Acoustical Renovation of University Multipurpose Halls: The Case of Lala Mustafa Paşa Hall
Abstract
:1. Introduction
2. Literature Review
3. Method of the Study
3.1. Measuring Method
Discussion of the Measurement Results
3.2. Simulations
Discussion of the Simulation Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Cairoli, M. Architectural customized design for variable acoustics in a multipurpose auditorium. Appl. Acoust. 2018, 140, 167–177. [Google Scholar] [CrossRef]
- Kulowski, A. The caustic in the acoustics of historic interiors. Appl. Acoust. 2018, 133, 82–90. [Google Scholar] [CrossRef]
- Long, M. Architectural Acoustics, 2nd ed.; Academic Press: California, USA, 2014. [Google Scholar]
- Barron, M.; Kissner, S. A possible acoustic design approach for multi-purpose auditoria suitable for both speech and music. Appl. Acoust. 2017, 115, 42–49. [Google Scholar] [CrossRef]
- Michel, H.; Myers, J. Increasing liveness and clarity in a multipurpose civic center. J. Acoust. Soc. Am. 2016, 140, 3294. [Google Scholar] [CrossRef]
- Sakamoto, S.; Cui, Z.; Miyashita, T.; Morimoto, M.; Suzuki, Y.; Sato, H. Effects of inter-word pauses on speech intelligibility under long-path echo conditions. Appl. Acoust. 2018, 140, 263–274. [Google Scholar] [CrossRef]
- Brunskog, J.; Gade, A.C.; Bellester, G.P.; Calbo, L.R. Increase in voice level and speaker comfort in lecture rooms. J. Acoust. Soc. Am. 2009, 125, 2072–2082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eldakdoky, S.; Elkhateeb, A. Acoustic improvement on two lecture auditoria: Simulation and experiment. Front. Archit. Res. 2017, 6, 1–16. [Google Scholar] [CrossRef]
- Beranek, L.L. Subjective rank-orderings and acoustical measurements for fifty-eight concert halls. Acta Acust. United Acust. 2003, 89, 494–508. [Google Scholar]
- Beranek, L.L. Concert hall acoustics—2008. J. Audio Eng. Soc. 2008, 56, 532–544. [Google Scholar]
- Hyde, J. Acoustical intimacy in concert halls: Does visual input affect the aural experience? In Proceedings of the Institute of Acoustics, Auditorium Acoustics: Historical and Contemporary Design and Performance, London, UK, 19–21 July 2002. [Google Scholar]
- Kwon, Y.; Siebein, G.W. Chronological analysis of architectural and acoustical indices in music performance halls. J. Acoust. Soc. Am. 2007, 121, 2691–2699. [Google Scholar] [CrossRef] [PubMed]
- Marshall, A.H. Acoustical design and evaluation of Christchurch Town Hall, New Zealand. J. Acoust. Soc. Am. 1979, 65, 951–957. [Google Scholar] [CrossRef]
- Sü, Z.; Yilmazer, S. The acoustical performance analysis of Bilkent amphitheater: Proposal for acoustical renovation. Archit. Sci. Rev. 2006, 49, 167–178. [Google Scholar] [CrossRef]
- Lautenbach, M.R.; Vercammen, M.L.S.; Lorenz-Kierakiewitz, K.-H. Renovation of the concert hall De Doelen, Rotterdam, The Netherlands. Early Reflections Strength and Stage Acoustics. In Proceedings of Institute of Acoustics; Part 3; Institute of Acoustics: Oslo, Norway, 3–5 October 2008; p. 30. [Google Scholar]
- Leccese, F.; Rocca, M.; Salvadori, G. Fast estimation of speech transmission index using the reverberation time: Comparison between predictive equations for educational rooms of different sizes. Appl. Acoust. 2018, 140, 143–149. [Google Scholar] [CrossRef]
- Sala, E.; Rantala, L. Acoustics and activity noise in school classrooms in Finland. Appl. Acoust. 2016, 114, 252–259. [Google Scholar] [CrossRef]
- John, J.; Thampuran, A.L.; Premlet, B. Objective and subjective evaluation of acoustic comfort in classrooms: A comparative investigation of vernacular and modern school classroom in Kerala. Appl. Acoust. 2016, 104, 33–41. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, X.; Sheng, X.; Zhang, C.; Wang, R.; Jin, X. SEA and conribution analysis for interior noise of a high speed train. Appl. Acoust. 2016, 112, 158–170. [Google Scholar] [CrossRef]
- Brüel & Kjaer. DIRAC Room Acoustics Software-Type 7841; Brüel & Kjaer: Narum, Denmark, 2011. [Google Scholar]
- International Organization for Standardization (ISO). Standard 3382-1. In Acoustics-Measurement of Room Acoustic Parameters-Part 1: Performance Spaces; The International Organization for Standardization (ISO): Geneva, Switzerland, 2009. [Google Scholar]
- The British Standards Institution. Sound System Equipment—Part 16: Objective Rating of Speech Intelligibility by Speech Transmission Index; BS EN 60268-16; European Committee for Electrotechnical Standardization: Brussels, Belgium, 2011. [Google Scholar]
- Kuttruff, H. Room Acoustics, 6th ed.; CRC Press: Germany, 2016. [Google Scholar]
- Hidaka, T.; Beranek, L.L.; Masuda, S.; Nishihara, N.; Okano, T. Acoustical design of the Tokyo Opera City (TOC) concert hall, Japan. J. Acoust. Soc. Am. 2000, 107, 340–354. [Google Scholar] [CrossRef]
- Ando, Y. Auditory and Visual Sensations; Springer: New York, NY, USA, 2010. [Google Scholar]
- Barron, M.; Marshall, A.H. Spatial impression due to early lateral reflections in concert halls: The derivation of a physical measure. J. Sound Vib. 1981, 77, 211–232. [Google Scholar] [CrossRef]
- Szokolay, S.V. Environmental Science Handbook for Architects and Builders; Construction Press: New York, NY, USA, 1980. [Google Scholar]
- Callender, J.H.; Crosbie, M.J. (Eds.) Time-Saver Standards for Architectural Design Data; McGraw-Hill: New York, NY, USA, 1974; pp. 696–719. [Google Scholar]
- Barron, M. Auditorium Acoustics and Architectural Design, 2nd ed.; Spon Press: London, UK, 2010. [Google Scholar]
- Bradley, J.S. Acoustical comparison of three theaters. J. Acoust. Soc. Am. 1986, 79, 1827–1832. [Google Scholar] [CrossRef] [PubMed]
- Howard, D.M.; Angus, J. Acoustics and Psychoacoustics, 4th ed.; Focal Press: Oxford, UK, 2009. [Google Scholar]
- Bradley, J.S.; Soulodre, G.A.; Norcross, S. Factors influencing the perception of bass. In Proceedings of the 133rd Meeting Lay Language Papers for Acoustical Society of America/NOISE-CON 97, State College, PA, USA, 17 June 1997. [Google Scholar]
- Hidaka, T.; Nishihara, N.; Beranek, L.L. Relation of acoustical parameters with and without audiences in concert halls and a simple method for simulating the occupied state. J. Acoust. Soc. Am. 2001, 109, 1028–1042. [Google Scholar] [CrossRef] [PubMed]
- Barron, M. The subjective effects of first reflections in concert halls—The need for lateral reflections. J. Sound Vib. 1971, 15, 475–494. [Google Scholar] [CrossRef]
- Marshall, A.H.; Barron, M. Spatial responsiveness in concert halls and the origins of spatial impression. Appl. Acoust. 2001, 62, 91–108. [Google Scholar] [CrossRef]
- Lokki, T.; Pätynen, J.; Tervo, S.; Siltanen, S.; Savioja, L. Engaging concert hall acoustics is made up of temporal envelope preserving reflections. J. Acoust. Soc. Am. 2011, 129, EL223. [Google Scholar] [CrossRef] [PubMed]
- Lokki, T.; Pätynen, J. Lateral reflections are favorable in concert halls due to binaural loudness. J. Acoust. Soc. Am. 2011, 130, EL345. [Google Scholar] [CrossRef] [PubMed]
- Odeon A/S. ODEON Room Acoustics Software, User’s Manual, Version 14; Odeon A/S: Lyngby, Denmark, 2018. [Google Scholar]
- Absorption Coefficients. Available online: www.acoustic.ua/st/web_absorption_data_eng.pdf (accessed on 10 February 2019).
Point | STI female | STI male | RASTI |
---|---|---|---|
A1 | 0.49 (Fair) | 0.49 (Fair) | 0.43 (Poor) |
A2 | 0.39 (Poor) | 0.39 (Poor) | 0.37 (Poor) |
A3 | 0.38 (Poor) | 0.37 (Poor) | 0.36 (Poor) |
A5 | 0.47 (Fair) | 0.47 (Fair) | 0.43 (Poor) |
A9 | 0.45 (Fair) | 0.44 (Poor) | 0.43 (Poor) |
A10 | 0.40 (Poor) | 0.40 (Poor) | 0.38 (Poor) |
A20 | 0.35 (Poor) | 0.35 (Poor) | 0.33 (Poor) |
Reverberation times of the occupied hall | ||||||
Frequencies, Hz | 125 | 250 | 500 | 1000 | 2000 | 4000 |
RToccupied, s | 3.5 | 3.73 | 3.7 | 3.18 | 3.00 | 2.4 |
Material | 63 Hz | 125 Hz | 250 Hz | 500 Hz | 1 kHz | 2 kHz | 4 kHz | 8 kHz |
---|---|---|---|---|---|---|---|---|
Linoleum on concrete | 0.02 | 0.02 | 0.02 | 0.03 | 0.04 | 0.04 | 0.05 | 0.05 |
Aluminum sandwich panels | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Glazed tiles | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 |
Painted plaster surface | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
Double glazing | 0.10 | 0.10 | 0.007 | 0.05 | 0.03 | 0.02 | 0.02 | 0.02 |
Smooth unpainted concrete | 0.01 | 0.01 | 0.01 | 0.02 | 0.02 | 0.02 | 0.05 | 0.05 |
Plywood on battens | 0.30 | 0.30 | 0.20 | 0.15 | 0.13 | 0.10 | 0.008 | 0.008 |
Seated audiences | 0.16 | 0.16 | 0.24 | 0.56 | 0.69 | 0.81 | 0.78 | 0.78 |
Curtains folded to 7/8 area | 0.03 | 0.03 | 0.12 | 0.15 | 0.27 | 0.37 | 0.42 | 0.42 |
Acoustical wall panels | 0.40 | 0.40 | 0.80 | 0.95 | 0.80 | 0.90 | 0.95 | 0.95 |
Acoustical ceiling panels | 0.25 | 0.25 | 0.45 | 0.65 | 0.80 | 0.80 | 0.10 | 1.00 |
Chair, unoccupied, lightly upholstered | 0.02 | 0.02 | 0.02 | 0.03 | 0.04 | 0.04 | 0.05 | 0.05 |
Chair, occupied, lightly upholstered | 0.51 | 0.51 | 0.64 | 0.75 | 0.80 | 0.82 | 0.83 | 0.83 |
Scattering Method | Lambert |
---|---|
Number of rays | 100,000 |
Max. reflection order | 2000 |
Impulse response length | 4000 ms |
Impulse response resolution | 3.0 ms |
Transition order | 2 |
Number of early scatter rays | 50 |
Late reflection density | 100 ms |
FREQUENCIES, Hz | 31.5 | 63 | 125 | 250 | 500 | 1000 | 2000 | 4000 | 8000 | 16,000 |
---|---|---|---|---|---|---|---|---|---|---|
EDT [s] Real | 3.6 | 1.4 | 4.1 | 5.0 | 4.7 | 4.1 | 4.2 | 2.9 | 1.8 | 1.0 |
Simulation 1 | 6.45 | 7.27 | 5.18 | 4.54 | 3.43 | 2.63 | 1.88 | 0.98 | ||
Simulation 2 | 3.40 | 3.42 | 2.55 | 2.30 | 1.75 | 1.47 | 1.17 | 0.75 | ||
Simulation 3 | 1.51 | 1.50 | 1.10 | 0.68 | 0.58 | 0.46 | 0.96 | 0.17 | ||
Simulation 4 | 2.68 | 2.76 | 1.72 | 1.47 | 1.14 | 0.88 | 0.96 | 0.43 | ||
RT [s] Real | 1.4 | 1.8 | 4.2 | 4.6 | 4.9 | 4.4 | 4.3 | 3.3 | 2.1 | 0.5 |
Simulation 1 | 5.95 | 6.79 | 5.36 | 4.78 | 3.66 | 2.83 | 2.03 | 1.06 | ||
Simulation 2 | 4.35 | 4.24 | 3.26 | 2.95 | 2.18 | 1.88 | 1.43 | 0.84 | ||
Simulation 3 | 2.16 | 2.15 | 1.62 | 1.60 | 1.32 | 0.85 | 1.18 | 0.52 | ||
Simulation 4 | 3.24 | 3.28 | 2.23 | 1.99 | 1.59 | 1.11 | 1.18 | 0.61 | ||
C80 [dB] Real | −7.0 | −1.3 | −3.3 | −3.6 | −2.9 | −2.8 | −3.3 | −1.8 | 0.7 | 0.9 |
Simulation 1 | −4.4 | −5.3 | −3.9 | −3.4 | −2.3 | −0.6 | 1.2 | 5.5 | ||
Simulation 2 | −1.6 | −1.7 | −0.2 | 0.4 | 1.8 | 2.7 | 4.3 | 8.0 | ||
Simulation 3 | 2.8 | 2.5 | 6.1 | 9.4 | 9.6 | 12.1 | 7.7 | 18.7 | ||
Simulation 4 | −0.9 | −1.1 | 1.6 | 2.7 | 3.9 | 5.8 | 5.7 | 10.5 | ||
D50 [-] Real | 0.25 | 0.4 | 0.3 | 0.2 | 0.2 | 0.3 | 0.2 | 0.3 | 0.4 | 0.6 |
Simulation 1 | 0.20 | 0.17 | 0.21 | 0.23 | 0.28 | 0.35 | 0.44 | 0.63 | ||
Simulation 2 | 0.32 | 0.31 | 0.39 | 0.42 | 0.50 | 0.55 | 0.62 | 0.77 | ||
Simulation 3 | 0.54 | 0.52 | 0.71 | 0.82 | 0.84 | 0.89 | 0.76 | 0.96 | ||
Simulation 4 | 0.33 | 0.32 | 0.45 | 0.50 | 0.57 | 0.65 | 0.66 | 0.81 | ||
Lf [80] Real | Not Measured | |||||||||
Simulation 1 | 0.142 | 0.148 | 0.147 | 0.143 | 0.134 | 0.145 | 0.140 | 0.122 | ||
Simulation 2 | 0.150 | 0.153 | 0.152 | 0.153 | 0.147 | 0.145 | 0.141 | 0.130 | ||
Simulation 3 | 0.117 | 0.111 | 0.098 | 0.085 | 0.081 | 0.076 | 0.098 | 0.047 | ||
Simulation 4 | 0.143 | 0.137 | 0.121 | 0.112 | 0.103 | 0.096 | 0.108 | 0.068 | ||
STI, Real | Average= 0.42 | |||||||||
Simulation 1 | Average= 0.43 | |||||||||
Simulation 2 | Average = 0.54 | |||||||||
Simulation 3 | Average = 0.58 | |||||||||
Simulation 4 | Average = 0.59 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alibaba, H.Z.; Ozdeniz, M.B. Acoustical Renovation of University Multipurpose Halls: The Case of Lala Mustafa Paşa Hall. Sustainability 2019, 11, 1397. https://doi.org/10.3390/su11051397
Alibaba HZ, Ozdeniz MB. Acoustical Renovation of University Multipurpose Halls: The Case of Lala Mustafa Paşa Hall. Sustainability. 2019; 11(5):1397. https://doi.org/10.3390/su11051397
Chicago/Turabian StyleAlibaba, Halil Zafer, and Mesut B. Ozdeniz. 2019. "Acoustical Renovation of University Multipurpose Halls: The Case of Lala Mustafa Paşa Hall" Sustainability 11, no. 5: 1397. https://doi.org/10.3390/su11051397
APA StyleAlibaba, H. Z., & Ozdeniz, M. B. (2019). Acoustical Renovation of University Multipurpose Halls: The Case of Lala Mustafa Paşa Hall. Sustainability, 11(5), 1397. https://doi.org/10.3390/su11051397