Laboratory Evaluation of Finely Milled Brick Debris as a Soil Stabilizer
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fang, S.; Hong, H.; Zhang, P. Mechanical Property Tests and Strength Formulas of Basalt Fiber Reinforced Recycled Aggregate Concrete. Materials 2018, 11, 1851. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.; de Brito, J.; Dhir, R. Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Constr. Build. Mater. 2014, 65, 201–217. [Google Scholar] [CrossRef]
- Tam, V. Chapter 24—Recovery of Construction and Demolition Wastes. In Handbook of Recycling; Elsevier: Amsterdam, The Netherlands, 2014; pp. 385–396. [Google Scholar] [CrossRef]
- Allahverdi, A.; Kani, E.N. Construction wastes as raw materials for geopolymer binders. Int. J. Civ. Eng. 2009, 7, 154–160. [Google Scholar]
- Xuan, D.X.; Molenaar, A.A.A.; Houben, L.J.M. Evaluation of cement treatment of reclaimed construction and demolition waste as road bases. J. Clean. Prod. 2015, 100, 77–83. [Google Scholar] [CrossRef]
- Colangelo, F.; Petrillo, A.; Cioffi, R.; Borrelli, C.; Forcina, A. Life cycle assessment of recycled concretes: A case study in southern Italy. Sci. Total Environ. 2018, 615, 1506–1517. [Google Scholar] [CrossRef] [PubMed]
- Colangelo, F.; Cioffi, R. Mechanical properties and durability of mortar containing fine fraction of demolition wastes produced by selective demolition in South Italy. Compos. Part B 2017, 115, 43–50. [Google Scholar] [CrossRef]
- Aliabdo, A.A.; Abd-Elmoaty, A.M.; Hassan, H.H. Utilization of crushed clay brick in concrete industry. Alex. Eng. J. 2014, 53, 151–168. [Google Scholar] [CrossRef] [Green Version]
- Evangelista, L.; de Brito, J. Concrete with fine recycled aggregates: A review. Eur. J. Environ. Civ. Eng. 2014, 18, 129–172. [Google Scholar] [CrossRef]
- Hossain, K.; Lachemi, M.; Easa, S. Stabilized soils for construction applications incorporating natural resources of Papua New Guinea. Rosour. Conserv. Recycl. 2007, 51, 711–731. [Google Scholar] [CrossRef]
- Qiao, D.; Qian, J.; Wang, Q.; Dang, Y.; Zhang, H.; Zenga, D. Utilization of sulfate-rich solid wastes in rural road construction in the Three Gorges Reservoir. Rosour. Conserv. Recycl. 2010, 54, 1368–1376. [Google Scholar] [CrossRef]
- Xuan, D.X.; Schlangen, E.; Molenaar, A.A.A.; Houben, L.J.M. Influence of quality and variation of recycled masonry aggregates on failure behavior of cement treated demolition waste. Construct. Build. Mater. 2014, 71, 521–527. [Google Scholar] [CrossRef]
- Cabalar, A.F.; Hassan, D.I.; Abdulnafaa, M.D. Use of waste ceramic tiles for road pavement subgrade. Road Mater. Pavement Des. 2016, 18, 882–896. [Google Scholar] [CrossRef]
- Cabalar, A.F.; Zardikawi, O.A.; Abdulnafaa, M.D. Utilisation of construction and demolition materials with clay for road pavement subgrade. Road Mater. Pavement Des. 2017. [Google Scholar] [CrossRef]
- Poon, C.S.; Chan, D. Feasible use of recycled concrete aggregates and crushed clay brick as unbound road sub-base. Constr. Build. Mater. 2006, 20, 578–585. [Google Scholar] [CrossRef]
- Arulrajah, A.; Disfani, M.M.; Horpibulsuk, S.; Suksiripattanapong, C.; Prongmanee, N. Physical properties and shear strength responses of recycled construction and demolition materials in unbound pavement base/subbase applications. Construct. Build. Mater. 2014, 58, 245–257. [Google Scholar] [CrossRef]
- Arisha, A.; Gabr, A.; El-Badawy, S.; Shwally, S. Using blends of construction and demolition waste materials and recycled clay masonry brick in pavement. Procedia Eng. 2016, 143, 1317–1324. [Google Scholar] [CrossRef]
- Bektas, F.; Wang, K.; Ceylan, H. Effects of crushed clay brick aggregate on mortar durability. Construct. Build. Mater. 2009, 23, 1909–1914. [Google Scholar] [CrossRef]
- Bektaş, F. Alkali reactivity of crushed clay brick aggregate. Construct. Build. Mater. 2014, 52, 79–85. [Google Scholar] [CrossRef]
- Zong, L.; Fei, Z.; Zhang, S. Permeability of recycled aggregate concrete containing fly ash and clay brick waste. J. Clean. Prod. 2014, 70, 175–182. [Google Scholar] [CrossRef]
- Kong, D.L.Y.; Sanjayan, J.G. Damage behavior of geopolymer composites exposed to elevated temperatures. Cem. Concr. Compos. 2008, 30, 986–991. [Google Scholar] [CrossRef]
- Robayo-Salazar, R.A.; Mejía-Arcila, J.M.; Mejía de Gutierrez, R. Eco-efficient alkali-activated cement based on red clay brick wastes suitable for the manufacturing of building materials. J. Clean. Prod. 2017, 166, 242–252. [Google Scholar] [CrossRef]
- Komnitsas, K.; Zaharaki, D.; Vlachou, A.; Bartzas, G.; Galetakis, M. Effect of synthesis parameters on the quality of construction and demolition wastes (CDW) geopolymers. Adv. Powder Technol. 2015, 26, 368–376. [Google Scholar] [CrossRef] [Green Version]
- Robayo, R.A.; Mulford, A.; Munera, J.; Mejía, R. Alternative cements based on alkali-activated red clay brick waste. Construct. Build. Mater. 2016, 128, 163–169. [Google Scholar] [CrossRef]
- Zaharaki, D.; Galetakis, M.; Komnitsas, K. Valorization of construction and demolition (C&D) and industrial wastes through alkali activation. Construct. Build. Mater. 2016, 121, 686–693. [Google Scholar] [CrossRef]
- Hidalgo, C.A.; Arias, Y.P. Stabilized soils as an alternative for construction of low transit volume roads. In Vias de Bajo Volumen de Tránsito, 1st ed.; Montoya, L.J., López, L.D., Eds.; Sello Editorial Universidad de Medellín: Medellín, Colombia, 2017; Volume 1, pp. 41–62. (In Spanish) [Google Scholar]
- Teutonico, J.M.; McCaig, I.; Burns, C.; Ashurst, J. The Smeaton project: Factors affecting the properties of lime-based mortars. APT Bull. 1993, 25, 32–49. [Google Scholar] [CrossRef]
- Nazari, A.; Sanjayan, J.G. Synthesis of geopolymer from industrial wastes. J. Clean. Prod. 2015, 99, 297–304. [Google Scholar] [CrossRef]
- Shekhovtsova, J.; Zhernovsky, I.; Kovtun, M.; Kozhukhova, N.; Zhernovskaya, I.; Kearsley, E. Estimation of fly ash reactivity for use in alkali-activated cements—A step towards sustainable building material and waste utilization. J. Clean. Prod. 2018, 178, 22–33. [Google Scholar] [CrossRef]
- Weng, L.; Sagoe-Crentsil, K.; Brown, T.; Song, S. Effects of aluminates on the formation of geopolymers. Mater. Sci. Eng. 2005, 117, 163–168. [Google Scholar] [CrossRef]
- Pacheco-Torgal, F.; Castro-Gomes, J.; Jalali, S. Alkali-activated binders: A review. Part 2. About materials and binders manufacture. Construct. Build. Mater. 2008, 22, 1315–1322. [Google Scholar] [CrossRef] [Green Version]
- Antoni, A.; Wiyono, D.; Vianthi, A.; Putra, P.; Kartadinata, G.; Hardjito, D. Effect of particle size on properties of sidoarjo mud-based geopolymer. Mater. Sci. Forum 2015, 803, 44–48. [Google Scholar] [CrossRef]
- Ryu, G.S.; Lee, Y.B.; Koh, K.T.; Chung, Y.S. The mechanical properties of fly ash-based geopolymer concrete with alkaline activators. Construct. Build. Mater. 2013, 47, 409–418. [Google Scholar] [CrossRef]
- Hu, W.; Nie, Q.; Huang, B.; Shu, X.; He, Q. Mechanical and microstructural characterization of geopolymers derived from red mud and fly ashes. J. Clean. Prod. 2018, 186, 799–806. [Google Scholar] [CrossRef]
- Rodríguez, E.; Mejía de Gutiérrez, R.; Bernal, S.; Gordillo, M. Effect of the SiO2/Al2O3 and Na2O/SiO2ratios on the properties of geopolymers based on MK. Revista Facultad de Ingeniería Universidad de Antioquia 2009, 49, 30–41. (In Spanish) [Google Scholar]
- ASTM. (www.astm.org). Standard Test Method for Unconfined Compressive Strength of Compacted Soil-Lime Mixtures (Withdrawn 2018); ASTM D5102-09; ASTM International: West Conshohocken, PA, USA, 2009. [Google Scholar] [CrossRef]
- Lambe, T.W.; Whitman, R.V. Soil Mechanics; Wiley: New York, NY, USA, 1969; 582p. [Google Scholar]
- Murthy, V. Geotechnical Engineering: Principles and Practices of Soil Mechanics and Foundation Engineering; Taylor & Francis Group: New York, NY, USA, 2002; 1056p. [Google Scholar]
- Soares, P.; Pinto, A.T.; Ferreira, V.M.; Labrincha, J.A. Geopolímeros basados en residuos de la producción de áridos ligeros. Mater. Construcc. 2008, 58, 23–34. [Google Scholar] [CrossRef]
- Palomo, A.; Grutzeck, M.W.; Blanco, M.T. Alkali-activated fly ashes. Cem. Concr. Res. 1999, 29, 1323–1329. [Google Scholar] [CrossRef]
- Mo, B.; Zhu, H.; Cui, X.; He, Y.; Gong, S. Effect of curing temperature on geopolymerization of metakaolin-based geopolymers. Appl. Clay Sci. 2014, 99, 144–148. [Google Scholar] [CrossRef]
- Bakria, A.M.M.A.; Kamarudin, H.; BinHussain, M.; Nizar, I.K.; Zarina, Y.; Rafiza, A.R. The effect of curing temperature on physical and chemical properties of geopolymers. Phys. Procedia 2011, 22, 286–291. [Google Scholar] [CrossRef]
S1 | S3 | BD | |
---|---|---|---|
US sieve N°10-opening: 2 mm (% finer) | 84 | - | - |
US sieve N°40-opening: 425 µm (% finer) | 50 | - | 94 |
US sieve N°200-opening: 75 µm (% finer) | 21.84 | 86.28 | 35 |
Specific gravity | 2.77 | 2.70 | 2.7 |
Liquid Limit (%) | 37.0 | 66 | - |
Plastic index (%) | 11.0 | 17 | - |
USCS clasification (ASTM D2487) | SM | MH | - |
AASHTO clasification (ASTM D3282) | A-1b | A-7-5 | - |
Oxide | Composition % | Oxide | Composition % | ||||
---|---|---|---|---|---|---|---|
Soil S1 | Soil S3 | BD | Soil S1 | Soil S3 | BD | ||
SiO2 | 52.11 | 41.53 | 48.30 | NiO | 0.02 | 0.02 | |
Al2O3 | 19.26 | 35.45 | 28.60 | Na2O | 2.57 | - | 3.30 |
Fe2O3 | 10.18 | 20.47 | 11.00 | V2O5 | 0.05 | 0.09 | |
TiO2 | 1.27 | 1.51 | 1.40 | WO3 | 0.04 | 0.05 | |
K2O | 0.86 | 0.65 | 0.60 | MnO | 0.18 | 0.04 | |
ZrO2 | 0.04 | 0.05 | - | MgO | 5.09 | - | 1.60 |
CaO | 8.04 | 0.05 | 2.00 | SnO2 | - | 0.02 | |
Cr2O3 | 0.03 | 0.02 | 0.10 | ZnO | 0.01 | 0.02 | |
CuO | 0.01 | 0.02 | - | P2O5 | 0.23 | - | 1.10 |
SO3 | - | - | 0.20 |
Soil | S1 | S3 | ||
---|---|---|---|---|
Model | p-values (7 days) | p-values (28 days) | p-values (7 days) | p-values (28 days) |
Temperature | 0.982 | 0.001 | 0.038 | 0.001 |
Moisture | 0.001 | 0.001 | 0.633 | 0.198 |
Activator | 0.005 | 0.002 | 0.045 | 0.001 |
Percentage of stabilizer | 0.001 | 0.001 | 0.002 | 0.001 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hidalgo, C.; Carvajal, G.; Muñoz, F. Laboratory Evaluation of Finely Milled Brick Debris as a Soil Stabilizer. Sustainability 2019, 11, 967. https://doi.org/10.3390/su11040967
Hidalgo C, Carvajal G, Muñoz F. Laboratory Evaluation of Finely Milled Brick Debris as a Soil Stabilizer. Sustainability. 2019; 11(4):967. https://doi.org/10.3390/su11040967
Chicago/Turabian StyleHidalgo, Cesar, Gloria Carvajal, and Fredy Muñoz. 2019. "Laboratory Evaluation of Finely Milled Brick Debris as a Soil Stabilizer" Sustainability 11, no. 4: 967. https://doi.org/10.3390/su11040967
APA StyleHidalgo, C., Carvajal, G., & Muñoz, F. (2019). Laboratory Evaluation of Finely Milled Brick Debris as a Soil Stabilizer. Sustainability, 11(4), 967. https://doi.org/10.3390/su11040967