Container Sea Ports and Dry Ports: Future CO2 Emission Reduction Potential in China
Abstract
:1. Introduction
2. Dry Ports in China
3. Research Environment: Describing the Data Sources and Optimization System
3.1. Research Design
3.2. Data Collection
4. Results
5. Concluding Discussion
Author Contributions
Funding
Conflicts of Interest
Appendix A
City | Distribution Cost | Diff. (%) | 26 | Tianjin | 517,413.8 | 29.1% | |
1 | Hefei | 400,638.8 | 0.0% | 27 | Taiyuan | 520,261.4 | 29.9% |
2 | Xuzhou | 406,854.6 | 1.6% | 28 | Beijing | 525,641.3 | 31.2% |
3 | Nanjing | 407,055.3 | 1.6% | 29 | Xi’an | 530,248.8 | 32.4% |
4 | Huai’an | 415,669.3 | 3.8% | 30 | Tangshan | 540,277.3 | 34.9% |
5 | Yangzhou | 417,305.8 | 4.2% | 31 | Fuzhou | 567,117.6 | 41.6% |
6 | Zaozhuang | 417,656.8 | 4.2% | 32 | Quanzhou | 600,946.8 | 50.0% |
7 | Wuhan | 422,394.6 | 5.4% | 33 | Xiamen | 608,026.6 | 51.8% |
8 | Changzhou | 426,597.5 | 6.5% | 34 | Huizhou | 614,013.8 | 53.3% |
9 | Linyi | 427,086.0 | 6.6% | 35 | Guangzhou | 620,174.2 | 54.8% |
10 | Lianyungang | 428,286.4 | 6.9% | 36 | Dongguan | 626,458.9 | 56.4% |
11 | Zhengzhou | 430,098.4 | 7.4% | 37 | Chongqing | 628,868.0 | 57.0% |
12 | Wuxi | 434,207.2 | 8.4% | 38 | Foshan | 629,854.6 | 57.2% |
13 | Suzhou | 435,425.8 | 8.7% | 39 | Shantou | 635,818.7 | 58.7% |
14 | Nantong | 441,301.4 | 10.1% | 40 | Shenzhen | 638,814.6 | 59.4% |
15 | Jinan | 441,671.0 | 10.2% | 41 | Zhongshan | 653,010.0 | 63.0% |
16 | Hangzhou | 443,966.9 | 10.8% | 42 | Guiyang | 688,030.1 | 71.7% |
17 | Nanchang | 445,182.7 | 11.1% | 43 | Chengdu | 696,776.1 | 73.9% |
18 | Xiangyang | 452,078.1 | 12.8% | 44 | Nanning | 729,202.3 | 82.0% |
19 | Shanghai | 453,677.0 | 13.2% | 45 | Shenyang | 736,660.5 | 83.9% |
20 | Zibo | 455,206.1 | 13.6% | 46 | Lanzhou | 748,440.6 | 86.8% |
21 | Ningbo | 480,127.5 | 19.8% | 47 | Dalian | 800,653.2 | 99.8% |
22 | Shijiazhuang | 480,624.1 | 20.0% | 48 | Changchun | 843,535.3 | 110.5% |
23 | Changsha | 482,875.8 | 20.5% | 49 | Kunming | 882,563.3 | 120.3% |
24 | Qingdao | 487,476.6 | 21.7% | 50 | Harbin | 957,175.4 | 138.9% |
25 | Wenzhou | 512,305.0 | 27.9% | 51 | Ürümqi | 1,525,155.9 | 280.7% |
References
- Romera, B.M. The Paris agreement and the regulation of international bunker fuels. Reciel—Rev. Eur. Community Int. Environ. Law 2016, 25, 215–227. [Google Scholar] [CrossRef]
- Hilmola, O.-P. The Sulphur Cap in Maritime Supply Chains: Environmental Regulations in European Logistics; Palgrave Macmillan, Pivot Series: Cham, Switzerland, 2019. [Google Scholar]
- Hilmola, O.-P. Transport modes and intermodality. In Encyclopedia of Marine and Offshore Engineering; Carlton, J., Jukes, P., Sang, C.Y., Eds.; Wiley Publishers: New York, NY, USA, 2017; pp. 1–12. [Google Scholar]
- Roso, V.; Woxenius, J.; Lumsden, K. The dry port concept: Connecting container seaports with the hinterland. J. Transp. Geogr. 2009, 17, 338–345. [Google Scholar] [CrossRef]
- Monios, J.; Wilmsmeier, G. Giving a direction to port regionalisation. Transp. Res. Part A Policy Pract. 2012, 46, 1551–1561. [Google Scholar] [CrossRef]
- Baydar, A.M.; Sürel, H.; Celik, M. Freight villages: A literature review of from the sustainability and societal equity perspective. J. Clean. Prod. 2017, 167, 1208–1221. [Google Scholar] [CrossRef]
- OECD. OECD Urban Policy Reviews: China 2015; OECD Urban Policy Reviews; OECD Publishing: Paris, France, 2015. [Google Scholar]
- Dent, H.S. The Demographic Cliff—How to Survive and Prosper During the Great Deflation of 2014–2019; Penguin Group: New York, NY, USA, 2014. [Google Scholar]
- He, Q.; Bertness, M.D.; Bruno, J.F.; Li, B. Economic development and coastal ecosystem change in China. Sci. Rep. 2014, 4, 5995. [Google Scholar] [CrossRef] [PubMed]
- National Bureau of Statistics of China. China Statistical Yearbook 2016; China Statistics Press: Beijing, China, 2016.
- National Bureau of Statistics of China. China Statistical Yearbook 2017; China Statistics Press: Beijing, China, 2017.
- National Bureau of Statistics of China. China Statistical Yearbook 2018; China Statistics Press: Beijing, China, 2018.
- UNCTAD. Data Center—Container Port Throughput, 2010–2017. 2018. Available online: unctadstat.unctad.org (accessed on 27 December 2018).
- Jiang, Y.; Sheu, J.-B.; Peng, Z.; Yu, B. Hinterland patterns of China Railway (CR) express in China under the Belt and Road Initiative: A preliminary analysis. Transp. Res. Part E 2018, 119, 189–201. [Google Scholar] [CrossRef]
- Kuzmicz, K.A.; Pesch, E. Approaches to empty container repositioning problems in the context of Eurasian intermodal transportation. Omega 2018. [Google Scholar] [CrossRef]
- Jiang, B.; Li, J.; Mao, X. Container ports multimodal transport in China from the view of low carbon. Asian J. Ship. Logist. 2012, 28, 321–344. [Google Scholar] [CrossRef]
- Shenzhen Port. World Class Container Shipping Hub; Shenzhen Port: Shenzhen, China, 2018. [Google Scholar]
- Ka, B. Application of fuzzy AHP and ELECTRE to China dry port location selection. Asian J. Ship. Logist. 2011, 27, 331–354. [Google Scholar] [CrossRef]
- Chang, Z.; Yang, D.; Wan, Y.; Han, T. Analysis on the features of Chinese dry ports: Ownership, customs service, rail service and regional competition. Transport Policy 2019. [Google Scholar] [CrossRef]
- Henttu, V.; Lättilä, L.; Hilmola, O.-P. Optimization of relative transport costs of a hypothetical dry port structure. J. Transp. Telecommun. 2011, 12, 12–19. [Google Scholar]
- Lättilä, L.; Henttu, V.; Hilmola, O.-P. Hinterland Operations of Sea Ports Do Matter: Dry Port Usage Effects on Transportation Costs and CO2 Emissions. Transp. Res. Part E 2013, 55, 23–42. [Google Scholar] [CrossRef]
- Roso, V.; Andersson, D. Dry ports and logistics platforms. In Encyclopedia of Marine and Offshore Engineering; Carlton, J., Jukes, P., Sang, C.Y., Eds.; Wiley: New York, NY, USA, 2017. [Google Scholar]
- Vassallo, J.M. Nature or Nurture: Why do Railroads Carry Greater Freight Share in the United States than in Europe? Research Working Paper Series, WP05–15; Harvard University: Cambridge, MA, USA, 2005. [Google Scholar]
- Panova, Y.; Hilmola, O.-P. Justification and evaluation of dry port investments in Russia. Res. Transp. Econ. 2015, 51, 61–70. [Google Scholar] [CrossRef]
- Hanaoka, S.; Regmi, M.B. Promoting intermodal freight transport through the development of dry ports in Asia: An environmental perspective. IATSS Res. 2011, 35, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Tsao, Y.-C.; Ling, V.T. Seaport-dry port network design considering multimodal transport and carbon emissions. J. Clean. Prod. 2018, 199, 481–492. [Google Scholar] [CrossRef]
- Wang, X.; Cao, J. Location Evaluation of Inland Dry Port Based on Regional Attraction. China Waterw. Transp. 2018, 12, 30–33. [Google Scholar]
- Cullinane, K.; Wilmsmeier, G. The contribution of the dry port concept to the extension of port life cycles. Oper. Res./Comput. Sci. Interfaces Ser. 2011, 49, 359–379. [Google Scholar]
- Roso, V. Evaluation of the dry port concept from an environmental perspective: A note. Transp. Res. Part D Transp. Environ. 2007, 12, 523–527. [Google Scholar] [CrossRef]
- Roso, V. The emergence and significance of dry ports: The case of the Port of Göteborg. World Rev. Intermodal Transp. Res. 2009, 2, 296–310. [Google Scholar] [CrossRef]
- Beresford, A.; Pettit, S.; Xu, Q.; Williams, S. A study of dry port development in China. Marit. Econ. Logist. 2012, 14, 73–98. [Google Scholar] [CrossRef]
- Zeng, Q.; Maloni, M.J.; Paul, J.A.; Yang, Z. Dry port development in China: Motivations, challenges, and opportunities. Transp. J. 2013, 52, 234–263. [Google Scholar] [CrossRef]
- Notteboom, T.; Yang, Z. Port governance in China since 2004: Institutional layering and the growing impact of broader policies. Res. Transp. Bus. Manag. 2017, 22, 184–200. [Google Scholar] [CrossRef]
- Bentaleb, F.; Mabrouki, C.; Semma, A. Dry Port Development: A Systematic Review. J. Eta Marit. Sci. 2015, 3, 75–96. [Google Scholar] [CrossRef]
- Shi, S.; Wang, T. Current situation and countermeasure of dry port development in China. Waterw. Transp. Manag. 2016, 38, 22–25. [Google Scholar]
- Li, J.; Jiang, B. Cooperation performance evaluation between seaport and dry port; Case of Qingdao and Xi’an port. Int. J. E-Navig. Marit. Econ. 2014, 1, 99–109. [Google Scholar] [CrossRef]
- Li, Y.; Dong, Q.; Sun, S. Dry port development in China: Current status and future strategic directions. J. Coast. Res. 2015, 73, 641–646. [Google Scholar] [CrossRef]
- Wei, H.; Sheng, Z. Dry Ports-Seaports Sustainable Logistics Network Optimization: Considering the Environment Constraints and the Concession Cooperation Relationships. Pol. Marit. Res. 2017, 24, 143–151. [Google Scholar] [CrossRef] [Green Version]
- Amos, P.; Dashan, J.; Tao, N.; Junyan, S.; Weijun, F. Sustainable Development of Inland Waterway Transport in China; The World Bank: Washington, WA, USA, 2009. [Google Scholar]
- Li, D.; Zhao, L.; Wang, C.; Sun, W.; Xue, J. Selection of China’s imported grain distribution centers in the context of the Belt and Road initiative. Transp. Res. Part E 2018, 120, 16–34. [Google Scholar] [CrossRef]
- Wu, J.; Haasis, H.-D. The freight village as a pathway to sustainable agricultural products logistics in China. J. Clean. Prod. 2018, 196, 1227–1238. [Google Scholar] [CrossRef]
- Creswell, J.W.; Creswell, J.D. Research design: Qualitative, Quantitative, and Mixed Methods Approaches; Sage Publications: Thousand Oaks, CA, USA, 2017. [Google Scholar]
- Padberg, M.W. Combinatorial Optimization—Mathematical Programming Studies; Springer: Berlin/Heidelberg, Germany, 1980; Volume 12. [Google Scholar]
- Gass, S.I. Linear programming. In Encyclopedia of Statistical Sciences; State publishing house of physical and mathematical literature “FIZMATGIZ”: Moscow, Russia, 2004. [Google Scholar]
- Yokota, T.; Gen, M.; Li, Y.X. Genetic algorithm for non-linear mixed integer programming problems and its applications. Comput. Ind. Eng. 1996, 30, 905–917. [Google Scholar] [CrossRef]
- Genova, K.; Guliashki, V. Linear integer programming methods and approaches—A survey. J. Cybern. Inf. Technol. 2011, 11, 1. [Google Scholar]
- Miller, C.E.; Tucker, A.W.; Zemlin, R.A. Integer programming formulation of traveling salesman problems. J. ACM (JACM) 1960, 7, 326–329. [Google Scholar] [CrossRef]
- Floudas, C.A.; Lin, X. Mixed integer linear programming in process scheduling: Modeling, algorithms, and applications. Ann. Oper. Res. 2005, 139, 131–162. [Google Scholar] [CrossRef]
- Aerts, J.C.; Eisinger, E.; Heuvelink, G.B.; Stewart, T.J. Using linear integer programming for multi-site land-use allocation. Geogr. Anal. 2003, 35, 148–169. [Google Scholar] [CrossRef]
- Abara, J. Applying integer linear programming to the fleet assignment problem. Interfaces 1989, 19, 20–28. [Google Scholar] [CrossRef]
- Cheng, S.; Chan, C.W.; Huang, G.H. An integrated multi-criteria decision analysis and inexact mixed integer linear programming approach for solid waste management. Eng. Appl. Artif. Intell. 2003, 16, 543–554. [Google Scholar] [CrossRef]
- Shirokov, A.P. Mathematical Models and Methods in the Management of Transport Systems: Transport Problems Management by Methods of Linear Programming; Educational and Methodical Manual for Students; Far Eastern State Transport University (FESTU): Khabarovsk, Russia, 1999. [Google Scholar]
- Wentzel, E.S.; Ovcharov, L.A. The Theory of Random Processes and its Engineering Applications; Higher School: Moscow, Russia, 2000. [Google Scholar]
- Yermoliev, Y.M. Methods of Stochastic Programming; Science: Moscow, Russia, 1976. [Google Scholar]
- Henttu, V.; Hilmola, O.-P. Financial and environmental impacts of hypothetical Finnish dry port structure. Res. Transp. Econ. 2011, 33, 393–407. [Google Scholar] [CrossRef]
- Sheremet, A.D. Theory of Economic Analysis; Infra-M: Moscow, Russia, 2011. [Google Scholar]
- Panova, Y. Public-Private Partnership Investments in Dry Ports—Russian Logistics Markets and Risks. Thesis for the Degree of Doctor of Science (Technology), Lappeenranta University of Technology, Lappeenranta, Finland, 2016. [Google Scholar]
- United Nations. Review of Maritime Transport 2018; United Nations Conference on Trade and Development; United Nations: New York, NY, USA, 2018. [Google Scholar]
- Pan, K.; Cao, Y.; Liang, S.; Wei, H. New tendency of Chinese container port system: 1998–2010. GeoJournal 2014, 79, 373–384. [Google Scholar] [CrossRef]
- World Shipping Council. TOP 50 Container Sea Ports in 2016. 2018. Available online: http://www.worldshipping.org/about-the-industry/global-trade/top-50-world-container-ports (accessed on 28 December 2018).
- Lloyds. Lloyd’s List: One Hundred Ports 2018. 2018. Available online: https://lloydslist.maritimeintelligence.informa.com/one-hundred-container-ports-2018#ranking (accessed on 29 December 2018).
- European Union. EU Transport in Figures—Statistical Pocketbook 2018; Publications Office of EU: Luxemburg, 2018. [Google Scholar]
- OECD. The Competitiveness of Global Port-Cities; OECD Publishing: Paris, France, 2014. [Google Scholar]
- Park, N.-K.; Lim, C.-K. Choice factors of transshipment port in Northeast Asia. J. Navig. Port Res. Int. Ed. 2009, 33, 587–596. [Google Scholar] [CrossRef]
- Demographia. Demographia World Urban Areas. 14th Annual Edition: 201804. 2018. Available online: http://www.demographia.com/db-worldua.pdf (accessed on 27 December 2018).
- Wikipedia. List of Cities in China by Population and Built-up Area. 2018. Available online: https://en.wikipedia.org/wiki/List_of_cities_in_China_by_population_and_built-up_area (accessed on 27 December 2018).
- Google Maps. Google Maps Service. 2019. Available online: https://www.google.fi/maps (accessed on 4 January 2019).
- Huochepiao. Chinese Railway Website Called Huochepiao. 2019. Available online: http://www.huochepiao.com (accessed on 8 January 2019).
- Baidu Map. Baidu Map Service. 2019. Available online: https://map.baidu.com (accessed on 8 January 2019).
- OpenSolver. OpenSolver website—Download & Install. 2019. Available online: https://opensolver.org/installing-opensolver/ (accessed on 8 January 2019).
- Mason, A.J. OpenSolver—An Open Source Add-in to Solve Linear and Integer Progammes in Excel. In Operations Research Proceedings 2011; Diethard, K., Hans-Jakob, L., Karl, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 401–406. [Google Scholar]
- Dimitrov, N.B.; Solow, D.; Szmerekovsky, J.; Guo, J. Emergency relocation of items using single trips: Special cases of the Multiple Knapsack Assignment Problem. Eur. J. Oper. Res. 2017, 258, 938–942. [Google Scholar] [CrossRef]
- Ramos, A.G.; Leal, J. ILP model for energy-efficient production scheduling of flake ice units in food retail stores. J. Clean. Prod. 2017, 156, 953–961. [Google Scholar] [CrossRef]
- GeoHack. GeoHack—Shanghai. 2019. Available online: https://tools.wmflabs.org/geohack/geohack.php?pagename=Shanghai¶ms=31_13_43_N_121_28_29_E_type:adm1st_region:CN-31 (accessed on 16 January 2019).
- Defra. Greenhouse Gas Reporting: Conversion Factors 2018. 2018. Available online: https://www.gov.uk/government/publications/greenhouse-gas-reporting-conversion-factors-2018 (accessed on 27 December 2018).
- Nõmmik, A.; Kukemelk, S. Developing gravity model for airline regional route modelling. Aviation 2016, 20, 32–37. [Google Scholar] [CrossRef]
Sea Port | Mill. TEU (2017) |
---|---|
Shanghai | 40.23 |
Shenzhen | 25.21 |
Ningbo | 24.61 |
Guangzhou | 20.37 |
Qingdao | 18.26 |
Tianjin | 15.21 |
Xiamen | 10.38 |
Dalian | 9.71 |
Suzhou | 5.40 |
Lianyungang | 4.71 |
Dongguan | 3.91 |
Nanjing | 3.08 |
Fuzhou | 3.00 |
Tangshan | 2.53 |
Quanzhou | 2.30 |
Total: | 188.91 |
Total China: | 213.72 |
Share: | 88.4 % |
City Area | Population | Sea Port | City Area | Population | Sea Port | ||
---|---|---|---|---|---|---|---|
1 | Shanghai | 24.18 | yes | 26 | Wuxi | 6.55 | |
2 | Beijing | 21.71 | 27 | Xiamen | 3.53 | yes | |
3 | Guangzhou | 14.50 | yes | 28 | Changchun | 7.67 | |
4 | Tianjin | 15.62 | yes | 29 | Ningbo | 7.64 | yes |
5 | Chongqing | 17.00 | 30 | Nanning | 6.91 | ||
6 | Chengdu | 14.43 | 31 | Taiyuan | 4.20 | ||
7 | Shenzhen | 12.53 | yes | 32 | Hefei | 7.87 | |
8 | Harbin | 10.64 | 33 | Changzhou | 4.59 | ||
9 | Wuhan | 10.61 | 34 | Tangshan | 7.54 | yes | |
10 | Hangzhou | 9.47 | 35 | Zhongshan | 3.14 | ||
11 | Xi’an | 12.00 | 36 | Xuzhou | 8.58 | ||
12 | Shenyang | 8.29 | 37 | Guiyang | 4.70 | ||
13 | Dongguan | 8.22 | yes | 38 | Ürümqi | 3.52 | |
14 | Nanjing | 8.34 | yes | 39 | Zibo | 4.53 | |
15 | Foshan | 7.20 | 40 | Shijiazhuang | 10.78 | ||
16 | Jinan | 6.81 | 41 | Fuzhou | 7.66 | yes | |
17 | Wenzhou | 9.12 | 42 | Huai’an | 4.80 | ||
18 | Qingdao | 9.05 | yes | 43 | Linyi | 10.04 | |
19 | Quanzhou | 8.13 | yes | 44 | Lanzhou | 3.62 | |
20 | Shantou | 5.39 | 45 | Yangzhou | 4.46 | ||
21 | Changsha | 7.43 | 46 | Nanchang | 5.04 | ||
22 | Suzhou | 10.66 | yes | 47 | Huizhou | 4.60 | |
23 | Zhengzhou | 9.57 | 48 | Nantong | 7.28 | ||
24 | Dalian | 6.69 | yes | 49 | Xiangyang | 5.50 | |
25 | Kunming | 6.63 | 50 | Zaozhuang | 3.73 | ||
51 | Lianyungang | 4.39 | yes | ||||
Total (51): | 427.08 | ||||||
Total (China): | 1409.50 | ||||||
Share (%): | 30.3 % |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Shanghai | Beijing | Guangzhou | Tianjin | Chongqing | Chengdu | Shenzhen | Harbin | Wuhan | Hangzhou | Xi’an | Shenyang | Dongguan | Nanjing | Foshan | ||
1 | Shanghai | 0 | 1214 | 1450 | 1130 | 1669 | 1964 | 1474 | 2286 | 827 | 176 | 1377 | 1735 | 1465 | 302 | 1471 |
2 | Beijing | 1214 | 0 | 2143 | 114 | 1802 | 1808 | 2169 | 1241 | 1158 | 1293 | 1074 | 690 | 2168 | 1029 | 2164 |
3 | Guangzhou | 1450 | 2143 | 0 | 2126 | 1317 | 1568 | 139 | 3318 | 989 | 1266 | 1679 | 2767 | 71.2 | 1360 | 30.8 |
4 | Tianjin | 1130 | 114 | 2126 | 0 | 1852 | 1859 | 2196 | 1192 | 1185 | 1226 | 1125 | 641 | 2194 | 985 | 2190 |
5 | Chongqing | 1669 | 1802 | 1317 | 1852 | 0 | 400 | 1451 | 3027 | 852 | 1591 | 754 | 2476 | 1383 | 1378 | 1317 |
6 | Chengdu | 1964 | 1808 | 1568 | 1859 | 400 | 0 | 1700 | 3034 | 1159 | 1883 | 742 | 2483 | 1632 | 1670 | 1566 |
7 | Shenzhen | 1474 | 2169 | 139 | 2196 | 1451 | 1700 | 0 | 3349 | 1072 | 1289 | 1799 | 2798 | 69.4 | 1383 | 142 |
8 | Harbin | 2286 | 1241 | 3318 | 1192 | 3027 | 3034 | 3349 | 0 | 2341 | 2377 | 2300 | 560 | 3370 | 2135 | 3365 |
9 | Wuhan | 827 | 1158 | 989 | 1185 | 852 | 1159 | 1072 | 2341 | 0 | 746 | 781 | 1792 | 1048 | 544 | 1016 |
10 | Hangzhou | 176 | 1293 | 1266 | 1226 | 1591 | 1883 | 1289 | 2377 | 746 | 0 | 1319 | 1825 | 1283 | 276 | 1290 |
11 | Xi’an | 1377 | 1074 | 1679 | 1125 | 754 | 742 | 1799 | 2300 | 781 | 1319 | 0 | 1715 | 1695 | 1087 | 1656 |
12 | Shenyang | 1735 | 690 | 2767 | 641 | 2476 | 2483 | 2798 | 560 | 1792 | 1825 | 1715 | 0 | 2819 | 1584 | 2815 |
13 | Dongguan | 1465 | 2168 | 71.2 | 2194 | 1383 | 1632 | 69.4 | 3370 | 1048 | 1283 | 1695 | 2819 | 0 | 1389 | 87.4 |
14 | Nanjing | 302 | 1029 | 1360 | 985 | 1378 | 1670 | 1383 | 2135 | 544 | 276 | 1087 | 1584 | 1389 | 0 | 1385 |
15 | Foshan | 1471 | 2164 | 30.8 | 2190 | 1317 | 1566 | 142 | 3365 | 1016 | 1290 | 1656 | 2815 | 87.4 | 1385 | 0 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Hilmola, O.-P.; Panova, Y. Container Sea Ports and Dry Ports: Future CO2 Emission Reduction Potential in China. Sustainability 2019, 11, 1515. https://doi.org/10.3390/su11061515
Li W, Hilmola O-P, Panova Y. Container Sea Ports and Dry Ports: Future CO2 Emission Reduction Potential in China. Sustainability. 2019; 11(6):1515. https://doi.org/10.3390/su11061515
Chicago/Turabian StyleLi, Weidong, Olli-Pekka Hilmola, and Yulia Panova. 2019. "Container Sea Ports and Dry Ports: Future CO2 Emission Reduction Potential in China" Sustainability 11, no. 6: 1515. https://doi.org/10.3390/su11061515
APA StyleLi, W., Hilmola, O. -P., & Panova, Y. (2019). Container Sea Ports and Dry Ports: Future CO2 Emission Reduction Potential in China. Sustainability, 11(6), 1515. https://doi.org/10.3390/su11061515