Food Preservative Capabilities of Grape (Vitis vinifera) and Clementine Mandarin (Citrus reticulata) By-products Extracts in South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Preparation
2.3. Polyphenol Extraction
2.4. Phytochemical Analyses
2.4.1. Determination of Total Phenols and Tannins
2.4.2. Determination of Total Flavonoids
2.4.3. Total Monomeric Anthocyanins
2.4.4. Proanthocyanidins
2.4.5. Total Carotenoids
2.4.6. Ascorbic Acid
2.5. Titratable Acidity and pH
2.6. Antioxidant Activity Assays
2.6.1. 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) Radical Scavenging Activity
2.6.2. Determination of Ferric Reducing Antioxidant Power (FRAP)
2.6.3. Oxygen Radical Absorbance Capacity (ORAC)
2.6.4. 15-Lipoxygenase (15-LOX) Inhibition Assay
2.7. Antimicrobial Susceptibility Testing
2.7.1. Culture of Microorganisms and Suspension Preparation
2.7.2. Minimum Inhibitory Concentration
2.8. Data Analyses
3. Results and Discussion
3.1. Phytochemical Content, pH, and Titratable Acidity
3.2. In Vitro Antioxidant Activity
3.3. In Vitro Antimicrobial Activity
3.4. Principal Component Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO Food Wastage Footprint: Impacts on Natural Resources—Summary Report. Available online: http://www.fao.org/docrep/018/i3347e/i3347e.pdf (accessed on 22 June 2018).
- WWF-South Africa Food Loss and Waste: Facts and Futures Taking Steps towards a more Sustainable Food Future (FOOD 2017 Report). Available online: http://awsassets.wwf.org.za/downloads/WWF_Food_Loss_and_Waste_WEB.pdf (accessed on 5 June 2018).
- Kumar, Y.; Yadav, D.N.; Ahmad, T.; Narsaiah, K. Recent trends in the use of natural antioxidants for meat and meat products. Compr. Rev. Food Sci. Food Saf. 2015, 14, 796–812. [Google Scholar] [CrossRef]
- Hugo, C.J.; Hugo, A. Current trends in natural preservatives for fresh sausage products. Trends Food Sci. Technol. 2015, 45, 12–23. [Google Scholar] [CrossRef]
- Bedale, W.; Sindelar, J.J.; Milkowski, A.L. Dietary nitrate and nitrite: Benefits, risks, and evolving perceptions. Meat Sci. 2016, 120, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Bateman, B.; Warner, J.O.; Hutchinson, E.; Dean, T.; Rowlandson, P.; Gant, C.; Grundy, J.; Fitzgerald, C.; Stevenson, J.; Warner, J. The effects of a double blind, placebo controlled, artificial food colourings and benzoate preservative challenge on hyperactivity in a general population sample of preschool children. Arch. Dis. Child. 2004, 89, 506–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, N.; Paik, H. Status, antimicrobial mechanism, and regulation of natural preservatives in livestock food systems. Korean J. Food Sci. Anim. Resour. 2016, 36, 547–557. [Google Scholar] [CrossRef] [PubMed]
- Hung, Y.; de Kok, T.M.; Verbeke, W. Consumer attitude and purchase intention towards processed meat products with natural compounds and a reduced level of nitrite. Meat Sci. 2016, 121, 119–126. [Google Scholar] [CrossRef]
- Djilas, S.; Čanadanović-Brunet, J.; Ćetković, G. By-products of fruits processing as a source of phytochemicals. Chem. Ind. Chem. Eng. Q. 2009, 15, 191–202. [Google Scholar] [CrossRef]
- Sharma, K.; Mahato, N.; Cho, M.H.; Lee, Y.R. Converting citrus wastes into value-added products: Economic and environmently friendly approaches. Nutrition 2017, 34, 29–46. [Google Scholar] [CrossRef]
- SAWIS. SA Wine Industry Statistics NR 40 2016; South African Wine Industry Statistics: Paarl, South Africa, 2016. [Google Scholar]
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards integral utilization of grape pomace from winemaking process: A review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef]
- Zhang, N.; Hoadley, A.; Patel, J.; Lim, S.; Li, C. Sustainable options for the utilization of solid residues from wine production. Waste Manag. 2017, 60, 173–183. [Google Scholar] [CrossRef]
- Siles, J.A.; Vargas, F.; Gutiérrez, M.C.; Chica, A.F.; Martín, M.A. Bioresource technology integral valorisation of waste orange peel using combustion, biomethanisation and co-composting technologies. Bioresour. Technol. 2016, 211, 173–182. [Google Scholar] [CrossRef] [PubMed]
- M’hiri, N.; Ioannou, I.; Ghoul, M.; Mihoubi Boudhrioua, N. Phytochemical characteristics of Citrus peel and effect of conventional and nonconventional processing on phenolic compounds: A review. Food Rev. Int. 2017, 33, 587–619. [Google Scholar] [CrossRef]
- Pourcel, L.; Routaboul, J.-M.; Cheynier, V.; Lepiniec, L.; Debeaujon, I. Flavonoid oxidation in plants: From biochemical properties to physiological functions. Trends Plant Sci. 2007, 12, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Stintzing, F.C.; Carle, R. Functional properties of anthocyanins and betalains in plants, food, and in human nutrition. Trends Food Sci. Technol. 2004, 15, 19–38. [Google Scholar] [CrossRef]
- Gyawali, R.; Ibrahim, S.A. Natural products as antimicrobial agents. Food Control 2014, 46, 412–429. [Google Scholar] [CrossRef]
- Khasawneh, M.A.; Elwy, H.M.; Hamza, A.A.; Fawzi, N.M.; Hassan, A.H. Antioxidant, anti-lipoxygenase and cytotoxic activity of Leptadenia pyrotechnica (Forssk.) Decne Polyphenolic Constituents. Molecules 2011, 16, 7510–7521. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, Y.; Toledo, R.T. Major flavonoids in grape seeds and skins: Antioxidant capacity of catechin, epicatechin, and gallic acid. J. Agric. Food Chem. 2004, 52, 255–260. [Google Scholar] [CrossRef]
- Makkar, H.P.S. Quantification of Tannins in Tree Foliage: A Laboratory Manual; Kluwer Academic Publishers: Vienna, Austria, 2000. [Google Scholar]
- Yang, J.; Martinson, T.E.; Liu, R.H. Phytochemical profiles and antioxidant activities of wine grapes. Food Chem. 2009, 116, 332–339. [Google Scholar] [CrossRef]
- Giusti, M.M.; Wrolstad, R.E. Characterization and measurement of anthocyanins by UV—Visible spectroscopy. Curr. Protoc. Food Anal. Chem. 2001, 00, F1.2.1–F1.2.13. [Google Scholar] [CrossRef]
- Porter, L.J.; Hrstich, L.N.; Chan, B.G. The Conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry 1986, 25, 223–230. [Google Scholar] [CrossRef]
- De Carvalho, L.M.J.; Gomes, P.B.; De Oliveira Godoy, R.L.; Pacheco, S.; Do Monte, P.H.F.; De Carvalho, J.L.V.; Nutti, M.R.; Neves, A.C.L.; Vieira, A.C.R.A.; Ramos, S.R.R. Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): A preliminary study. Food Res. Int. 2012, 47, 337–340. [Google Scholar] [CrossRef] [Green Version]
- Mphahlele, R.R.; Stander, M.A.; Fawole, O.A.; Opara, U.L. Effect of fruit maturity and growing location on the postharvest contents of flavonoids, phenolic acids, vitamin C and antioxidant activity of pomegranate juice (cv. Wonderful). Sci. Hortic. 2014, 179, 36–45. [Google Scholar] [CrossRef]
- Tolic, M.T.; Jurcevic, I.L.; Krbavcic, I.P.; Markovic, K.; Vahcic, N. Phenolic content, antioxidant capacity and quality of chokeberry (Aronia melanocarpa) products. Food Technol. Biotechnol. 2015, 53, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, C.M.; Dias, M.I.; Alves, M.J.; Calhelha, R.C.; Barros, L.; Pinho, S.P.; Ferreira, I.C.F.R. Grape pomace as a source of phenolic compounds and diverse bioactive properties. Food Chem. 2018, 253, 132–138. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant Power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Gillespie, K.M.; Chae, J.M.; Ainsworth, E.A. Rapid measurement of total antioxidant capacity in plants. Nat. Protoc. 2007, 2, 867–870. [Google Scholar] [CrossRef]
- Waslidge, N.B.; Hayes, D.J. A colorimetric method for the determination of lipoxygenase activity suitable for use in a high throughput assay format. Anal. Biochem. 1995, 231, 354–358. [Google Scholar] [CrossRef]
- Eloff, J.N. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med. 1998, 64, 711–713. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, D.A.; Salvador, A.A.; Smânia, A.; Smânia, E.F.A.; Maraschin, M.; Ferreira, S.R.S. Antimicrobial activity and composition profile of grape (Vitis vinifera) pomace extracts obtained by supercritical fluids. J. Biotechnol. 2013, 164, 423–432. [Google Scholar] [CrossRef]
- Wang, Y.; Qian, J.; Cao, J.; Wang, D.; Liu, C.; Yang, R.; Li, X.; Sun, C. Antioxidant capacity, anticancer ability and flavonoids composition of 35 citrus (Citrus reticulata Blanco) varieties. Molecules 2017, 22, 1114. [Google Scholar] [CrossRef] [PubMed]
- Veberic, R. The impact of production technology on plant phenolics. Horticulturae 2016, 2, 8. [Google Scholar] [CrossRef]
- Butelli, E.; Garcia-Lor, A.; Licciardello, C.; Las Casas, G.; Hill, L.; Recupero, G.R.; Keremane, M.L.; Ramadugu, C.; Krueger, R.; Xu, Q.; et al. Changes in anthocyanin production during domestication of citrus. Plant Physiol. 2017, 173, 2225–2242. [Google Scholar] [CrossRef] [PubMed]
- Kalt, W. Effects of production and processing factors on major fruit and vegetable antioxidants. J. Food Sci. 2005, 70, 11–19. [Google Scholar] [CrossRef]
- Katalinić, V.; Možina, S.S.; Skroza, D.; Generalić, I.; Abramovič, H.; Miloš, M.; Ljubenkov, I.; Piskernik, S.; Pezo, I.; Terpinc, P.; et al. Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in Dalmatia (Croatia). Food Chem. 2010, 119, 715–723. [Google Scholar] [CrossRef]
- Xu, Y.; Burton, S.; Kim, C.; Sismour, E. Phenolic compounds, antioxidant, and antibacterial properties of pomace extracts from four Virginia-grown grape varieties. Food Sci. Nutr. 2016, 4, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Rockenbach, I.I.; Gonzaga, L.V.; Rizelio, V.M.; De Souza, E.; Gonçalves, S.; Genovese, M.I.; Fett, R. Phenolic compounds and antioxidant activity of seed and skin extracts of red grape (Vitis vinifera and Vitis labrusca) pomace from Brazilian winemaking. Food Res. Int. 2011, 44, 897–901. [Google Scholar] [CrossRef]
- Tseng, A.; Zhao, Y. Effect of different drying methods and storage time on the retention of bioactive compounds and antibacterial activity of wine grape pomace (Pinot Noir and Merlot). J. Food Sci. 2012, 77, 192–201. [Google Scholar] [CrossRef]
- Ky, I.; Lorrain, B.; Kolbas, N.; Crozier, A.; Teissedre, P.L. Wine by-products: Phenolic characterization and antioxidant activity evaluation of grapes and grape pomaces from six different French grape varieties. Molecules 2014, 19, 482–506. [Google Scholar] [CrossRef] [PubMed]
- Hellstro, J.K.M.; Riitta, A.; Nen, O.; Mattila, P.H. Proanthocyanidins in common food products of plant origin. J. Agric. Food Chem. 2009, 57, 7899–7906. [Google Scholar] [CrossRef]
- Negro, C.; Tommasi, L.; Miceli, A. Phenolic compounds and antioxidant activity from red grape marc extracts. Bioresour. Technol. 2003, 87, 41–44. [Google Scholar] [CrossRef]
- Yu, J.; Ahmedna, M. Functional components of grape pomace: Their composition, biological properties and potential applications. Int. J. Food Sci. Technol. 2013, 48, 221–237. [Google Scholar] [CrossRef]
- Sousa, E.C.; Athayde Uchôa-Thomaz, A.M.; Osvaldo, J.; Carioca, B.; Maia De Morais, S.; De Lima, A.; Martins, C.G.; Alexandrino, C.D.; Augusto, P.; Ferreira, T.; et al. Chemical composition and bioactive compounds of grape pomace (Vitis vinifera L.), Benitaka variety, grown in the semiarid region of Northeast Brazil. Food Sci. Technol. 2014, 34, 135–142. [Google Scholar] [CrossRef]
- Papuc, C.; Goran, G.V.; Predescu, C.N.; Nicorescu, V.; Stefan, G. Plant polyphenols as antioxidant and antibacterial agents for shelf-life extension of meat and meat products: Classification, structures, sources, and action mechanisms. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1243–1268. [Google Scholar] [CrossRef]
- Guitard, R.; Nardello-Rataj, V.; Aubry, J.-M. Theoretical and kinetic tools for selecting effective antioxidants: Application to the protection of omega-3 oils with natural and synthetic phenols. Int. J. Mol. Sci. 2016, 17, 1220. [Google Scholar] [CrossRef]
- Brewer, M.S. Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Hasselmann, C.; Diseases, I. Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect. 2003, 9, ix–xv. [Google Scholar]
- Wu, T.; Zang, X.; He, M.; Pan, S.; Xu, X. Structure-activity relationship of flavonoids on their anti- Escherichia coli activity and inhibition of DNA gyrase. J. Agric. Food Chem. 2013, 61, 8185–8190. [Google Scholar] [CrossRef]
- Jayaprakasha, G.K.; Selvi, T.; Sakariah, K.K. Antibacterial and antioxidant activities of grape (Vitis vinifera) seed extracts. Food Res. Int. 2003, 36, 117–122. [Google Scholar] [CrossRef]
- García-Lomillo, J.; González-Sanjosé, M.L. Applications of wine pomace in the food industry: Approaches and functions. Compr. Rev. Food Sci. Food Saf. 2017, 16, 3–22. [Google Scholar] [CrossRef]
- Ignat, I.; Volf, I.; Popa, V.I. A critical review of methods for characterisation of polyphenolic compounds in fruits and vegetables. Food Chem. 2011, 126, 1821–1835. [Google Scholar] [CrossRef]
Assay | Treatment | ||
---|---|---|---|
GPE | GSE | MPE | |
Total phenols 1 (g GAE/100 g) | 17.30 ± 0.250 a | 9.97 ± 0.340 b | 6.49 ± 0.620 c |
Total tannins 1 (g GAE/100 g) | 11.5 ± 0.26 a | 3.5 ± 0.33 b | 4.7 ± 0.61 b |
Flavonoids 2 (g CE/100 g) | 7.76 ± 0.036 a | 7.61 ± 0.610 a | 1.00 ± 0.017 b |
Proanthocyanidins 3 (g CyE/100 g) | 1.04 ± 0.240 b | 3.54 ± 0.130 a | 0.13 ± 0.012 c |
Anthocyanins 4 (g Cyd3E/100 g) | 0.173 ± 0.0200 a | 0.214 ± 0.0110 a | 0.007 ± 0.0001 b |
Total carotenoids 5 (g β-CE/100 g) | 0.026 ± 0.0003 a | 0.021 ± 0.0007 b | 0.005 ± 0.0001 c |
Ascorbic acid 6 (g AA/100 g) | ND * | ND * | 2.69 ± 0.37 |
pH | 3.82 ± 0.044 b | 4.26 ± 0.089 a | 3.41 ± 0.073 c |
Titratable acidity (%) | 6.15 ± 0.056 b | 4.51 ± 0.030 c | 8.11 ± 0.064 a |
Assay | Sample | |||||
---|---|---|---|---|---|---|
GPE | GSE | MPE | Ascorbic Acid | NDGA | ||
DPPH 1 | EC50 (mg/mL) | 0.11 ± 0.020 b | 0.02 ± 0.005 c | 0.81 ± 0.330 a | 1.07 ± 0.046 a | - |
T Eq. (mM TEq/g) | 179.5 ± 2.70 b | 86.0 ± 0.72 c | 292.3 ± 24.01 a | - | - | |
FRAP 2 | T Eq. (M TEq/g) | 4.57 ± 0.230 b | 4.93 ± 0.005 a | 3.39 ± 0.011 c | - | - |
ORAC 3 | EC50 (µg/mL) | 7.10 ± 0.560 b | 1.30 ± 0.140 d | 2.10 ± 0.210 c | 14.0 ± 3.40 a | - |
T Eq. (mM TEq/g) | 9.84 ± 0.079 a | 7.73 ± 0.018 c | 8.27 ± 0.100 b | - | - | |
Lipoxygenase 4 | IC50 (µg/mL) | 96.87 ± 13.900 a | 39.20 ± 3.820 c | 52.06 ± 0.200 b | - | 0.32 ± 0.065 d |
APC Index 5 | - | 286.99 | 100 | 748.64 | - | - |
Rank 6 | - | 2 | 1 | 3 | - | - |
Total Phenolic Compounds | Tannins | Flavonoids | Anthocyanins | Proanthocyanidins | Carotenoids | Ascorbic Acid | pH | Acidity | |
---|---|---|---|---|---|---|---|---|---|
DPPH 1 | −0.460 | −0.142 | −0.728 | −0.729 | −0.586 | −0.701 | 0.803 | −0.710 | 0.684 |
FRAP 2 | 0.566 | 0.148 | 0.943 | 0.938 | 0.838 | 0.891 | −0.953 | 0.924 | −0.957 |
ORAC 3 | 0.892 | 0.984 | 0.397 | 0.190 | −0.376 | 0.568 | −0.382 | −0.147 | 0.073 |
LOX 4 | 0.837 | 0.967 | 0.321 | 0.097 | −0.449 | 0.489 | −0.296 | −0.224 | 0.158 |
Staphylococcus aureus | 0.645 | 0.348 | 0.847 | 0.778 | 0.578 | 0.815 | −0.809 | 0.743 | −0.721 |
Listeria monocytogenes | 0.764 | 0.804 | 0.431 | 0.198 | −0.200 | 0.534 | −0.366 | −0.016 | −0.034 |
Enterococcus faecalis | 0.902 | 0.886 | 0.551 | 0.350 | −0.128 | 0.689 | −0.546 | 0.081 | −0.150 |
Pseudomonas aeruginosa | 0.742 | 0.365 | 0.988 | 0.962 | 0.707 | 0.977 | −0.991 | 0.847 | −0.890 |
Escherichia coli | 0.472 | 0.066 | 0.865 | 0.876 | 0.838 | 0.802 | −0.877 | 0.903 | −0.919 |
Candida albicans | 0.977 | 0.918 | 0.695 | 0.505 | −0.046 | 0.805 | −0.652 | 0.210 | −0.255 |
Microorganism | MIC (mg/mL) | ||||
---|---|---|---|---|---|
GPE | GSE | MPE | Sodium Metabisulphite | Tetracycline | |
Staphylococcus aureus | 9.38 ± 3.608 a | 9.38 ± 3.608 a | 3.13 ± 0.001 b | 0.39 ± 0.001 c | 0.003 ± 0.0010 d |
Listeria monocytogenes | 4.69 ± 1.804 a | 2.34 ± 0.902 a | 2.34 ± 0.902 a | 0.29 ± 0.113 b | 0.02 ± 0.030 c |
Enterococcus faecalis | 9.38 ± 3.608 a | 2.34 ± 0.902 b | 1.56 ± 0.001 b | 0.39 ± 0.001 c | 0.02 ± 0.001 d |
Pseudomonas aeruginosa | 12.50 ± 0.001 a | 12.50 ± 0.001 a | 6.25 ± 0.001 b | 1.17 ± 0.451 c | 0.008 ± 0.0001 d |
Escherichia coli | 9.38 ± 3.608 a | 12.50 ± 0.001 a | 3.13 ± 0.001 b | 1.56 ± 0.001 c | 0.003 ± 0.0010 d |
Candida albicans | 6.25 ± 0.001 a | 2.34 ± 0.902 b | 1.56 ± 0.001 b | 0.04 ± 0.014 c | 0.003 ± 0.0011 d |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pfukwa, T.M.; Fawole, O.A.; Manley, M.; Gouws, P.A.; Opara, U.L.; Mapiye, C. Food Preservative Capabilities of Grape (Vitis vinifera) and Clementine Mandarin (Citrus reticulata) By-products Extracts in South Africa. Sustainability 2019, 11, 1746. https://doi.org/10.3390/su11061746
Pfukwa TM, Fawole OA, Manley M, Gouws PA, Opara UL, Mapiye C. Food Preservative Capabilities of Grape (Vitis vinifera) and Clementine Mandarin (Citrus reticulata) By-products Extracts in South Africa. Sustainability. 2019; 11(6):1746. https://doi.org/10.3390/su11061746
Chicago/Turabian StylePfukwa, Trust M., Olaniyi A. Fawole, Marena Manley, Pieter A. Gouws, Umezuruike Linus Opara, and Cletos Mapiye. 2019. "Food Preservative Capabilities of Grape (Vitis vinifera) and Clementine Mandarin (Citrus reticulata) By-products Extracts in South Africa" Sustainability 11, no. 6: 1746. https://doi.org/10.3390/su11061746
APA StylePfukwa, T. M., Fawole, O. A., Manley, M., Gouws, P. A., Opara, U. L., & Mapiye, C. (2019). Food Preservative Capabilities of Grape (Vitis vinifera) and Clementine Mandarin (Citrus reticulata) By-products Extracts in South Africa. Sustainability, 11(6), 1746. https://doi.org/10.3390/su11061746