Optimal Decision-Making of Renewable Energy Systems in Buildings in the Early Design Stage
Abstract
:1. Introduction
2. Previous Design Methods and Tools for RES in Buildings
2.1. Design Methods for RES in Buildings
2.2. Design Tools for RES in Buildings
3. Simplified Design Method for RES in Buildings in the Early Design Stage
3.1. Process of Simplified Design Method
3.2. A Design Tool to Support Simplified RES Design in Buildings
4. Case Study
5. Results
5.1. Analysis of Design Alternatives with Similar Energy Generation
5.2. Analysis of Design Alternatives with Similar Energy Generation and Installation Cost
6. Discussion on Decision-Making for Optimal RES Design
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Han, S.K.; Kim, J.Y. An Optimization Model to Design and Analysis of Renewable Energy Supply Strategies for Residential Sector. Renew. Energy 2017, 112, 222–234. [Google Scholar] [CrossRef]
- Liu, H.; Andersen, G.B.; Greiner, M. Cost-optimal Design of a Simplified Highly Renewable Chinese Electricity Network. Energy 2018, 147, 534–546. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Mitigation of Climate Change, Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; pp. 6–8. [Google Scholar]
- Schmidyt, M.; Crawford, R.H. A Framework for the Integrated Optimization of the Life Cycle Greenhouse Gas Emissions and Cost of Buildings. Energy Build. 2018, 171, 155–167. [Google Scholar] [CrossRef]
- EPA. Inventory of U.S. Greenhouse Gas Emissions and Sinks 1990–2016; EPA: Washington, DC, USA, 2018; pp. 2-1–2-19. [Google Scholar]
- Dahlhausen, M.; Heidarinejad, M.; Srebric, J. Building Energy Retrofits under Capital Constraints and Greenhouse Gas Pricing Scenarios. Energy Build. 2015, 107, 407–416. [Google Scholar] [CrossRef]
- Stojiljkovic, M.M.; Ignjatovic, M.G.; Vuckovic, G.D. Greenhouse Gases Emission Assessment in Residential Sector through Buildings Simulations and Operation Optimization. Energy 2015, 92, 420–434. [Google Scholar] [CrossRef]
- Xu, X.; Feng, G.; Chi, D.; Liu, M.; Dou, B. Optimization of Performance Parameter Design and Energy Use Prediction for Nearly Zero Energy Buildings. Energies 2018, 11, 3252. [Google Scholar] [CrossRef]
- Kristjansdottir, T.F.; Good, C.S.; Inman, M.R.; Schlanbusch, R.D.; Andresen, I. Embodied Greenhouse Gas Emissions from PV Systems in Norwegian Residential Zero Emission Pilot Buildings. Sol. Energy 2016, 133, 155–171. [Google Scholar] [CrossRef]
- Rey-Hernández, J.M.; Velasco-Gómez, E.; San José-Alonso, J.F.; Tejero-González, A.; González-González, S.L.; Rey-Martínez, F.J. Monitoring Data Study of the Performance of Renewable Energy Systems in a Near Zero Energy Building in Spain: A Case Study. Energies 2018, 11, 2979. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, H.J.; Kim, H.J.; Jang, D.H.; Kim, H.-J.; Hur, J.; Cho, Y.-S.; Hur, K. Improvement in Policy and Proactive Interconnection Procedure for Renewable Energy Expansion in South Korea. Renew. Sustain. Energy Rev. 2018, 98, 150–162. [Google Scholar] [CrossRef]
- Kampf, J.H.; Robinson, D. A hybrid CMA-ES and HDE Optimisation Algorithm with Application to Solar Energy Potential. Appl. Soft Comput. 2009, 9, 738–745. [Google Scholar] [CrossRef]
- Vidal-Amaro, J.J.; Ostergaard, P.A.; Sheinbaum-Pardo, C. Optimal Energy Mix for Transitioning from Fossil Fuels to Renewable Energy Sources—The Case of the Mexican Electricity System. Appl. Energy 2015, 150, 80–96. [Google Scholar] [CrossRef]
- European Commission. Towards Nearly Zero-energy Buildings; Definition of Common Principles under the EPBD; ECOFYS Germany GmbH: Köln, Germany, 2013; p. 18. [Google Scholar]
- EPA. Energy and Environment Guide to Action; EPA: Washington, DC, USA, 2015; pp. ES-1–ES-2. [Google Scholar]
- Lu, Y.; Zhang, X.P.; Huang, Z.; Lu, J.; Wang, D. Impact of Introducing Penalty-cost on Optimal Design of Renewable Energy Systems for Net Zero Energy Buildings. Appl. Energy 2019, 235, 106–116. [Google Scholar] [CrossRef]
- Hassoun, A.; Dincer, I. Development of Power System Designs for a Net Zero Energy House. Energy Build. 2014, 73, 120–129. [Google Scholar] [CrossRef]
- Richardson, D.B.; Harvey, L.D.D. Optimizing Renewable Energy, Demand Response and Energy Storage to Replace Conventional Fuels in Ontario, Canada. Energy 2015, 93, 1447–1455. [Google Scholar] [CrossRef]
- Connolly, D.; Lund, H.; Mathiesen, B.; Leahy, M. The First Step Towards a 100% Renewable Energy-system for Ireland. Appl. Energy 2011, 88, 502–507. [Google Scholar] [CrossRef]
- Hart, E.; Jacobson, M. A Monte Carlo Approach to Generator Portfolios Planning and Carbon Emissions Assessment of Systems with Large Penetrations of Variable Renewables. Renew. Energy 2011, 36, 2278–2286. [Google Scholar] [CrossRef]
- Budischak, C.; Sewell, D.; Thomson, H.; Mach, L.; Veron, D.; Kempton, W. Cost-minimized Combinations of Wind Power, Solar Power and Electrochemical Storage, Powering the Grid up to 99.9% of the Time. J. Power Sources 2013, 225, 60–74. [Google Scholar] [CrossRef]
- Jo, J.H.; Aldeman, M.; Lee, H.S.; Ahn, Y.H. Parametric Analysis for Cost-optimal Renewable Energy Integration into Residential Buildings: Techno-economic Model. Renew. Energy 2018, 125, 907–914. [Google Scholar] [CrossRef]
- Ferrara, M.; Monetti, V.; Fabrizio, E. Cost-Optimal Analysis for Nearly Zero Energy Buildings Design and Optimization: A Critical Review. Energies 2018, 11, 1478. [Google Scholar] [CrossRef]
- Zubair, M.; Bilal Awan, A.; Al-Ahmadi, A.; Abo-Khalil, A.G. NPC Based Design Optimization for a Net Zero Office Building in Hot Climates with PV Panels as Shading Device. Energies 2018, 11, 1391. [Google Scholar] [CrossRef]
- Rubio, R.L.; Trejo-Perea, M.; Vargas-Vazquez, D.; Rios-Moreno, G.J. Optimal Sizing of Renewable Hybrids Energy Systems: A Review of Methodologies. Sol. Energy 2012, 86, 1077–1088. [Google Scholar] [CrossRef]
- Celik, A.N. Techno-economic Analysis of Autonomous PV–wind Hybrid Systems Using Different Sizing Methods. Energy Convers. Manag. 2003, 44, 1951–1968. [Google Scholar] [CrossRef]
- Devezas, T.; LePoire, D.; Matias, J.C.O.; Silva, A.M.P. Energy Scenarios: Toward a New Energy Paradigm. Futures 2008, 40, 1–16. [Google Scholar] [CrossRef]
- Kaundinya, D.P.; Balachandra, P.; Ravindranath, N.H. Grid-connected versus Stand-alone Energy Systems for Decentralized Power—A Review of Literature. Renew. Sustain. Energy Rev. 2009, 13, 2041–2050. [Google Scholar] [CrossRef]
- Wang, W.; Zmeureanu, R.; Rivard, H. Applying Multi-objective Genetic Algorithms in Green Building Design Optimization. Build. Environ. 2005, 40, 1512–1525. [Google Scholar] [CrossRef]
- Wang, W.; Zmeureanu, R.; Rivard, H. Floor Shape Optimization for Green Building Design. Adv. Eng. Inform. 2006, 20, 363–378. [Google Scholar] [CrossRef]
- Tozzi, P., Jr.; Jo, J.H. A Comparative Analysis of Renewable Energy Simulation Tools: Performance Simulation Model vs. System Optimization. Renew. Sustain. Energy Rev. 2017, 80, 390–398. [Google Scholar] [CrossRef]
- Moya, D.; Paredes, J.; Kaparaju, P. Technical, Financial, Economic and Environmental Pre-feasibility Study of Geothermal Power Plants by RETScreen—Ecuador’s Case Study. Renew. Sustain. Energy Rev. 2018, 92, 628–637. [Google Scholar] [CrossRef]
- Khalid, A.; Junaidi, H. Study of Economic Viability of Photovoltaic Electric Power for Quetta—Pakistan. Renew. Energy 2013, 50, 253–258. [Google Scholar] [CrossRef]
- Mirzahosseini, A.H.; Taheri, T. Environmental, Technical and Financial Feasibility Study of Solar Power Plants by RETScreen, According to the Targeting of Energy Subsidies in Iran. Renew. Sustain. Energy Rev. 2012, 16, 2806–2811. [Google Scholar] [CrossRef]
- Pan, Y.; Liu, L.; Zhu, T.; Zhang, T.; Zhang, J. Feasibility Analysis on Distributed Energy System of Chongming County based on RETScreen Software. Energy 2017, 130, 298–306. [Google Scholar] [CrossRef]
- Salehin, S.; Ferdaous, M.T.; Chowdhury, R.M.; Shithi, S.S.; Rofi, M.S.R.B.; Mohammed, M.A. Assessment of Renewable Energy Systems Combining Techno-economic Optimization with Energy Scenario Analysis. Energy 2016, 112, 729–741. [Google Scholar] [CrossRef]
- Himri, Y.; Rehman, S.; Setiawan, A.A.; Himri, S. Wind Energy for Rural Areas of Algeria. Renew. Sustain. Energy Rev. 2012, 16, 2381–2385. [Google Scholar] [CrossRef]
- Nordman, E.E. Energy Transitions in Kenya’s Tea Sector: A Wind Energy Assessment. Renew. Energy 2014, 68, 505–514. [Google Scholar] [CrossRef]
- Kosnik, L. The Potential for Small Scale Hydropower Development in the US. Energy Policy 2010, 38, 5512–5519. [Google Scholar] [CrossRef]
- Sandt, C.J.; Doyle, M.W. The Hydrologic and Economic Feasibility of Micro Hydropower Upfitting and Integration of Existing Low-head Dams in the United States. Energy Policy 2013, 63, 261–271. [Google Scholar] [CrossRef]
- Wijeratne, W.M.P.U.; Yang, R.J.; Too, E.; Wakefield, R. Design and Development of Distributed Solar PV Systems: Do the Current Tools Work? Sustain. Cities Soc. 2019, 45, 553–578. [Google Scholar] [CrossRef]
- Zandi, M.; Bahrami, M.; Eslami, S.; Gavagsaz-Ghoachani, R.; Payman, A.; Phattanasak, M.; Nahid-Mobarakeh, B.; Pierfederici, S. Evaluation and Comparison of Economic Policies to Increase Distributed Generation Capacity in the Iranian Household Consumption Sector Using Photovoltaic Systems and RETScreen Software. Renew. Energy 2017, 107, 215–222. [Google Scholar] [CrossRef]
- Li, C.; Zhou, D.; Zheng, Y. Techno-economic Comparative Study of Grid-connected PV Power Systems in Five Climate Zones, China. Energy 2018, 165, 1352–1369. [Google Scholar] [CrossRef]
- Malico, I.; Carrajola, J.; Gomes, P.; Lima, J.C. Biomass Residues for Energy Production and Habitat Preservation. Case Study in a Montado Area in Southwestern Europe. J. Clean. Prod. 2016, 112, 3676–3683. [Google Scholar] [CrossRef]
- Mallaki, M.; Fatehi, R. Design of a Biomass Power Plant for Burning Date Palm Waste to Cogenerate Electricity and Distilled Water. Renew. Energy 2014, 63, 286–291. [Google Scholar] [CrossRef]
- Yilmaz, I.H. Residential Use of Solar Water Heating in Turkey: A Novel Thermo-economic Optimization for Energy Savings, Cost Benefit and Ecology. J. Clean. Prod. 2018, 204, 511–524. [Google Scholar] [CrossRef]
- Stevanović, S.; Pucar, M. Financial Measures Serbia Should Offer for Solar Water Heating Systems. Energy Build. 2012, 54, 519–526. [Google Scholar] [CrossRef]
- Paudel, A.M.; Sarper, H. Economic Analysis of a Grid-connected Commercial Photovoltaic System at Colorado State University-Pueblo. Energy 2013, 52, 289–296. [Google Scholar] [CrossRef]
- Chamorro, C.R.; Mondéjar, M.E.; Ramos, R.; Segovia, J.J.; Martín, M.C.; Villamañán, M.A. World Geothermal Power Production Status: Energy, Environmental and Economic Study of High Enthalpy Technologies. Energy 2012, 42, 10–18. [Google Scholar] [CrossRef]
- Born, F.J.; Clarke, J.A.; Johnstone, C.M. Development and Demonstration of a Renewable Energy Based Energy Demand/Supply Decision Support Tool for the Building Design Profession. In Proceedings of the 7th International IBPSA Conference, Rio de Janeiro, Brazil, 13–15 August 2001; pp. 245–250. [Google Scholar]
- Born, F.; Clarke, J.; Johnstone, C.; Kelly, N.; Burt, G.; Dysko, A.; McDonald, J.; Hunter, I.B.B. On the Integration of Renewable Energy Systems within the Built Environment. Build. Serv. Eng. Res. Technol. 2001, 22, 3–13. [Google Scholar] [CrossRef]
- HOMER Pro. Available online: https://www.homerenergy.com/products/pro/index.html (accessed on 20 December 2018).
- Zhang, S.; Huang, P.; Sun, Y. A Multi-criterion Renewable Energy System Design Optimization for Net Zero Energy Buildings under Uncertainties. Energy 2016, 94, 654–665. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, S.; Zhao, Y.; Yan, C. Renewable Energy System Optimization of Low/zero Energy Buildings Using Single-objective and Multi-objective Optimization Methods. Energy Build. 2015, 89, 61–75. [Google Scholar] [CrossRef]
- Sharafi, M.; Tarek, Y.E.; Bibeau, E.L. Optimal Design of Hybrid Renewable Energy Systems in Buildings with Low to High Renewable Energy Ratio. Renew. Energy 2015, 83, 1026–1042. [Google Scholar] [CrossRef]
- Kim, J.; Kim, E.-J. Simplified Method of Optimal Sizing of a Renewable Energy Hybrid System for Schools. Sustainability 2016, 8, 1134. [Google Scholar] [CrossRef]
- Ministry of Trade, Industry and Energy. Mandatory Installation of Renewable Energy systems for New/ Remodeling/Renovation Public Buildings; Ministry of Trade, Industry and Energy: Sejong City, Korea, 2018; pp. 5–6.
- Monaaf, D.A.A.; Jayasinghe, S.D.G.; Enshaei, H. A Review on Recent Size Optimization Methodologies for Standalone Solar and Wind Hybrid Renewable Energy System. Energy Convers. Manag. 2017, 143, 252–274. [Google Scholar]
- 50% Renewable Energy Would Put Australia in Line with Leading Nations. Available online: http://theconversation.com/50-renewable-energy-would-put-australia-in-line-with-leading-nations-45152 (accessed on 5 January 2019).
- Inside Arizona’s Latest Clash over Renewable Energy Targets. Available online: https://www.greentechmedia.com/articles/read/arizona-clash-over-renewable-energy-targets#gs.B3fMX47H (accessed on 5 January 2019).
- Environment Minnesota Endorese Sen. Tina Smith and Dean Phillips for Congress. Available online: https://environmentamerica.org/page/ame/environment-minnesota-endorses-sen-tina-smith-and-dean-phillips-congress (accessed on 5 January 2019).
- Jamaica Announces Goal for 50% Renewable Energy by 2030. Available online: http://newenergyevents.com/jamaica-announces-goal-for-50-renewable-energy-by-2030/ (accessed on 13 January 2019).
Building Type | Estimated Energy Consumption per Unit Area (kWh/(m2Year)) |
---|---|
Military and prisons | 392.07 |
Broadcast facilities | 490.18 |
Office (public) | 371.66 |
Office (private) | 374.47 |
Cultural and assembly facilities | 412.03 |
Religious facilities | 257.49 |
Medical facilities | 643.52 |
Educational and R&D facilities | 231.33 |
Social welfare facilities | 175.58 |
Youth facilities | 231.33 |
Sports facilities | 235.42 |
Cemeteries | 234.99 |
Tourism & leisure facilities | 437.08 |
Funeral homes | 234.99 |
Retail | 408.45 |
Transport facilities | 374.47 |
Accommodation | 526.55 |
Entertainment facilities | 400.33 |
Region in South Korea | Conversion Coefficient |
---|---|
Seoul | 1.00 |
Incheon | 0.97 |
Gyeonggi | 0.99 |
Gangwon Yeongseo | 1.00 |
Gangwon Yeongdong | 0.97 |
Daejeon | 1.00 |
North Chungcheong | 1.00 |
North Jeolla | 1.04 |
South Chuncheong and Sejong | 0.99 |
Gwangju | 1.01 |
Daegu | 1.04 |
Busan | 0.93 |
South Gyeongsang | 1.00 |
Ulsan | 0.93 |
North Gyeongsang | 0.98 |
South Jeolla | 0.99 |
Jeju | 0.97 |
Type of RES | Energy Generation per RES Unit | Conversion Coefficient |
---|---|---|
Fixed rooftop PV | 1358 kWh/kWyear | 1.56 |
Rooftop solar tracker | 1765 kWh/kWyear | 1.68 |
Building-integrated photovoltaics | 923 kWh/kWyear | 5.48 |
Flat-plate solar collector | 596 kWh/m2year | 1.42 |
Single vacuum tube solar collector | 745 kWh/m2year | 1.14 |
Double vacuum tube solar collector | 745 kWh/m2year | 1.14 |
Closed-ground heat exchanger | 864 kWwh/kWyear | 1.09 |
Type of RES | Installation Cost per RES Unit |
---|---|
Fixed rooftop PV | 5578 $/kW |
Rooftop solar tracker | 6287 $/kW |
Building-integrated photovoltaics | 10,717 $/kW |
Flat-plate solar collector | 904 $/m2 |
Single vacuum tube solar collector | 1036 $/m2 |
Double vacuum tube solar collector | 904 $/m2 |
Closed-ground heat exchanger | 1125 $/kW |
Design Variables and Parameters | Value (Unit) |
---|---|
Region | Seoul, South Korea |
Building type | Public office |
Total floor area | 230 (m2) |
Site area | 250 (m2) |
Roof area (flat) | 30 (m2) |
Exterior wall area (south-facing) | 30 (m2) |
MRESR | 50 (%) |
No. | Total Amount of Energy Generation (kWh) | Total Installation Cost ($) | RES Type | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fixed Rooftop PV | BIPV | Flat-Plate Solar Collector | Single Vacuum Tube Solar Collector | Double Vacuum Tube Solar Collector | Closed-Ground Heat Exchanger | |||||||||
Generation (kWh) | Cost ($) | Generation (kWh) | Cost ($) | Generation (kWh) | Cost ($) | Generation (kWh) | Cost ($) | Generation (kWh) | Cost ($) | Generation (kWh) | Cost ($) | |||
A1-1 | 42,748 | 74,045 | 667 | 5578 | 6070 | 53,585 | 3385 | 1807 | 0 | 0 | 11,890 | 6325 | 20,736 | 6750 |
A1-2 | 42,884 | 201,785 | 4004 | 33,466 | 18,209 | 160,754 | 1693 | 904 | 1699 | 1036 | 0 | 0 | 17,280 | 5625 |
A1-3 | 42,919 | 89,436 | 1335 | 11,155 | 7284 | 64,302 | 6771 | 3614 | 0 | 0 | 6794 | 3614 | 20,736 | 6750 |
A1-4 | 42,921 | 130,470 | 4004 | 33,466 | 9711 | 85,736 | 6771 | 3614 | 0 | 0 | 1699 | 904 | 20,736 | 6750 |
A1-5 | 42,986 | 161,189 | 2669 | 22,311 | 14,567 | 128,604 | 6771 | 3614 | 1699 | 1036 | 0 | 0 | 17,280 | 5625 |
A1-6 | 43,061 | 119,870 | 0 | 0 | 12,139 | 107,170 | 1693 | 904 | 6794 | 4143 | 1699 | 904 | 20,736 | 6750 |
A1-7 | 43,102 | 104,827 | 2002 | 16,733 | 8498 | 75,019 | 6771 | 3614 | 0 | 0 | 5096 | 2711 | 20,736 | 6750 |
A1-8 | 43,127 | 145,861 | 4671 | 39,044 | 10,925 | 96,453 | 0 | 0 | 0 | 0 | 6794 | 3614 | 20,736 | 6750 |
A1-9 | 43,177 | 192,215 | 2669 | 22,311 | 18,209 | 160,754 | 5078 | 2711 | 1699 | 1036 | 1699 | 904 | 13,824 | 4500 |
A1-10 | 43,180 | 176,580 | 3337 | 27,888 | 15,781 | 139,321 | 3385 | 1807 | 1699 | 1036 | 1699 | 904 | 17,280 | 5625 |
A1-11 | 43,185 | 135,943 | 667 | 5578 | 13,353 | 117,887 | 1693 | 904 | 6794 | 4143 | 3397 | 1807 | 17,280 | 5625 |
A1-12 | 43,277 | 79,448 | 0 | 0 | 7284 | 64,302 | 8463 | 4518 | 3397 | 2071 | 3397 | 1807 | 20,736 | 6750 |
A1-13 | 43,295 | 177,019 | 4671 | 39,044 | 14,567 | 128,604 | 5078 | 2711 | 1699 | 1036 | 0 | 0 | 17,280 | 5625 |
A1-14 | 43,298 | 161,252 | 5339 | 44,621 | 12,139 | 107,170 | 3385 | 1807 | 0 | 0 | 1699 | 904 | 20,736 | 6750 |
A1-15 | 43,309 | 183,682 | 0 | 0 | 19,423 | 171,471 | 3385 | 1807 | 11,890 | 7250 | 1699 | 904 | 6912 | 2250 |
A1-16 | 43,311 | 202,286 | 8008 | 66,932 | 14,567 | 128,604 | 0 | 0 | 0 | 0 | 0 | 0 | 20,736 | 6750 |
A1-17 | 43,480 | 176,643 | 6006 | 50,199 | 13,353 | 117,887 | 3385 | 1807 | 0 | 0 | 0 | 0 | 20,736 | 6750 |
A1-18 | 43,487 | 208,177 | 4671 | 39,044 | 18,209 | 160,754 | 3385 | 1807 | 3397 | 2071 | 0 | 0 | 13,824 | 4500 |
A1-19 | 43,491 | 167,539 | 2002 | 16,733 | 15,781 | 139,321 | 1693 | 904 | 8493 | 5179 | 1699 | 904 | 13,824 | 4500 |
A1-20 | 43,600 | 181,149 | 1335 | 11,155 | 18,209 | 160,754 | 5078 | 2711 | 0 | 0 | 1699 | 904 | 17,280 | 5625 |
A1-21 | 43,669 | 192,034 | 6673 | 55,777 | 14,567 | 128,604 | 1693 | 904 | 0 | 0 | 0 | 0 | 20,736 | 6750 |
A1-22 | 43,681 | 223,700 | 5339 | 44,621 | 19,423 | 171,471 | 0 | 0 | 5096 | 3107 | 0 | 0 | 13,824 | 4500 |
A1-23 | 43,762 | 69,371 | 0 | 0 | 6070 | 53,585 | 8463 | 4518 | 0 | 0 | 8493 | 4518 | 20,736 | 6750 |
A1-24 | 43,789 | 196,672 | 2002 | 16,733 | 19,423 | 171,471 | 3385 | 1807 | 1699 | 1036 | 0 | 0 | 17,280 | 5625 |
A1-25 | 43,840 | 141,256 | 1335 | 11,155 | 13,353 | 117,887 | 5078 | 2711 | 3397 | 2071 | 3397 | 1807 | 17,280 | 5625 |
A1-26 | 43,842 | 182,158 | 4004 | 33,466 | 15,781 | 139,321 | 5078 | 2711 | 1699 | 1036 | 0 | 0 | 17,280 | 5625 |
A1-27 | 43,843 | 125,621 | 2002 | 16,733 | 10,925 | 96,453 | 3385 | 1807 | 3397 | 2071 | 3397 | 1807 | 20,736 | 6750 |
A1-28 | 43,855 | 157,420 | 667 | 5578 | 15,781 | 139,321 | 1693 | 904 | 10,192 | 6214 | 1699 | 904 | 13,824 | 4500 |
A1-29 | 43,861 | 223,192 | 6673 | 55,777 | 18,209 | 160,754 | 0 | 0 | 1699 | 1036 | 0 | 0 | 17,280 | 5625 |
A1-30 | 43,911 | 171,844 | 0 | 0 | 18,209 | 160,754 | 3385 | 1807 | 3397 | 2071 | 5096 | 2711 | 13,824 | 4500 |
No. | Total Amount of Energy Generation (kWh) | Total Installation Cost ($) | RES Type | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fixed Rooftop PV | BIPV | Flat-Plate Solar Collector | Single Vacuum Tube Solar Collector | Double Vacuum Tube Solar Collector | Closed-Ground Heat Exchanger | |||||||||
Generation (kWh) | Cost ($) | Generation (kWh) | Cost ($) | Generation (kWh) | Cost ($) | Generation (kWh) | Cost ($) | Generation (kWh) | Cost ($) | Generation (kWh) | Cost ($) | |||
A2-1 | 43,792 | 69,371 | 0 | 0 | 6070 | 53,585 | 0 | 0 | 0 | 0 | 16,986 | 9036 | 20,736 | 6750 |
A2-2 | 43,786 | 69,371 | 0 | 0 | 6070 | 53,585 | 1693 | 904 | 0 | 0 | 15,287 | 8132 | 20,736 | 6750 |
A2-3 | 43,780 | 69,371 | 0 | 0 | 6070 | 53,585 | 3385 | 1807 | 0 | 0 | 13,589 | 7229 | 20,736 | 6750 |
A2-4 | 43,774 | 69,371 | 0 | 0 | 6070 | 53,585 | 5078 | 2711 | 0 | 0 | 11,890 | 6325 | 20,736 | 6750 |
A2-5 | 43,768 | 69,371 | 0 | 0 | 6070 | 53,585 | 6771 | 3614 | 0 | 0 | 10,192 | 5421 | 20,736 | 6750 |
A2-6 | 43,762 | 69,371 | 0 | 0 | 6070 | 53,585 | 8463 | 4518 | 0 | 0 | 8493 | 4518 | 20,736 | 6750 |
A2-7 | 43,756 | 69,371 | 0 | 0 | 6070 | 53,585 | 10,156 | 5421 | 0 | 0 | 6794 | 3614 | 20,736 | 6750 |
A2-8 | 43,750 | 69,371 | 0 | 0 | 6070 | 53,585 | 11,848 | 6325 | 0 | 0 | 5096 | 2711 | 20,736 | 6750 |
A2-9 | 43,744 | 69,371 | 0 | 0 | 6070 | 53,585 | 13,541 | 7229 | 0 | 0 | 3397 | 1807 | 20,736 | 6750 |
A2-10 | 43,738 | 69,371 | 0 | 0 | 6070 | 53,585 | 15,234 | 8132 | 0 | 0 | 1699 | 904 | 20,736 | 6750 |
A2-11 | 43,732 | 69,371 | 0 | 0 | 6070 | 53,585 | 16,926 | 9036 | 0 | 0 | 0 | 0 | 20,736 | 6750 |
A2-12 | 43,792 | 69,503 | 0 | 0 | 6070 | 53,585 | 0 | 0 | 1699 | 1036 | 15,287 | 8132 | 20,736 | 6750 |
A2-13 | 43,786 | 69,503 | 0 | 0 | 6070 | 53,585 | 1693 | 904 | 1699 | 1036 | 13,589 | 7229 | 20,736 | 6750 |
A2-14 | 43,780 | 69,503 | 0 | 0 | 6070 | 53,585 | 3385 | 1807 | 1699 | 1036 | 11,890 | 6325 | 20,736 | 6750 |
A2-15 | 43,774 | 69,503 | 0 | 0 | 6070 | 53,585 | 5078 | 2711 | 1699 | 1036 | 10,192 | 5421 | 20,736 | 6750 |
A2-16 | 43,768 | 69,503 | 0 | 0 | 6070 | 53,585 | 6771 | 3614 | 1699 | 1036 | 8493 | 4518 | 20,736 | 6750 |
A2-17 | 43,762 | 69,503 | 0 | 0 | 6070 | 53,585 | 8463 | 4518 | 1699 | 1036 | 6794 | 3614 | 20,736 | 6750 |
A2-18 | 43,756 | 69,503 | 0 | 0 | 6070 | 53,585 | 10,156 | 5421 | 1699 | 1036 | 5096 | 2711 | 20,736 | 6750 |
A2-19 | 43,750 | 69,503 | 0 | 0 | 6070 | 53,585 | 11,848 | 6325 | 1699 | 1036 | 3397 | 1807 | 20,736 | 6750 |
A2-20 | 43,744 | 69,503 | 0 | 0 | 6070 | 53,585 | 13,541 | 7229 | 1699 | 1036 | 1699 | 904 | 20,736 | 6750 |
A2-21 | 43,738 | 69,503 | 0 | 0 | 6070 | 53,585 | 15,234 | 8132 | 1699 | 1036 | 0 | 0 | 20,736 | 6750 |
A2-22 | 43,792 | 69,635 | 0 | 0 | 6070 | 53,585 | 0 | 0 | 3397 | 2071 | 13,589 | 7229 | 20,736 | 6750 |
A2-23 | 43,786 | 69,635 | 0 | 0 | 6070 | 53,585 | 1693 | 904 | 3397 | 2071 | 11,890 | 6325 | 20,736 | 6750 |
A2-24 | 43,780 | 69,635 | 0 | 0 | 6070 | 53,585 | 3385 | 1807 | 3397 | 2071 | 10,192 | 5421 | 20,736 | 6750 |
A2-25 | 43,774 | 69,635 | 0 | 0 | 6070 | 53,585 | 5078 | 2711 | 3397 | 2071 | 8493 | 4518 | 20,736 | 6750 |
A2-26 | 43,768 | 69,635 | 0 | 0 | 6070 | 53,585 | 6771 | 3614 | 3397 | 2071 | 6794 | 3614 | 20,736 | 6750 |
A2-27 | 43,762 | 69,635 | 0 | 0 | 6070 | 53,585 | 8463 | 4518 | 3397 | 2071 | 5096 | 2711 | 20,736 | 6750 |
A2-28 | 43,756 | 69,635 | 0 | 0 | 6070 | 53,585 | 10,156 | 5421 | 3397 | 2071 | 3397 | 1807 | 20,736 | 6750 |
A2-29 | 43,750 | 69,635 | 0 | 0 | 6070 | 53,585 | 11,848 | 6325 | 3397 | 2071 | 1699 | 904 | 20,736 | 6750 |
A2-30 | 43,744 | 69,635 | 0 | 0 | 6070 | 53,585 | 13,541 | 7229 | 3397 | 2071 | 0 | 0 | 20,736 | 6750 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baek, S.H.; Lee, B.H. Optimal Decision-Making of Renewable Energy Systems in Buildings in the Early Design Stage. Sustainability 2019, 11, 1471. https://doi.org/10.3390/su11051471
Baek SH, Lee BH. Optimal Decision-Making of Renewable Energy Systems in Buildings in the Early Design Stage. Sustainability. 2019; 11(5):1471. https://doi.org/10.3390/su11051471
Chicago/Turabian StyleBaek, Seung Hyo, and Byung Hee Lee. 2019. "Optimal Decision-Making of Renewable Energy Systems in Buildings in the Early Design Stage" Sustainability 11, no. 5: 1471. https://doi.org/10.3390/su11051471
APA StyleBaek, S. H., & Lee, B. H. (2019). Optimal Decision-Making of Renewable Energy Systems in Buildings in the Early Design Stage. Sustainability, 11(5), 1471. https://doi.org/10.3390/su11051471