Segmentation, Classification, and Determinants of In-Store Shopping Activity and Travel Behaviour in the Digitalisation Era: The Context of a Developing Country
Abstract
:1. Introduction
2. Travel Patterns in In-Store Shopping Activities
2.1. Characteristics and Attractiveness of In-Store Shopping
2.2. Travel Patterns
3. Method
3.1. Data Collection
3.2. Characteristics of Respondents
4. Data Analysis
4.1. Models for Shopping Behaviour
4.2. Latent Variables of the Built Environment
4.3. Classification Model for Mode Choice
4.4. Classification Analysis of Shopping Activity Allocation
4.5. Classification Analysis of Interaction between Mode Choice and Shopping Activity Allocation
4.6. ICT Experience and In-Store Shopping Behaviour
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Salomon, I.; Koppelman, F. A framework for studying teleshopping versus store shopping. Transp. Res. Part A 1988, 22, 247–255. [Google Scholar] [CrossRef]
- Schmid, B.; Axhausen, K.W. In-store vs. online shopping of search and experience goods: A hybrid choice approach. In Proceedings of the 5th International Choice Modeling Conference (ICMC 2017), Cape Town, South Africa, 3–5 April 2017; IVT ETH: Zurich, Switzerland, 2017. [Google Scholar]
- Simma, A.; Schilch, R.; Axhausen, K.W. Destination Choice Modelling for Different Leisure Activities; Working Paper: 99; IVT ETH: Zurich, Switzerland, 2002. [Google Scholar]
- Recker, W.W.; Kostyniuk, L.P. Factors influencing destination choice for the urban groceries trip. Transportation 1978, 7, 19–33. [Google Scholar] [CrossRef]
- Kim, B.-D.; Park, K. Studying Patterns of Consumer’s Grocery Shopping Trip. J. Retail. 1997, 73, 501–517. [Google Scholar] [CrossRef]
- Bhat, C.R. Analysis of travel mode and departure time choice for urban shopping trips. Transp. Res. Part B Methodol. 1998, 32, 361–371. [Google Scholar] [CrossRef]
- Richards, M.G.; Ben-Akiva, M. A simultaneous destination and mode Choice model for shopping trips. Transportation 1974, 3, 343–356. [Google Scholar] [CrossRef]
- Arentze, T.; Borgers, A.; Timmerman, H. A model of multi-purpose shopping trip behavior. Reg. Sci. 1993, 72, 239–256. [Google Scholar] [CrossRef]
- Baker, R.G.V. Multipurpose shopping behaviour at planned suburban shopping centres: A space-time analysis. Environ. Plan. A 1996, 28, 611–630. [Google Scholar] [CrossRef]
- Bacon, R.W. Combined trips and the frequency of shopping. J. Retail. Consum. Serv. 1995, 2, 175–183. [Google Scholar] [CrossRef]
- Bhat, C.R.; Frusti, T.; Zhao, H.; Schönfelder, S.; Axhausen, K.W. Intershopping duration: An analysis using multiweek data. Transp. Res. Part B 2004, 38, 39–60. [Google Scholar] [CrossRef]
- Sun, Y.; Tarigan, A.K.M.; Waygood, E.O.D.; Wang, D. Diversity in diversification: An analysis of shopping trips in six-week travel diary data. J. Zhejiang Univ. SCIENCE A 2017, 18, 234–244. [Google Scholar] [CrossRef]
- Mokhtarian, P.L. A conceptual analysis of the transportation impacts of B2C e-commerce. Transportation 2004, 31, 257–284. [Google Scholar] [CrossRef]
- Hsiao, M.H. Shopping mode choice: Physical store shopping versus e-shopping. Transp. Res. Part E 2009, 45, 86–95. [Google Scholar] [CrossRef]
- Mokhtarian, P.L.; Salomon, I. How derived is the demand for travel? Some conceptual and measurement considerations. Transp. Res. Part A Policy Pract. 2001, 35, 695–719. [Google Scholar] [CrossRef]
- Suel, E.; Polak, J.W. Development of joint models for channel, store, and travel mode choice: Grocery shopping in London. Transp. Res. Part A 2017, 99, 147–162. [Google Scholar] [CrossRef]
- Santos, A.; McCuckin, N.; Nakamoto, H.Y.; Gray, D.; Liss, S. Summary of Travel Trends. 2009 National Household Travel Survey; Federal Highway Administration: Washington, DC, USA, 2011.
- Lee, R.J.; Sener, I.N.; Mokhtarian, P.L.; Handy, S.L. Relationships between the online and in-store shopping frequency of Davis, California residents. Transp. Res. Part A Policy Pract. 2017, 100, 40–52. [Google Scholar] [CrossRef]
- Gärling, T.; Eek, D.; Loukopoulos, P.; Fujii, S.; Johansson-Stenman, O.; Kitamura, R.; Pendyala, R.; Vilhelmson, B. A conceptual analysis of the impact of travel demand management on private car use. Transp. Policy 2002, 9, 59–70. [Google Scholar] [CrossRef]
- Gärling, T.; Schuitema, G. Travel demand management targeting reduced private car use: Effectiveness, public acceptability and political feasibility. J. Soc. Issues 2007, 63, 139–153. [Google Scholar] [CrossRef]
- May, A.D. Urban Transport and Sustainability: The Key Challenges. Int. J. Sustain. Transp. 2013, 7, 170–185. [Google Scholar] [CrossRef]
- Rotem-Mindali, O.; Weltevreden, J.W. Transport effects of e-commerce: What can be learned after years of research? Transportation 2013, 40, 867–885. [Google Scholar] [CrossRef]
- Cao, X.J.; Xu, Z.; Douma, F. The interactions between e-shopping and traditional in-store shopping: An application of structural equations model. Transportation 2012, 39, 957–974. [Google Scholar] [CrossRef]
- Rotem-Mindali, O.; Salomon, I. The impacts of E-retail on the choice of shopping trips and delivery: Some preliminary findings. Transp. Res. Part A Policy Pract. 2007, 41, 176–189. [Google Scholar] [CrossRef]
- Mikalef, P.; Giannakos, M.N.; Pateli, A.G. Exploring the Business Potential of Social Media: An Utilitarian and Hedonic Motivation Approach. In Proceedings of the 25th Bled eConference eDependability: Reliable and Trustworthy eStructures, eProcesses, eOperations and eServices for the Future, Bled, Slovenia, 17–20 June 2012. [Google Scholar]
- Mikalef, P.; Giannakos, M.; Pateli, A. Shopping and word-of-mouth intentions on social media. J. Theor. Appl. Electron. Commer. Res. 2013, 8, 17–34. [Google Scholar] [CrossRef]
- Zhang, K.Z.; Benyoucef, M. Consumer behaviour in social commerce: A literature review. Decis. Support Syst. 2016, 86, 95–108. [Google Scholar] [CrossRef]
- Visser, E.j.; Lanzendorf, M. Mobility and accessibility effects of B2C ecommerce: A literature review. Tijdschrift voor Economische en Sociale Geografie 2004, 95, 189–205. [Google Scholar] [CrossRef]
- Girard, T.; Korgaonkar, P.; Silverblatt, R. Relationship of type of product, shopping orientations, and demographics with preference for shopping on the Internet. J. Bus. Psychol. 2003, 18, 101–120. [Google Scholar] [CrossRef]
- Park, C.W.; Iyer, E.S.; Smith, D.C. The effects of situational factors on in-store grocery shopping behaviour: The role of store environment and time available for shopping. J. Consum. Res. 1989, 15, 422–433. [Google Scholar] [CrossRef]
- Tauber, E.M. Why do people shop? J. Mark. 1972, 36, 46–49. [Google Scholar] [CrossRef]
- Farag, S. E-Shopping and Its Interactions with In-Store Shopping. Ph.D. Thesis, Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands, 2006. [Google Scholar]
- Farag, S.; Schwanen, T.; Dijst, M.; Faber, J. Shopping online and/or in-store? A structural equation model of the relationships between e-shopping and in-store shopping. Transp. Res. Part A Policy Pract. 2007, 41, 125–141. [Google Scholar] [CrossRef]
- Gould, J.; Golob, T.F. Will electronic home shopping reduce travel? Access (Mag. Univ. Calif. Transp. Center) 1998, 12, 26–31. [Google Scholar]
- Peterson, R.A.; Balasubramanian, S.; Bronnenberg, B.J. Exploring the implications of the internet for consumer marketing. J. Acad. Mark. Sci. 1997, 25, 329–346. [Google Scholar] [CrossRef]
- Steinfield, C.W.; Whitten, P. Community level socio-economic impacts of electronic commerce. J. Comput. -Mediat. Commun. 1999, 5. [Google Scholar] [CrossRef]
- Gould, J. Driven to shop? Role of transportation in future home shopping. Transp. Res. Rec. 1998, 1617, 149–156. [Google Scholar] [CrossRef]
- Jou, R.-C.; Mahmassani, H.S. Comparative analysis of day-to-day trip-chaining behaviour of urban commuters in two cities. Transp. Res. Rec. 1997, 1607, 163–170. [Google Scholar] [CrossRef]
- Hägerstrand, T. What about people in regional science? Pap. Reg. Sci. 1970, 24, 7–21. [Google Scholar] [CrossRef]
- Yamamoto, T.; Kitamura, R. An analysis of time allocation to in-home and out-of-home discretionary activities across working days and non-working days. Transportation 1999, 26, 231–250. [Google Scholar] [CrossRef]
- Susilo, Y.O. The Short Term Variability and the Long Term Changes of Individual Spatial Behaviour in Urban Areas. Ph.D. Thesis, Department of Urban Management Graduate School of Engineering, Kyoto University, Kyoto, Japan, 2005. [Google Scholar]
- Brunow, S.; Gründer, M. The impact of activity chaining on the duration of daily activities. Transportation 2013, 40, 981–1001. [Google Scholar] [CrossRef]
- Gould, J.; Golob, T.F. Shopping without Travel or Travel without Shopping? An Investigation of Electronic Home Shopping. Transp. Rev. 1997, 17, 355–376. [Google Scholar] [CrossRef]
- Levinson, D.; Kumar, A. Activity, travel, and the allocation of time. J. Am. Plan. Assoc. 1995, 61, 458–470. [Google Scholar] [CrossRef]
- Kitamura, R.; Mokhtarian, P.L.; Laidet, L. A micro-analysis of land use and travel in five neighborhoods in the San Francisco Bay Area. Transportation 1997, 24, 125–158. [Google Scholar] [CrossRef]
- Axhausen, K.W.; Zimmermann, A.; Schönfelder, S.; Rindsfüser, G.; Haupt, T. Observing the rhythms of daily life: A six-week travel diary. Transportation 2002, 29, 95–124. [Google Scholar] [CrossRef]
- Kurani, K.S.; Lee-Gooselin, M.E.H. Synthesis of past activity analysis applications. In Proceedings of the Activity-Based Travel Forecasting Conference, New Orleans, LA, USA, 2–5 June 1996; pp. 51–77. [Google Scholar]
- McGuckin, N.; Murakami, E. Examining trip-chaining behaviour: Comparison of travel by men and women. Transp. Res. Rec. J. Transp. Res. Board 1999, 1693, 79–85. [Google Scholar] [CrossRef]
- Primerano, F.; Taylor, M.A.P.; Pitaksringkarn, L.; Tisato, P. Defining and understanding trip chaining behaviour. Transportation 2008, 35, 55–72. [Google Scholar] [CrossRef]
- Subbarao, S.S.V.; Krishna Rao, K.V. Trip chaining behavior in developing countries: A study of Mumbai Metropolitan Region, India. Eur. Transp. (Trasporti Europei) 2013, 53, 1–30. [Google Scholar]
- Bowman, J.; Ben-Akiva, M. Activity Based Travel Demand Model System with Daily Activity Schedules. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1995. [Google Scholar]
- Bhat, C.R.; Singh, S.K. A comprehensive daily activity-travel generation model system for workers. Transp. Res. Part A 2000, 34, 1–22. [Google Scholar] [CrossRef]
- Kitamura, R.; van der Hoorn, T. Regularity and irreversibility of weekly travel behaviour. Transportation 1987, 14, 227–251. [Google Scholar] [CrossRef]
- Kasturirangan, K.; Pendyala, R.; Koppelman, F. History dependency in daily activity participation and time allocation for commuters. Transp. Res. Rec. J. Transp. Res. Board 2002, 1807, 129–136. [Google Scholar] [CrossRef]
- Ewing, R.; Cervero, R. Travel and the built environment: A synthesis. Transp. Res. Rec. J. Transp. Res. Board 2001, 1780, 87–114. [Google Scholar] [CrossRef]
- McNally, M.G.; Ryan, S. A Comparative Assessment of Travel Characteristics for Neo-Traditional Developments; Working Paper, University of California Transportation Center (UTCT) No 142; University of California: Berkeley, CA, USA, 1992. [Google Scholar]
- Kitamura, R.; Fujii, S.; Pas, E. Time-use data, analysis and modeling: Toward the next generation of transportation planning methodologies. Transp. Policy 1997, 4, 225–235. [Google Scholar] [CrossRef]
- Reilly, M.; Landis, J. The Influence of Built-Form and Land Use on Mode Choice; University of California Transportation Center Research Paper, Work Conducted at the Institute of Urban and Regional Development, IURD WP 2002-4; University of California: Berkeley, CA, USA, 2003. [Google Scholar]
- Schwanen, T.; Mokhtarian, P.L. What affects commute mode choice: Neighborhood physical structure or preferences toward neighborhoods? J. Transp. Geogr. 2005, 13, 83–99. [Google Scholar] [CrossRef]
- Handy, S.; Cao, X.; Mokhtarian, P. Correlation or causality between the built environment and travel behaviour? Evidence from Northern California. Transp. Res. Part D Transp. Environ. 2005, 10, 427–444. [Google Scholar] [CrossRef]
- Cao, X.; Handy, S.L.; Mokhtarian, P.L. The influences of the built environment and residential self-selection on pedestrian behavior: Evidence from Austin, TX. Transportation 2006, 33, 1–20. [Google Scholar] [CrossRef]
- Handy, S. Critical Assessment of the Literature on the Relationships among Transportation, Land Use, and Physical Activity; UCD-ITS-RP-05-67, Transportation Research Board Special Report; The National Academies of Sciences, Engineering, and Medicine: Washington, DC, USA, 2005. [Google Scholar]
- Mokhtarian, P.L.; Tal, G. Impacts of ICT on travel behavior: A tapestry of relationships. In The SAGE Handbook of Transport Studies; Rodrigue, J.-P., Notteboom, T., Shaw, J., Eds.; SAGE Publications Ltd.: Los Angeles, CA, USA, 2013. [Google Scholar]
- Cao, X. E-Shopping, spatial attributes, and personal travel: A review of empirical studies. Transp. Res. Rec. J. Transp. Res. Board 2009, 2135, 160–169. [Google Scholar] [CrossRef]
- Hubers, C.; Schwanen, T.; Dijst, M. ICT and temporal fragmentation of activities: An analytical framework and initial empirical findings. Jtijdschrift voor Economische en Sociale Geografie 2008, 99, 528–546. [Google Scholar] [CrossRef]
- Farag, S.; Schwanen, T.; Dijst, M. Empirical Investigation of Online Searching and Buying and Their Relationship to Shopping Trips. Transp. Res. Rec. J. Transp. Res. Board 2005, 1926, 242–251. [Google Scholar] [CrossRef]
- Farag, S.; Krizek, K.J.; Dijst, M. E-Shopping and Its Relationship with In-Store Shopping: Empirical Evidence from the Netherlands and the USA. Transp. Rev. 2006, 26, 43–61. [Google Scholar] [CrossRef]
- Zmud, J.; Bricka, S.G.; Casas, J. Impact of Shopping via Internet on Travel for Shopping Purposes. In Proceedings of the 80th Annual Meeting of the Transportation Research Board, Washington, DC, USA, 7–11 January 2001. [Google Scholar]
- Ferrell, C.E. Home-Based Teleshoppers and Shopping Travel: Do Teleshoppers Travel Less? Transp. Res. Rec. J. Transp. Res. Board 2004, 1894, 241–248. [Google Scholar] [CrossRef]
- Ferrell, C.E. Home-Based Teleshopping and Shopping Travel: Where Do People Find the Time? Transp. Res. Rec. J. Transp. Res. Board 2005, 1926, 212–223. [Google Scholar] [CrossRef]
- Lila, P.C.; Anjaneyulu, M.V.L.R. Modeling the Impact of ICT on the Activity and Travel Behaviour of Urban Dwellers in Indian Context. Transp. Res. Procedia 2016, 17, 418–427. [Google Scholar] [CrossRef]
- Yamane, T. Statistics: An Introductory Analysis, 2nd ed.; Harper and Row: New York, NY, USA, 1967. [Google Scholar]
- Israel, G.D. Determining Sample Size; PEOD6; Agricultural Education and Communication Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida: Gainesville, FL, USA, 2012. [Google Scholar]
- BPS (Statistics of Bandung City). Bandung City in Figures; BPS - Statistics Indonesia: Bandung, Indonesia, 2015. [Google Scholar]
- BPS (Statistics of Bandung City). Total Population by Age Group and Sex in Bandung Municipality. 2016. Available online: https://bandungkota.bps.go.id/statictable/2017/08/29/104/jumlah-penduduk-menurut-kelompok-umur-dan-jenis-kelamin-di-kota-bandung-2016-.html (accessed on 24 January 2019).
- BPS (Statistics of Bandung City). Hasil Survei Biaya Hidup 2012. Available online: https://jabar.bps.go.id/pressrelease/2012/12/03/452/hasil-survei-biaya-hidup-2012-di-jawa-barat--rata-rata-biaya-hidup--nilai-konsumsi-rumah-tangga-gabungan-7-kota--per-bulan-di-jawa-barat-sebesar-rp--5–431–863.html (accessed on 24 January 2019).
- Strathman, J.G.; Dueker, K.J. Understanding trip chaining. In 1990 NPTS Special Reports on Trip and Vehicle Attributes; Publication FHWA-PL-95-033; FHWA; US Department of Transportation: Washington, DC, USA, 1995. [Google Scholar]
- Bawa, K.; Ghosh, A. A model of household grocery shopping behaviour. Mark. Lett. 1999, 10, 149–160. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E.; Tatham, R.L. Multivariate Data Analysis, 6th ed.; Prentice Hall: New York, NY, USA, 2006. [Google Scholar]
- Kaiser, H.F. An index of factorial simplicity. Psychometrika 1974, 39, 31–36. [Google Scholar] [CrossRef]
- Hutcheson, G.D.; Sofroniou, N. The multivariate Social Scientist: Introductory Statistics Using Generalized Linear Models; Sage: Thousand Oaks, CA, USA, 1999. [Google Scholar]
- Burns, R. Cluster Analysis. In Business Research Methods and Statistics Using SPSS; Sage Publications: London, UK, 2008. [Google Scholar]
- Satish, S.M.; Bharadhwaj, S. Information search behaviour among new car buyers: A two-step cluster analysis. IIMB Manag. Rev. 2010, 22, 5–15. [Google Scholar] [CrossRef]
- Mokhtarian, P.L. Telecommuting and travel: State of the practice, state of the art. Transportation 1991, 18, 319–342. [Google Scholar] [CrossRef]
- Mokhtarian, P.L. If telecommunication is such a good substitute for travel, why does congestion continue to get worse? Transp. Lett. 2009, 1, 1–17. [Google Scholar] [CrossRef]
- Koppelman, F.S.; Bhat, C. A self instructing course in mode choice modeling: Multinomial and nested Logit Models; U.S. Department of Transportation: Federal Transit Administration: Washington, DC, USA, 2006. [Google Scholar]
- Edwards, J.B.; McKinnon, A.C.; Cullinane, S.L. Comparative analysis of the carbon footprints of conventional and online retailing: A “last mile” perspective. Int. J. Phys. Distrib. Logist. Manag. 2010, 40, 103–123. [Google Scholar] [CrossRef]
- Donaghy, K.; Rudinger, G.; Stefan, P. Societal trends, mobility behaviour and sustainable transport in Europe and North America. Transp. Rev. 2004, 24, 679–690. [Google Scholar] [CrossRef]
- Mikalef, P.; Pappas, I.O.; Giannakos, M. Consumer intentions on social media: A fsQCA analysis of motivations. In Proceedings of the Conference on e-Business, e-Services and e-Society, Swansea, UK, 13–15 September 2016; Springer: Cham, Switzerland, 2016; pp. 371–386. [Google Scholar] [CrossRef]
Variables | % | Chi-Square (Sig.) | ||
---|---|---|---|---|
ST vs. MT | Own vs. Not-Own Private Car | |||
Modes | Motorcycle (MC) | 41.07 | 20.970 (**) | 16.818 (**) |
Private Car (PC) | 18.45 | |||
Public Transport (PT) | 11.11 | |||
NMT | 29.37 | |||
Age | <18 years old | 1.56 | 8.558 (*) | 8.431 (*) |
18–25 years old | 15.04 | |||
26–35 years old | 20.70 | |||
36–50 years old | 40.43 | |||
>50 years old | 22.27 | |||
Household Income | <3 million IDR | 33.40 | 19.670 (**) | 41.347 (**) |
3–6 million IDR | 29.32 | |||
6–9 million IDR | 13.79 | |||
9–12 million IDR | 8.20 | |||
>12 million IDR | 15.30 |
My Home Environment Have…. | High Accessibility | Green Environment | Secure Environment | High Social Interaction | NMT Friendly |
---|---|---|---|---|---|
Easy access to shopping place | 0.668 | ||||
Easy access to public facilities | 0.745 | ||||
Easy access to city centre | 0.785 | ||||
Easy access to main road | 0.738 | ||||
Easy access to public transport | 0.557 | ||||
Bicycle route available | 0.757 | ||||
Pedestrian route available | 0.765 | ||||
Parks and green space available | 0.652 | ||||
Quiet environment | 0.698 | ||||
Sufficient street lighting | 0.579 | ||||
Low crime rate | 0.687 | ||||
Low vehicle traffic | 0.692 | ||||
Lots of people outside neighbourhood | 0.845 | ||||
Lots of people inside neighbourhood | 0.862 | ||||
High social interactions | 0.549 | ||||
Large garden in front/back | 0.726 | ||||
Parking space available | 0.668 | ||||
Well maintained | 0.717 |
Variables | Dependent Variables Group Means | F | Sig. | Structural Matrix | |||||
---|---|---|---|---|---|---|---|---|---|
MT | PC | PT | NMT | F1 | F2 | F3 | |||
Shopping expenses ≤ 100.000 IDR [D] | 0.274 | 0.023 | 0.208 | 0.704 | 58.583 | 0.000 | 0.562 * | 0.336 | −0.075 |
Shopping expenses = 250.000 IDR [D] | 0.188 | 0.540 | 0.113 | 0.028 | 38.341 | 0.000 | −0.452 * | 0.296 | 0.030 |
Trip distance ≤ 1 km [D] | 0.435 | 0.172 | 0.283 | 0.866 | 57.349 | 0.000 | 0.547 * | 0.398 | 0.099 |
Only Shopping Trip (ST) [D] | 0.753 | 0.655 | 0.698 | 0.894 | 7.202 | 0.000 | 0.195 * | 0.130 | 0.051 |
Monthly Expenditure ≥ 3 million IDR[D] | 0.156 | 0.586 | 0.019 | 0.106 | 42.108 | 0.000 | −0.403 | 0.620 * | −0.015 |
House area ≥ 150 m2 [D] | 0.183 | 0.425 | 0.094 | 0.099 | 1.600 | 0.189 | −0.269 | 0.271 * | 0.073 |
Owned Private Vehicle [D] | 0.995 | 0.989 | 0.906 | 0.986 | 6.266 | 0.000 | 0.000 | 0.243 | 0.574 * |
Travel cost ≤ 10.000 IDR [D] | 0.780 | 0.644 | 0.906 | 0.993 | 20.364 | 0.000 | 0.327 | −0.024 | −0.401 * |
Travel time ≤ 10 minutes [D] | 0.876 | 0.609 | 0.830 | 0.965 | 20.552 | 0.000 | 0.332 * | −0.150 | 0.261 |
Travel time ≥ 45 minutes [D] | 0.000 | 0.046 | 0.000 | 0.007 | 4.423 | 0.004 | −0.111 | 0.231 * | −0.169 |
High Accessibility | −0.122 | 0.093 | 0.154 | 0.103 | 2.176 | 0.090 | 0.012 | 0.085 | −0.390 * |
Green Environment | 0.098 | 0.548 | −0.114 | −0.399 | 18.991 | 0.000 | −0.326 * | 0.043 | 0.232 |
Secure Environment | −0.096 | 0.001 | −0.022 | 0.114 | 1.195 | 0.311 | 0.045 | 0.114 | −0.172 * |
High Social Interaction | 0.074 | −0.207 | −0.032 | 0.062 | 1.786 | 0.149 | 0.082 | −0.081 | 0.181 * |
NMT Friendly | −0.079 | 0.216 | 0.150 | −0.079 | 2.437 | 0.064 | −0.092 | 0.025 | −0.280 * |
Goodness-of-Fit Parameters | Function of Group Centroid | Mode Choice | F1 | F2 | F3 | ||||
Box’s M [F;df1;df2;p-value] | 977.845 [7.539; 120; 104934.596; 0.000] | MT | −0.118 | −0.290 | 0.301 | ||||
Eigen Values [Canonical Correlation] | 1.111; 0.239; 0.080 [0.725; 0.439; 0.272] | PC | −1.775 | 0.553 | −0.135 | ||||
Wilks’ Lambda F1 through F3; F2 through F3; F3[p-value] | 0.354; 0.747; 0.926 [0.000; 0.000; 0.001] | PT | −0.138 | −0.939 | −0.569 | ||||
Percent Correct | 62.40% | NMT | 1.294 | 0.392 | −0.100 |
Variables | Dependent Variables Group Means | F | Sig. | Structural Matrix | |
---|---|---|---|---|---|
ST | MT | F1 | |||
Shopping expenses ≤ 100.000 IDR [D] | 0.379 | 0.257 | 5.332 | 0.021 | 0.341 |
Travel distance ≤ 1 km [D] | 0.553 | 0.314 | 19.314 | 0.000 | 0.648 |
Travel distance ≥ 10 km [D] | 0.011 | 0.057 | 8.536 | 0.004 | −0.431 |
Travel time ≤ 10 minutes [D] | 0.869 | 0.781 | 5.008 | 0.026 | 0.330 |
Travel cost ≤ 10.000 IDR [D] | 0.845 | 0.790 | 1.721 | 0.190 | 0.193 |
Travel cost ≥ 40.000 IDR [D] | 0.014 | 0.048 | 4.575 | 0.033 | −0.315 |
Age ≥ 50 years Old [D] | 0.253 | 0.143 | 5.699 | 0.017 | 0.352 |
PT user | 0.101 | 0.152 | 2.178 | 0.141 | −0.218 |
NMT user | 0.354 | 0.143 | 17.708 | 0.000 | 0.621 |
High accessibility | 0.036 | −0.076 | 1.088 | 0.297 | 0.154 |
Secure environment | 0.039 | −0.181 | 4.037 | 0.045 | 0.296 |
Goodness-of-Fit Parameters | Function of Group Centroid | Trip Chain | F1 | ||
Box’s M [F; df1; df2; p-value] | 298.575 [4.345; 66; 122693.135;0.000] | ||||
Eigen Values [Canonical Correlation] | 0.098 [0.298] | ST | 0.167 | ||
Wilks’ Lambda F1[p-value] | 0.911 [0.000] | MT | −0.583 | ||
Percent Correct | 64.0% |
No | Cluster Name | Proportion of Total Respondents (%) |
---|---|---|
1 | NMT user with ST | 26.2 |
2 | PC user with MT | 12.9 |
3 | MC user with ST | 10.1 |
4 | MC user with ST | 31.0 |
5 | PT user with ST | 7.5 |
6 | PC user with ST | 12.3 |
Size of [Smallest Cluster: Largest Cluster] | [7.5 : 31.0] | |
Ratio of Smallest Cluster and Largest Cluster | 4.1 |
Variables | Dependent Variables Group Means | F | Sig. | Structural Matrix | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
NMT-ST | PC-MTT | MT-MTT | MT-ST | PT-ST | PC-ST | F1 | F2 | F3 | F4 | F5 | |||
Shopping expenses ≤ 100.000 IDR [D] | 0.685 | 0.230 | 0.295 | 0.266 | 0.297 | 0.018 | 25.317 | 0.000 | 0.649 * | 0.100 | −0.141 | −0.103 | 0.460 |
Shopping expenses ≥ 250.000 IDR [D] | 0.031 | 0.262 | 0.136 | 0.210 | 0.162 | 0.544 | 15.998 | 0.000 | −0.488 * | 0.294 | −0.246 | 0.277 | −0.007 |
Travel distance ≤ 1 km [D] | 0.862 | 0.344 | 0.273 | 0.476 | 0.297 | 0.211 | 27.821 | 0.000 | 0.648 * | 0.409 | −0.096 | 0.364 | −0.408 |
Travel distance ≥ 10 km [D] | 0.000 | 0.066 | 0.045 | 0.021 | 0.000 | 0.018 | 2.161 | 0.057 | −0.101 | 0.027 | 0.207 | −0.534 * | −0.207 |
Travel time ≤ 10 minutes [D] | 0.962 | 0.705 | 0.886 | 0.874 | 0.811 | 0.684 | 7.814 | 0.000 | 0.324 | −0.092 | 0.298 | 0.406 * | 0.358 |
Travel cost ≤ 10.000 IDR [D] | 0.992 | 0.803 | 0.773 | 0.776 | 0.865 | 0.667 | 8.653 | 0.000 | 0.369 * | −0.002 | −0.255 | −0.181 | 0.041 |
Monthly Expenditure ≥ 3 million IDR [D] | 0.100 | 0.344 | 0.136 | 0.182 | 0.000 | 0.579 | 17.580 | 0.000 | −0.422 | 0.692 * | −0.221 | −0.077 | 0.198 |
Owned Private Vehicle [D] | 0.985 | 1.000 | 1.000 | 0.993 | 0.865 | 0.982 | 6.305 | 0.000 | 0.000 | 0.491 | 0.590 * | −0.193 | −0.014 |
High Accessibility | 0.103 | 0.018 | −0.206 | −0.102 | 0.144 | 0.160 | 1.468 | 0.199 | 0.019 | 0.088 | −0.405 * | 0.040 | 0.073 |
Green Environment | −0.357 | 0.000 | 0.009 | 0.145 | −0.066 | 0.557 | 8.002 | 0.000 | −0.348 | 0.087 | 0.081 | 0.414 * | −0.045 |
Age = 25–40 years old [D] | 0.231 | 0.164 | 0.250 | 0.224 | 0.162 | 0.228 | 0.432 | 0.826 | 0.020 | 0.058 | 0.115 | 0.172 | 0.364 * |
Age = 18–24 years old [D] | 0.123 | 0.197 | 0.136 | 0.112 | 0.108 | 0.140 | 0.609 | 0.693 | −0.033 | 0.076 | −0.030 | −0.333 * | −0.065 |
Goodness-of-Fit Parameters | Function of Group Centroid | Trip Chain | F1 | F2 | F3 | F4 | F5 | ||||||
Box’s M [F;df1;df2;p-value] | 177.065 [2.079; 78; 39086.463;0.000] | NMT-ST | 1.122 | 0.214 | −0.127 | 0.014 | 0.034 | ||||||
Eigen Values [Canonical Correlation] | 0.631; 0.149; 0.087; 0.044; 0.11 [0.622; 0.360; 0.283; 0.205; 0.103] | PC-MTT | −0.480 | 0.184 | −0.064 | −0.462 | −0.110 | ||||||
Wilks’ Lambda F1-F2-F3-F4 through F5; F5 [p-value] | 0.465; 0.759; 0.872; 0.948; 0.989 [0.000; 0.000; 0.000; 0.132; 0.763] | MT-MTT | −0.239 | −0.361 | 0.486 | −0.192 | 0.234 | ||||||
Percent Correct | 39.6% | MT-ST | −0.152 | −0.071 | 0.265 | 0.166 | −0.091 | ||||||
PT-ST | −0.143 | −1.071 | −0.576 | 0.031 | −0.013 | ||||||||
PC-ST | −1.389 | 0.466 | −0.308 | 0.175 | 0.097 |
Threshold | Estimate | Wald | Sig. |
---|---|---|---|
Less than once per month | −1.326 | 3.397 | 0.065 |
Once per few weeks | −0.182 | 0.064 | 0.800 |
Once per week | 0.795 | 1.225 | 0.268 |
More than once per week | 2.223 | 9.464 | 0.002 |
Built Environment | |||
High Social Interaction | 0.177 | 4.384 | 0.036 |
High Accessibility | 0.078 | 0.816 | 0.366 |
ICT and Online Shopping Characteristics | |||
Never shop online [D] | −0.473 | 6.816 | 0.009 |
High frequency online shoppers [D] | −0.440 | 0.615 | 0.433 |
Shopping expenditure is less than 100.000 IDR [D] | −1.655 | 73.072 | 0.000 |
Socio Demography and Travel Characteristics | |||
Student [D] | 0.695 | 7.092 | 0.008 |
MC user [D] | 0.107 | 0.350 | 0.554 |
PT user [D] | 0.976 | 10.337 | 0.001 |
Own private vehicle [D] | −1.501 | 5.206 | 0.023 |
Multi-Trip [D] | 0.712 | 12.123 | 0.000 |
Goodness-of-Fit Parameters | |||
−2LL (0); −2LL (β); [χ2; df.; p-value] | 1513.308; 1354.760 | ||
[148.548; 10; 0.000] | |||
Cox and Snell R2; Nagelkerke R2; McFadden R2 | [0.270; 0.281; 0.098] | ||
Test of Parallel Lines [χ2; df.; p-value] | [34.410; 30; 0.265] |
Threshold | Estimate | Wald | Sig. |
---|---|---|---|
< 100.000 IDR | −3.515 | 12.426 | 0.000 |
100.001 – 250.000 IDR | −2.371 | 5.714 | 0.017 |
250.001 – 500.000 IDR | −1.290 | 1.710 | 0.191 |
500.001 − 750.000 IDR | −0.728 | 0.546 | 0.460 |
750.001 − 1.000.000 IDR | 0.277 | 0.078 | 0.780 |
Built Environment | |||
High Accessibility | 0.147 | 2.999 | 0.083 |
Green Environment | 0.148 | 2.913 | 0.088 |
Secure Environment | 0.055 | 0.421 | 0.516 |
High Social Interaction | −0.058 | 0.471 | 0.493 |
NMT Friendly | 0.031 | 0.129 | 0.719 |
ICT and Online Shopping Characteristics | |||
High frequency online shoppers [D] | −0.771 | 9.686 | 0.002 |
> 5 years Internet Experience [D] | −0.249 | 1.269 | 0.260 |
> 5 years Smartphone Experience [D] | −0.472 | 4.121 | 0.042 |
No access to Internet [D] | 0.440 | 5.531 | 0.019 |
Socio Demography and Travel Characteristics | |||
Student [D] | 0.449 | 2.976 | 0.084 |
Senior Citizen [D] | −0.289 | 1.899 | 0.168 |
> 45 minutes travel time [D] | −0.983 | 1.751 | 0.186 |
> 40.000 IDR transport cost [D] | −1.391 | 5.098 | 0.024 |
Goodness-of-Fit Parameters | |||
−2LL (0); −2LL (β); [χ2; df.; p-value] | 1514.295; 1453.653 | ||
[60.641; 13; 0.000] | |||
Cox and Snell R2; Nagelkerke R2; McFadden R2 | [0.118; 0.123; 0.040] | ||
Test of Parallel Lines [χ2; df.; p-value] | [30.865; 52; 0.991] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joewono, T.B.; Tarigan, A.K.M.; Rizki, M. Segmentation, Classification, and Determinants of In-Store Shopping Activity and Travel Behaviour in the Digitalisation Era: The Context of a Developing Country. Sustainability 2019, 11, 1591. https://doi.org/10.3390/su11061591
Joewono TB, Tarigan AKM, Rizki M. Segmentation, Classification, and Determinants of In-Store Shopping Activity and Travel Behaviour in the Digitalisation Era: The Context of a Developing Country. Sustainability. 2019; 11(6):1591. https://doi.org/10.3390/su11061591
Chicago/Turabian StyleJoewono, Tri Basuki, Ari K. M. Tarigan, and Muhamad Rizki. 2019. "Segmentation, Classification, and Determinants of In-Store Shopping Activity and Travel Behaviour in the Digitalisation Era: The Context of a Developing Country" Sustainability 11, no. 6: 1591. https://doi.org/10.3390/su11061591
APA StyleJoewono, T. B., Tarigan, A. K. M., & Rizki, M. (2019). Segmentation, Classification, and Determinants of In-Store Shopping Activity and Travel Behaviour in the Digitalisation Era: The Context of a Developing Country. Sustainability, 11(6), 1591. https://doi.org/10.3390/su11061591