clean. Prod. 2018, 176, 474–485. [Google Scholar] [CrossRef]
- Mattila, T.; Helin, T.; Antikainen, R. Land use indicators in life cycle assessment A case study on beer production. Int. J. Life Cycle Assess. 2012, 17, 277–286. [Google Scholar] [CrossRef]
- Arodudu, O.; Helming, K.; Wiggering, H.; Voinov, A. Towards a more holistic sustainability assessment framework for agro-bioenergy systems—A review. Environ. Impact Assess. Rev. 2017, 62, 61–75. [Google Scholar] [CrossRef]
- Milà i Canals, L.; Bauer, C.; Depestele, J.; Dubreuil, A.; Knuchel, R.F.; Gaillard, G.; Michelsen, O.; Müller-Wenk, R.; Rydgren, B. Key elements in a framework for land use impact assessment within LCA. Int. J. Life Cycle Assess. 2007, 12, 5–15. [Google Scholar] [CrossRef]
- Udo de Haes, H.A. How to approach land use in LCIA or, how to avoid the Cinderella effect? Comments on ’key elements in a framework for land use impact assessment within LCA1. Int. J. Life Cycle Assess. 2006, 11, 219–221. [Google Scholar] [CrossRef]
- Saad, R.; Koellner, T.; Margni, M. Land use impacts on freshwater regulation, erosion regulation, and water purification: A spatial approach for a global scale level. Int. J. Life Cycle Assess. 2013, 18, 1253–1264. [Google Scholar] [CrossRef]
- Geyer, R.; Lindner, J.P.; Stoms, D.M.; Davis, F.W.; Wittstock, B. Coupling GIS and LCA for biodiversity assessments of land use. Int. J. Life Cycle Assess. 2010, 15, 692–703. [Google Scholar] [CrossRef] [Green Version]
- Di Fulvio, F.; Forsell, N.; Korosuo, A.; Obersteiner, M.; Hellweg, S. Spatially explicit LCA analysis of biodiversity losses due to different bioenergy policies in the European Union. Sci. Total Environ. 2019, 651, 1505–1516. [Google Scholar] [CrossRef] [PubMed]
- Searchinger, T.; Heimlich, R.; Houghton, R.A.; Dong, F.; Elobeid, A.; Fabiosa, J.; Tokgoz, S.; Hayes, D.; Yu, T. Emissions from land-use change. Science 2008, 423, 1238–1240. [Google Scholar] [CrossRef] [PubMed]
- Leip, A.; Weiss, F.; Wassenaar, T.; Perez, I.; Fellmann, T.; Loudjani, P.; Tubiello, F.; Grandgirard, D.; Monni, S.; Biala, K. Evaluation of the Livestock Sector’s Contribution to the EU Greenhouse Gas Emissions (GGELS). Final Report. 2010. Available online: https://ec.europa.eu/agriculture/sites/agriculture/files/external-studies/2010/livestock-gas/full_text_en.pdf (accessed on 7 February 2019).
- Schmidt, J.H.; Weidema, B.P.; Brandão, M. A framework for modelling indirect land use changes in Life Cycle Assessment. J. Clean. Prod. 2015, 99, 230–238. [Google Scholar] [CrossRef]
- Schmidt, J.H. Life cycle assessment of five vegetable oils. J. Clean. Prod. 2015, 87, 130–138. [Google Scholar] [CrossRef]
- Galli, A.; Wiedmann, T.; Ercin, E.; Knoblauch, D.; Ewing, B.; Giljum, S. Integrating Ecological, Carbon and Water footprint into a “footprint Family” of indicators: Definition and role in tracking human pressure on the planet. Ecol. Indic. 2012, 16, 100–112. [Google Scholar] [CrossRef]
- Zhang, L.; Dzakpasu, M.; Chen, R.; Wang, X.C. Validity and utility of ecological footprint accounting: A state-of-the-art review. Sustain. Cities Soc. 2017, 32, 411–416. [Google Scholar] [CrossRef]
- Wackernagel, M.; Cranston, G.; Morales, J.C.; Galli, A. Ecological footprint accounts. In Handbook of Sustainable Development; Atkinson, G., Dietz, S., Neumayer, E., Agarwala, M., Eds.; Edwar Elgar Publishing Limited: Cheltenham, UK, 2014; pp. 371–396. ISBN 9781782544708. [Google Scholar]
- Brooks, S.T.; Jabour, J.; Bergstrom, D.M. What is “footprint” in Antarctica: Proposing a set of definitions. Antarct. Sci. 2018, 30, 227–235. [Google Scholar] [CrossRef]
- Krausmann, F.; Erb, K.-H.; Gingrich, S.; Haberl, H.; Bondeau, A.; Gaube, V.; Lauk, C.; Plutzar, C.; Searchinger, T.D. Global human appropriation of net primary production doubled in the 20th century. Proc. Natl. Acad. Sci. USA 2013, 110, 10324–10329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haberl, H.; Erb, K.H.; Krausmann, F.; Berecz, S.; Ludwiczek, N.; Martínez-Alier, J.; Musel, A.; Schaffartzik, A. Using embodied HANPP to analyze teleconnections in the global land system: Conceptual considerations. Geogr. Tidsskr. 2009, 109, 119–130. [Google Scholar] [CrossRef]
- Erb, K.H.; Krausmann, F.; Lucht, W.; Haberl, H. Embodied HANPP: Mapping the spatial disconnect between global biomass production and consumption. Ecol. Econ. 2009, 69, 328–334. [Google Scholar] [CrossRef]
- Fiala, N. Measuring sustainability: Why the ecological footprint is bad economics and bad environmental science. Ecol. Econ. 2008, 67, 519–525. [Google Scholar] [CrossRef]
- Kastner, T.; Kastner, M.; Nonhebel, S. Tracing distant environmental impacts of agricultural products from a consumer perspective. Ecol. Econ. 2011, 70, 1032–1040. [Google Scholar] [CrossRef]
- Miller, R.E.; Blair, P.D. Input–Output Analysis. Foundations and Extensions, 2nd ed.; Cambridge University Press: Washington, DC, USA, 2009; ISBN 9780521517133. [Google Scholar]
- Rose, A.; Rose, A.; Rose, A. Input-output economics and computable general equilibrium models. Struct. Chang. Econ. Dyn. 1995, 6, 295–304. [Google Scholar] [CrossRef]
- Weisz, H.; Duchin, F. Physical and monetary input-output analysis: What makes the difference? Ecol. Econ. 2006, 57, 534–541. [Google Scholar] [CrossRef]
- West, G.R. Comparison of Input–Output, Input–Output + Econometric and Computable General Equilibrium Impact Models at the Regional Level. Econ. Syst. Res. 1995, 7, 209–227. [Google Scholar] [CrossRef]
- Lenzen, M.; Moran, D.; Kanemoto, K.; Geschke, A. Building Eora: A Global Multi-Region Input-Output Database At High Country and Sector Resolution. Econ. Syst. Res. 2013, 25, 20–49. [Google Scholar] [CrossRef]
- Inomata, S.; Owen, A. Comparative Evaluation of Mrio Databases. Econ. Syst. Res. 2014, 26, 239–244. [Google Scholar] [CrossRef]
- Moran, D.; Wood, R. Convergence Between the Eora, Wiod, Exiobase, and Openeu’S Consumption-Based Carbon Accounts. Econ. Syst. Res. 2014, 26, 245–261. [Google Scholar] [CrossRef]
- Wood, R.; Stadler, K.; Bulavskaya, T.; Lutter, S.; Giljum, S.; de Koning, A.; Kuenen, J.; Schütz, H.; Acosta-Fernández, J.; Usubiaga, A.; et al. Global sustainability accounting-developing EXIOBASE for multi-regional footprint analysis. Sustainability 2015, 7, 138–163. [Google Scholar] [CrossRef]
- Dietzenbacher, E.; Los, B.; Stehrer, R.; Timmer, M.; de Vries, G. The Construction of World Input-Output Tables in the WIOD Project. Econ. Syst. Res. 2013, 25, 71–98. [Google Scholar] [CrossRef]
- Tukker, A.; Huppes, G.; Van Oers, L.; Heijungs, R. Environmentally Extended Input-Output Tables and Models for Europe. 2006. Available online: ftp://ftp.jrc.es/pub/EURdoc/eur22194en.pdf (accessed on 7 February 2019).
- Wiedmann, T.; Lenzen, M.; Turner, K.; Barrett, J. Examining the global environmental impact of regional consumption activities—Part 2: Review of input-output models for the assessment of environmental impacts embodied in trade. Ecol. Econ. 2007, 61, 15–26. [Google Scholar] [CrossRef]
- Kitzes, J. An Introduction to Environmentally-Extended Input-Output Analysis. Resources 2013, 2, 489–503. [Google Scholar] [CrossRef] [Green Version]
- Prell, C.; Sun, L.; Feng, K.; He, J.; Hubacek, K. Uncovering the spatially distant feedback loops of global trade: A network and input-output approach. Sci. Total Environ. 2017, 586, 401–408. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.; Feng, K.; Hubacek, K. Tele-connecting local consumption to global land use. Glob. Environ. Chang. 2013, 23, 1178–1186. [Google Scholar] [CrossRef]
- Havlik, P.; Valin, H.; Herrero, M.; Obersteiner, M.; Schmid, E.; Rufino, M.C.; Mosnier, A.; Thornton, P.K.; Bottcher, H.; Conant, R.T.; et al. Climate change mitigation through livestock system transitions. Proc. Natl. Acad. Sci. USA 2014, 111, 3709–3714. [Google Scholar] [CrossRef] [Green Version]
- Van Asselen, S.; Verburg, P.H. Land cover change or land-use intensification: Simulating land system change with a global-scale land change model. Glob. Chang. Biol. 2013, 19, 3648–3667. [Google Scholar] [CrossRef]
- Irwin, E.G.; Geoghegan, J. Theory, data, methods: Developing spatially explicit economic models of land use change. Agric. Ecosyst. Environ. 2001, 85, 7–24. [Google Scholar] [CrossRef]
- MacPherson, B.; Gras, R. Individual-based ecological models: Adjunctive tools or experimental systems? Ecol. Model. 2016, 323, 106–114. [Google Scholar] [CrossRef]
- Groeneveld, J.; Müller, B.; Buchmann, C.M.; Dressler, G.; Guo, C.; Hase, N.; Hoffmann, F.; John, F.; Klassert, C.; Lauf, T.; et al. Theoretical foundations of human decision-making in agent-based land use models – A review. Environ. Model. Softw. 2017, 87, 39–48. [Google Scholar] [CrossRef]
- An, L.; Zvoleff, A.; Liu, J.; Axinn, W. Agent-Based Modeling in Coupled Human and Natural Systems (CHANS): Lessons from a Comparative Analysis. Ann. Assoc. Am. Geogr. 2014, 104, 723–745. [Google Scholar] [CrossRef]
- Hare, M.; Deadman, P. Further towards a taxonomy of agent-based simulation models in environmental management. Math. Comput. Simul. 2004, 64, 25–40. [Google Scholar] [CrossRef] [Green Version]
- Ercan, T.; Onat, N.C.; Tatari, O. Investigating carbon footprint reduction potential of public transportation in United States: A system dynamics approach. J. Clean. Prod. 2016, 133, 1260–1276. [Google Scholar] [CrossRef]
- Ramankutty, N.; Coomes, O.T. Land-use regime shifts: An analytical framework and agenda for future landuse research. Ecol. Soc. 2016, 21. [Google Scholar] [CrossRef]
- Mai, T.; Smith, C. Scenario-based planning for tourism development using system dynamic modelling: A case study of Cat Ba Island, Vietnam. Tour. Manag. 2018, 68, 336–354. [Google Scholar] [CrossRef]
- Valbuena, D.; Verburg, P.H.; Bregt, A.K.; Ligtenberg, A. An agent-based approach to model land-use change at a regional scale. Landsc. Ecol. 2010, 25, 185–199. [Google Scholar] [CrossRef]
- Judson, O.P. The rise of the individual-based model in ecology. Trends Ecol. Evol. 1994, 9, 9–14. [Google Scholar] [CrossRef]
- Tonini, F.; Liu, J. Telecoupling toolbox: Spatially explicit tools for studying telecoupled human and natural systems. Ecol. Soc. 2017, 22. [Google Scholar] [CrossRef]
- An, L. Modeling human decisions in coupled human and natural systems: Review of agent-based models. Ecol. Model. 2012, 229, 25–36. [Google Scholar] [CrossRef]
- Mavrommati, G.; Bithas, K.; Panayiotidis, P. Operationalizing sustainability in urban coastal systems: A system dynamics analysis. Water Res. 2013, 47, 7235–7250. [Google Scholar] [CrossRef] [PubMed]
- Onat, N.C.; Egilmez, G.; Tatari, O. Towards greening the U.S. residential building stock.A system dynamics approach. Build. Environ. 2014, 78, 68–80. [Google Scholar] [CrossRef]
- Coyle, R.G. Qualitative and Quantitative Modelling in System Dynamics: Some Research Questions. Syst. Dyn. Rev. 2000, 16, 225–244. [Google Scholar] [CrossRef]
- Matthews, R.B.; Gilbert, N.G.; Roach, A.; Polhill, J.G.; Gotts, N.M. Agent-based land-use models: A review of applications. Landsc. Ecol. 2007, 22, 1447–1459. [Google Scholar] [CrossRef]
- Schouten, M.A.H.; Polman, N.B.P.; Westerhof, E.J.G.M. Exploring Green Agricultural Policy Scenarios with a Spatially Explicit Agent-Based Model. Available online: http://edepot.wur.nl/260251 (accessed on 7 February 2019).
- Happe, K.; Hutchings, N.J.; Dalgaard, T.; Kellerman, K. Modelling the interactions between regional farming structure, nitrogen losses and environmental regulation. Agric. Syst. 2011, 104, 281–291. [Google Scholar] [CrossRef]
- Alexander, P.; Prestele, R.; Verburg, P.H.; Arneth, A.; Baranzelli, C.; Batista e Silva, F.; Brown, C.; Butler, A.; Calvin, K.; Dendoncker, N.; et al. Assessing uncertainties in land cover projections. Glob. Chang. Biol. 2017, 23, 767–781. [Google Scholar] [CrossRef] [PubMed]
- Brown, D.G.; Verburg, P.H.; Pontius, R.G.; Lange, M.D. Opportunities to improve impact, integration, and evaluation of land change models. Curr. Opin. Environ. Sustain. 2013, 5, 452–457. [Google Scholar] [CrossRef]
- Nelson, G.C.; Valin, H.; Sands, R.D.; Havlík, P.; Ahammad, H.; Deryng, D.; Elliott, J.; Fujimori, S.; Hasegawa, T.; Heyhoe, E.; et al. Climate change effects on agriculture: Economic responses to biophysical shocks. Proc. Natl. Acad. Sci. USA 2014, 111, 3274–3279. [Google Scholar] [CrossRef] [PubMed]
- Stehfest, E.; van Vuuren, D.; Kram, T.; Bouwman, L.; Alkemade, R.; Bakkenes, M.; Biemans, H.; Bouwman, A.; den Elzen, M.; Janse, J.; et al. Integrated Assessment of Global Environmental Change with IMAGE 3.0. Model Description and Policy Applications; PBL Publishers: The Hague, The Netherlands, 2014; ISBN 978-94-91506-71-0. [Google Scholar]
- Popp, A.; Humpenöder, F.; Weindl, I.; Bodirsky, B.L.; Bonsch, M.; Lotze-Campen, H.; Müller, C.; Biewald, A.; Rolinski, S.; Stevanovic, M.; et al. Land-use protection for climate change mitigation. Nat. Clim. Chang. 2014, 4, 1095–1098. [Google Scholar] [CrossRef]
- Schmitz, C.; van Meijl, H.; Kyle, P.; Nelson, G.C.; Fujimori, S.; Gurgel, A.; Havlik, P.; Heyhoe, E.; d’Croz, D.M.; Popp, A.; et al. Land-use change trajectories up to 2050: Insights from a global agro-economic model comparison. Agric. Econ. 2014, 45, 69–84. [Google Scholar] [CrossRef]
- Prestele, R.; Alexander, P.; Rounsevell, M.D.A.; Arneth, A.; Calvin, K.; Doelman, J.; Eitelberg, D.A.; Engström, K.; Fujimori, S.; Hasegawa, T.; et al. Hotspots of uncertainty in land-use and land-cover change projections: A global-scale model comparison. Glob. Chang. Biol. 2016, 22, 3967–3983. [Google Scholar] [CrossRef] [PubMed]
- Pongratz, J.; Dolman, H.; Don, A.; Erb, K.-H.; Fuchs, R.; Herold, M.; Jones, C.; Kuemmerle, T.; Luyssaert, S.; Meyfroidt, P.; et al. Models meet data: Challenges and opportunities in implementing land management in Earth system models. Glob. Chang. Biol. 2017, 1470–1487. [Google Scholar] [CrossRef] [PubMed]
- Schaldach, R.; Alcamo, J.; Koch, J.; Kölking, C.; Lapola, D.M.; Schüngel, J.; Priess, J.A. An integrated approach to modelling land-use change on continental and global scales. Environ. Model. Softw. 2011, 26, 1041–1051. [Google Scholar] [CrossRef]
- Debonne, N.; van Vliet, J.; Heinimann, A.; Verburg, P. Representing large-scale land acquisitions in land use change scenarios for the Lao PDR. Reg. Environ. Chang. 2018, 18, 1857–1869. [Google Scholar] [CrossRef] [Green Version]
- Ornetsmüller, C.; Verburg, P.H.; Heinimann, A. Scenarios of land system change in the Lao PDR: Transitions in response to alternative demands on goods and services provided by the land. Appl. Geogr. 2016, 75, 1–11. [Google Scholar] [CrossRef]
- Friis, C.; Nielsen, J.Ø. On the system. Boundary choices, implications, and solutions in telecoupling land use change research. Sustainability 2017, 9, 974. [Google Scholar] [CrossRef]
- Sala, S.; Farioli, F.; Zamagni, A. Life cycle sustainability assessment in the context of sustainability science progress (part 2). Int. J. Life Cycle Assess. 2013, 18, 1686–1697. [Google Scholar] [CrossRef]
- Ewing, B.R.; Hawkins, T.R.; Wiedmann, T.O.; Galli, A.; Ercin, A.E.; Weinzettel, J.; Steen-Olsen, K. Integrating ecological and water footprint accounting in a multi-regional input-output framework. Ecol. Indic. 2012, 23, 1–8. [Google Scholar] [CrossRef]
- Hertwich, E.G.; Peters, G.P. Carbon Footprint of Nations: A Global, Trade-Linked Analysis. Environ. Sci. Technol. 2009, 43, 6414–6420. [Google Scholar] [CrossRef] [Green Version]
- Weinzettel, J.; Hertwich, E.G.; Peters, G.P.; Steen-Olsen, K.; Galli, A. Affluence drives the global displacement of land use. Glob. Environ. Chang. 2013, 23, 433–438. [Google Scholar] [CrossRef] [Green Version]
- Jin, W.; Xu, L.; Yang, Z. Modeling a policy making framework for urban sustainability: Incorporating system dynamics into the Ecological Footprint. Ecol. Econ. 2009, 68, 2938–2949. [Google Scholar] [CrossRef]
- Lenzen, M.; Murray, S.A.; Korte, B.; Dey, C.J. Environmental impact assessment including indirect effects—A case study using input-output analysis. Environ. Impact Assess. Rev. 2003, 23, 263–282. [Google Scholar] [CrossRef]
- Hawkins, T.; Hendrickson, C.; Higgins, C.; Matthews, H.S.; Suh, S. A mixed-unit input-output model for environmental life-cycle assessment and material flow analysis. Environ. Sci. Technol. 2007, 41, 1024–1031. [Google Scholar] [CrossRef] [PubMed]
- Igos, E.; Rugani, B.; Rege, S.; Benetto, E.; Drouet, L.; Zachary, D.S. Combination of equilibrium models and hybrid life cycle-input-output analysis to predict the environmental impacts of energy policy scenarios. Appl. Energy 2015, 145, 234–245. [Google Scholar] [CrossRef]
- Kennelly, C.; Berners-Lee, M.; Hewitt, C.N. Hybrid life-cycle assessment for robust, best-practice carbon accounting. J. Clean. Prod. 2019, 208, 35–43. [Google Scholar] [CrossRef]
- Yi, I.; Itsubo, N.; Inaba, A.; Matsumoto, K. Development of the interregional I/O based LCA method considering region-specifics of indirect effects in regional evaluation. Int. J. Life Cycle Assess. 2007, 12, 353–364. [Google Scholar] [CrossRef]
- De Rosa, M.; Knudsen, M.T.; Hermansen, J.E. A comparison of Land Use Change models: Challenges and future developments. J. Clean. Prod. 2016, 113, 183–193. [Google Scholar] [CrossRef]
- Saad, R.; Margni, M.; Koellner, T.; Wittstock, B.; Deschênes, L. Assessment of land use impacts on soil ecological functions: Development of spatially differentiated characterization factors within a Canadian context. Int. J. Life Cycle Assess. 2011, 16, 198–211. [Google Scholar] [CrossRef]
- Bolwig, S.; Ponte, S.; Toit, A.; Riisgaard, L.; Halberg, N. Integrating Poverty and Environmental Concerns into Value-Chain Analysis A Conceptual Framework. Dev. Policy Rev. 2010, 28, 173–194. [Google Scholar] [CrossRef]
- Kaplinsky, R.; Morris, M. A Handbook for Value Chain Research. Available online: http://www.fao.org/fileadmin/user_upload/fisheries/docs/Value_Chain_Handbool.pdf (accessed on 7 February 2019).
- Fearne, A.; Garcia Martinez, M.; Dent, B. Dimensions of sustainable value chains: Implications for value chain analysis. Supply Chain Manag. Int. J. 2012, 17, 575–581. [Google Scholar] [CrossRef]
- Fasse, A.C.; Grote, U.; Winter, E. Recent developments in applying environmental value chain analysis. Environ. Econ. 2011, 2, 74–86. [Google Scholar]
- De Marchi, V.; Di Maria, E.; Micelli, S. Environmental Strategies, Upgrading and Competitive Advantage in Global Value Chains. Bus. Strateg. Environ. 2013. [Google Scholar] [CrossRef]
- Mahutga, M.C. When do value chains go global? A theory of the spatialization of global value chains. Glob. Netw. 2012, 12, 1–21. [Google Scholar] [CrossRef]
- Panichelli, L.; Gnansounou, E. Impact of agricultural-based biofuel production on greenhouse gas emissions from land-use change: Key modelling choices. Renew. Sustain. Energy Rev. 2015, 42, 344–360. [Google Scholar] [CrossRef]
- Voinov, A.; Shugart, H.H. “Integronsters”, integral and integrated modeling. Environ. Model. Softw. 2013, 39, 149–158. [Google Scholar] [CrossRef]
- Hellweg, S.; Frischknecht, R. Evaluation of Long-Term Impacts in LCA. Int. J. Life Cycle Assess. 2004, 9, 339–341. [Google Scholar] [CrossRef]
- Magliocca, N.R.; Rudel, T.K.; Verburg, P.H.; McConnell, W.J.; Mertz, O.; Gerstner, K.; Heinimann, A.; Ellis, E.C. Synthesis in land change science: Methodological patterns, challenges, and guidelines. Reg. Environ. Chang. 2014, 15, 211–226. [Google Scholar] [CrossRef]
- Franzen, A.; Mader, S. Consumption-based versus production-based accounting of CO2 emissions: Is there evidence for carbon leakage? Environ. Sci. Policy 2018, 84, 34–40. [Google Scholar] [CrossRef]
- Steininger, K.; Lininger, C.; Droege, S.; Roser, D.; Tomlinson, L.; Meyer, L. Justice and cost effectiveness of consumption-based versus production-based approaches in the case of unilateral climate policies. Glob. Environ. Chang. 2014, 24, 75–87. [Google Scholar] [CrossRef]
- Ferng, J.J. Allocating the responsibility of CO2over-emissions from the perspectives of benefit principle and ecological deficit. Ecol. Econ. 2003, 46, 121–141. [Google Scholar] [CrossRef]
- Lancker, E.; Nijkamp, P. A policy scenario analysis of sustainable agricultural development options: A case study for Nepal. Impact Assess. Proj. Apprais. 2000, 18, 111–124. [Google Scholar] [CrossRef]
- Heck, V.; Gerten, D.; Lucht, W.; Popp, A. Biomass-based negative emissions difficult to reconcile with planetary boundaries. Nat. Clim. Chang. 2018, 8, 151–155. [Google Scholar] [CrossRef]
- Bjørn, A.; Hauschild, M.Z. Introducing carrying capacity-based normalisation in LCA: Framework and development of references at midpoint level. Int. J. Life Cycle Assess. 2015, 20, 1005–1018. [Google Scholar] [CrossRef]
- Clift, R.; Sim, S.; King, H.; Chenoweth, J.L.; Christie, I.; Clavreul, J.; Mueller, C.; Posthuma, L.; Boulay, A.M.; Chaplin-Kramer, R.; et al. The challenges of applying planetary boundaries as a basis for strategic decision-making in companies with global supply chains. Sustainability 2017, 9, 279. [Google Scholar] [CrossRef]
Term | Definition |
---|---|
Feedback | Process by which an effect caused by one system to another system, impacts back to the first system. |
Spillover system | System that is affected by/or affects the direct interaction of two other different systems (sending and receiving systems). |
Leakage | Unintended negative effect of a sustainability action elsewhere than the target place. |
Cascading effect | Process by which a system affects other multiple systems in sequence as a result of telecoupling dynamics. |
Method Family | Telecoupling Aspects Analyzed | System Boundary Definition | Consider Landscape Heterogeneity & iLUC | Integratedness | Geographic Scale Suitability | Temporal Approach |
---|---|---|---|---|---|---|
LCA | Except by CLCA, it cannot account for feedbacks. Spillovers can be accounted with system boundary expansion. | Boundaries around a product or service usually exclude indirect impacts. Considers large-scale forces as external variables. Potential for expansion. | No | Usually only focus on biophysical impacts but the incorporation of social and economic ones is possible. | Local scale | Static |
Footprints/Other Indicators | Feedbacks are not accounted. Spillovers can be accounted with system boundary expansion. | Boundaries strictly around territorial units or agents. Exclude several upstream and downstream impacts. Consider large-scale forces as external variables. | Limited because of the use of average transformation factors. | Indicators available for social, economic and environmental impacts. | Regional to global. Finer scale depends on data availability. | Static |
CGE/PE/IO | CGE and PE analyze economic feedback loops and spillovers occurring at large scale. IO cannot include feedbacks. | Broad boundaries but poor granularity that ignores important intermediate causes and impacts. Boundaries around global economy or sectorial economies. | No. Some CGE and PE can account for iLUC from an economic perspective. | Based on economic factors but hybrid approaches can integrate social and environmental variables. | Regional to global | Forecast (CGE/PE). IO is static. |
ABM/SDM | Can parameterize feedback loops and spillovers at least in a qualitative manner. Can analyze multi-temporal, multi-level and multi-disciplinary dynamics. | Flexible boundaries from narrow to broad ones. Boundaries around agents (ABM) or around the entire system (SDM). Multiple temporal and spatial scales. | No | Can parameterize environmental, social and economic factors. | From local to global depending on data availability. | Allow for scenario analysis. |
LUM | Some models allow the integration of feedbacks and spillovers but only within the spatial extent of the study area. | Boundaries depend on the modelling approach but are more often broad. However, this means poor granularity that ignores important intermediate causes and impacts. Boundaries around the territory (ies) under study. | Yes | Depends on the model but they often emphasize more on biophysical factors. | Mainly regional to global depending on the model. | Forecast |
Hybrid Method | Description | Main Contribution to the Assessment of Telecoupled Impacts | Examples |
---|---|---|---|
LCA and LUM | Uses LUM to predict, calculate and allocate the impacts of land use change in LCA | Spatially-explicit forecasting of land-related spillovers (iLUC change) | Chaplin-Kramer et al. [12] Geyer et al. [59] De Rosa et al. [133] |
LCA and CGE/PE-based LUM | Couples LCA with CGE/PE-based LUMs (i.e., GLOBIOM) to quantify and spatially allocate direct and indirect LUC and calculate other environmental impacts caused by international trade. | System boundary expansion (to the global economy), integration of economic feedbacks, analysis of land-related spillovers (iLUC). | Di Fulvio et al. [60] Searchinger et al. [61] Leip et al. [62] Kloverpris et al. [50] |
IO and footprints or indicators | Uses simple or multi-regional IO tables coupled with environmental data, footprints and indicators to calculate the environmental impacts caused by trade. | System boundary expansion and integration of economic feedbacks (only for the case of MRIO). | Kitzes [85] Tukker et al. [83] Prell et al. [133] Ewing et al. [121] Hertwich et al. [122] Weinzettel et al. [123] Turner et al. [21] |
IO and LCA | Uses input-output tables to track resources used in the life cycle of a product to calculate the environmental impacts caused in response to market changes. | System boundary expansion. | Hawkins et al. [126] Igos et al. [127] Kennelly et al. [128] Yi et al. [129] |
SDM and footprints or indicators | Representing wider system dynamics and link it to environmental indicators to represent the relationship between environmental impacts and socio-economic drivers. | System boundary expansion, integration of feedback loops and spillovers. | Mavrommati et al. [102] |
ABM, SDM and CGE | Uses ABM to represent land use decision-making, CGE to represent markets and SDM to represent flows. | System boundary expansion (to the global economy), integration of feedback loops and spillovers caused by agents. | Millington et al. [19] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parra Paitan, C.; Verburg, P.H. Methods to Assess the Impacts and Indirect Land Use Change Caused by Telecoupled Agricultural Supply Chains: A Review. Sustainability 2019, 11, 1162. https://doi.org/10.3390/su11041162
Parra Paitan C, Verburg PH. Methods to Assess the Impacts and Indirect Land Use Change Caused by Telecoupled Agricultural Supply Chains: A Review. Sustainability. 2019; 11(4):1162. https://doi.org/10.3390/su11041162
Chicago/Turabian StyleParra Paitan, Claudia, and Peter H. Verburg. 2019. "Methods to Assess the Impacts and Indirect Land Use Change Caused by Telecoupled Agricultural Supply Chains: A Review" Sustainability 11, no. 4: 1162. https://doi.org/10.3390/su11041162
APA StyleParra Paitan, C., & Verburg, P. H. (2019). Methods to Assess the Impacts and Indirect Land Use Change Caused by Telecoupled Agricultural Supply Chains: A Review. Sustainability, 11(4), 1162. https://doi.org/10.3390/su11041162