Effects of Higher Education Levels on Total Factor Productivity Growth
Abstract
:1. Introduction
2. Assumptions
2.1. Heterogeneous Human Capital and Regional TFP Growth
2.2. Graduates’ Mobility and TFP Growth
2.3. Human Capital and TFP Decomposition
3. Methodology and Selections of Variables
3.1. Empirical Model
3.2. Variable Selection
3.2.1. Dependent Variables
3.2.2. Independent Variables
3.2.3. Control Variables
4. Empirical Results
4.1. The Spillover Effect of Heterogeneous Human Capital on Regional TFP Growth
4.2. Channels of Heterogeneous Human Capital affect Regional TFP Growth: Decomposition
4.3. Robust Test
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Feng, C.; Wang, M.; Liu, G.; Huang, J. Sources of economic growth in China from 2000–2013 and its further sustainable growth path: A three-hierarchy meta-frontier data envelopment analysis. Econ. Model. 2017, 64, 334–348. [Google Scholar] [CrossRef]
- Dasgupta, P. The idea of sustainable development. Sustain. Sci. 2007, 2, 5–11. [Google Scholar] [CrossRef]
- Kumar, S. Is India on a Sustainable Development Path; Yokohama National University: Yokohama, Japan; TERI University: New Delhi, India, 2009. [Google Scholar]
- Ahmed, A.; Stein, J.A. Science, technology and sustainable development: A world review. World Rev. Sci. Technol. Sustain. 2004, 1, 5–24. [Google Scholar] [CrossRef]
- Lucas, R.E. On the mechanics of economic development. J. Monet. Econ. 1988, 22, 3–42. [Google Scholar] [CrossRef]
- Romer, P.M. Endogenous technological change. J. Political Econ. 1990, 98, 71–102. [Google Scholar] [CrossRef]
- Hua, P. Impacts of different levels of education on TFP growth: Evidence from China. China Econ. Q. 2005, 4, 147–166. [Google Scholar]
- Gu, J.; Levin, J.S.; Luo, Y. Reproducing academic successors or cultivating versatile experts: Influences of doctoral training on career expectations of Chinese PhD students. High. Educ. 2018, 76, 427–447. [Google Scholar] [CrossRef]
- Bloom, D.; Canning, D.; Chan, K.; Luca, D. Higher education and economic growth in Africa. Int. J. Afr. High. Educ. 2014, 1, 22–57. [Google Scholar] [CrossRef]
- Wolff, E.N. The Role of Education in the Postwar Productivity Convergence among OECD Countries. Ind. Corp. Chang. 2001, 10, 735–759. [Google Scholar]
- Vedder, R. Going Broke by Degree: Why College Costs Too Much; Aei Press: Washington, WA, USA, 2004; Volume 6, p. 294. [Google Scholar]
- Guo, Q.; Jia, J. Public education policy, economic growth and human capital premium. Econ. Res. 2009, 10, 22–35. [Google Scholar]
- Birdsall, N. Public spending on higher education in developing countries: Too much or too little. Econ. Educ. Rev. 1996, 15, 407–419. [Google Scholar] [CrossRef]
- Hanushek, E.A. Will higher education improve economic growth? Oxf. Rev. Econ. Policy 2016, 32, 538–552. [Google Scholar] [CrossRef]
- Sun, B.; Ning, X.; University, Q. The value and significance of education modernization for the construction of livable and happy city—The case study of Qingdao. Rev. High. Educ. 2016, 12, 16–23. [Google Scholar]
- Becker, G.S. Human Capital: A Theoretical and Empirical Analysis, with Special Reference to Education; National Bureau of Economic Research: New York, NY, USA, 1964. [Google Scholar]
- Griliches, Z. Issues in assessing the contribution of research and development to productivity growth. Bell J. Econ. 1979, 10, 92–116. [Google Scholar] [CrossRef]
- Spence, M. Job market signaling. Q. J. Econ. 1973, 87, 355–374. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, Z.; Economics, S.O. A study of the factors influencing university graduates’ employment quality. Popul. Econ. 2017, 1, 75–84. [Google Scholar]
- Renuka, M.; Kali, K. Singapore’s manufacturing sector’s TFP growth: A decomposition analysis. J. Comp. Econ. 2000, 28, 828–839. [Google Scholar]
- Hanushek, E.; Kimko, D. Schooling, labor-force quality, and the growth of nations. Am. Econ. Rev. 2000, 90, 1184–1208. [Google Scholar] [CrossRef]
- Yesilyurt, M.E.; Elhorst, J.P. Impacts of neighboring countries on military expenditures. J. Peace Res. 2017, 10, 777–790. [Google Scholar] [CrossRef]
- Abbas, Q.; Mujahid-Mukhtar, E. The role of human capital in economic growth: A comparative study of Pakistan and India. Pak. Dev. Rev. 2000, 39, 451–473. [Google Scholar] [CrossRef]
- Goldsmith, B.E. Arms racing in ‘Space’: Spatial modelling of military spending around the world. Aust. J. Political Sci. 2007, 42, 419–440. [Google Scholar] [CrossRef]
- Silva, D.F.C.D.; Elhorst, J.P.; Neto, R.D.M.S. Urban and rural population growth in a spatial panel of municipalities. Reg. Stud. 2017, 51, 894–908. [Google Scholar]
- Ugarte, M.D. Introduction to spatial econometrics. J. R. Stat. Soc. 2011, 174, 513–514. [Google Scholar] [CrossRef]
- Ligon, C.E. Economic distance and cross-country spillovers. J. Econ. Growth 2002, 7, 157–187. [Google Scholar] [CrossRef]
- Skogstad, K. Defence budgets in the post-cold war era: A spatial econometrics approach. Def. Peace Econ. 2016, 27, 323–352. [Google Scholar] [CrossRef]
- Willis, S.L.; Margrett, J.A. Aging and education. Int. Encycl. Soc. Behav. Sci. 2001, 26, 299–304. [Google Scholar]
- Zhang, J.; Wu, G.; Zhang, J. The estimation of China’s provincial capital stock: 1952–2000. Econ. Res. J. 2004, 10, 35–44. [Google Scholar]
- Isaksson, A. Determinants of Total Factor Productivity: A Literature Review. Research and Statistics Staff Working Paper; United Nations Industrial Development Organization: Vienna, Austria, 2007. [Google Scholar]
- Cai, F.; Wang, M. How fast and how far can China’s GDP grow? China World Econ. 2002, 5, 9–15. [Google Scholar]
- Elhorst, J.P. Spatial Econometrics: From Cross-Sectional Data to Spatial Panels; Springer: Berlin, Germany, 2014. [Google Scholar]
- Collins, F.L. Student mobilities, migration and the internationalization of higher education. High. Educ. Policy 2013, 26, 285–288. [Google Scholar] [CrossRef]
- Qu, X.; Lee, L.F. Estimating a spatial autoregressive model with an endogenous spatial weight matrix. J. Econom. 2015, 184, 209–232. [Google Scholar] [CrossRef]
- Qu, X.; Lee, L.F.; Yu, J. QML estimation of spatial dynamic panel data models with endogenous time varying spatial weights matrices. J. Econom. 2017, 197, 173–201. [Google Scholar] [CrossRef]
- Chen, S.; Chen, D. Haze pollution, government control and economic development. Econ. Res. 2018, 2, 20–34. [Google Scholar]
Province | Technical School | Bachelor | Master & PhD | Province | Technical School | Bachelor | Master & PhD |
---|---|---|---|---|---|---|---|
Beijing | 63.29 | 33.91 | −16.07 | Henan | −37.98 | −34.91 | 7.68 |
Tianjin | 1.26 | 13.59 | 0.81 | Hubei | −71.20 | −81.38 | −4.91 |
Hebei | −41.05 | −14.76 | 6.42 | Hunan | −36.12 | −9.89 | 1.03 |
Shanxi | −3.30 | 15.86 | 2.66 | Guangdong | 114.58 | 41.02 | −1.02 |
Inner Mongolia | 18.20 | 15.24 | 2.28 | Guangxi | −2.46 | 10.96 | 2.60 |
Liaoning | −14.27 | −44.05 | −11.52 | Hainan | −1.69 | 2.22 | −0.04 |
Jilin | −19.68 | −59.20 | −11.33 | Chongqing | 30.89 | −11.03 | −1.33 |
Heilongjiang | −16.21 | −34.26 | −4.69 | Sichuan | −10.81 | −49.32 | −12.44 |
Shanghai | 38.21 | 75.61 | 16.89 | Guizhou | −27.50 | −2.24 | −0.18 |
Jiangsu | 75.49 | 33.87 | −0.02 | Yunnan | 3.94 | 6.31 | 2.58 |
Zhejiang | 80.29 | 108.34 | 13.83 | Shaanxi | −43.25 | −66.38 | −13.63 |
Anhui | 20.62 | 16.72 | 3.13 | Gansu | −5.92 | −4.06 | −2.61 |
Fujian | 42.30 | 44.93 | 3.48 | Qinghai | 11.96 | 7.82 | −0.31 |
Jiangxi | −76.80 | −38.71 | 0.89 | Ningxia | 5.12 | 7.73 | 0.82 |
Shandong | −119.17 | −22.22 | 10.08 | Xinjiang | 14.31 | 33.93 | 4.62 |
Variables | Average | Standard Error | Min | Max |
---|---|---|---|---|
tfpgrowth | −2.622 | 3.616 | −15.808 | 9.650 |
technical progress | −1.450 | 4.403 | −18.430 | 11.563 |
technical efficiency | −1.084 | 3.900 | −9.783 | 21.431 |
technical school | 84.193 | 68.071 | 1.144 | 293.593 |
undergraduate | 79.250 | 57.645 | 0.491 | 245.900 |
master | 10.585 | 11.024 | 0.014 | 71.661 |
doctor | 1.398 | 2.342 | 0.000 | 16.968 |
capital per capita | 1.326 | 0.898 | −4.009 | 4.880 |
trade | −0.005 | 0.078 | −0.414 | 0.312 |
demand | 0.006 | 0.017 | −0.031 | 0.157 |
labor input scale | 0.359 | 0.502 | −2.417 | 3.411 |
y:tfpch | DPM | DSLX1 | DSLX2 | DSAR | DSEM | DSDM | DSDEM |
---|---|---|---|---|---|---|---|
lag_tfpgrowth | 0.5573 *** | 0.5752 *** | 0.5360 *** | 0.5627 *** | 0.5681 *** | 0.5752 *** | 0.5766 *** |
(13.02) | (13.57) | (12.41) | (13.24) | (13.24) | (13.57) | (13.56) | |
lag_techschool | −0.0062 (−0.94) | −0.0018 (−0.24) | −0.0055 (−0.69) | −0.0031 (−0.47) | −0.0033 (−0.47) | −0.0017 (−0.23) | −0.0018 (−0.24) |
lag_undergraduate | 0.0029 (0.28) | −0.0022 (−0.19) | 0.0024 (0.21) | 0.0008 (0.07) | −0.0007 (−0.06) | −0.0023 (−0.20) | −0.0021 (−0.18) |
lag_master | 0.0602 (0.89) | 0.0489 (0.70) | −0.0038 (−0.05) | 0.0662 (0.99) | 0.0616 (0.90) | 0.0496 (0.71) | 0.0487 (0.70) |
lag_doctor | −0.3131 (−0.99) | −0.1359 (−0.42) | 0.0529 (0.16) | −0.3075 (−0.98) | −0.3119 (−0.98) | −0.1409 (−0.43) | −0.1372 (−0.42) |
lag_capitalpercapita | −0.1221 (−0.64) | −0.0935 (−0.41) | −0.2835 (−1.23) | −0.0546 (−0.28) | −0.1215 (−0.63) | −0.0909 (−0.40) | −0.0924 (−0.41) |
trade | 5.0443 *** (3.37) | 3.4533 ** (2.21) | 4.1348 *** (2.63) | 4.6668 *** (3.12) | 4.8745 *** (2.97) | 3.4643 ** (2.22) | 3.6637 ** (2.25) |
demand | −22.14 *** (−3.19) | −18.86 *** (−2.73) | −19.07 *** (−2.81) | −19.55 *** (−2.81) | −21.03 *** (−2.83) | −18.72 *** (−2.70) | −18.76 *** (−2.66) |
laborinputscale | −1.1595 *** (−3.95) | −1.0581 *** (−3.38) | −1.2711 *** (−4.09) | −1.0403 *** (−3.52) | −1.1010 *** (−3.74) | −1.0529 *** (−3.35) | −1.0511 *** (−3.36) |
W2lag_techschool | −0.1105 *** (−3.39) | −0.1256 *** (−3.64) | −0.1068 *** (−2.82) | −0.1079 *** (−3.04) | |||
W2lag_undergraduate | 0.1196 ** (2.21) | 0.1777 *** (3.19) | 0.1148 * (1.93) | 0.1217 ** (2.06) | |||
W2lag_master | −0.9399 ** (−2.23) | −1.2799 *** (−2.86) | −0.9031 * (−1.95) | −0.9519 ** (−2.07) | |||
W2lag_doctor | 11.6198 *** (3.08) | 10.4285 *** (2.70) | 11.2611 *** (2.68) | 11.3176 *** (2.76) | |||
W3lag_techschool | 0.0289 * (1.91) | ||||||
W3lag_undergraduate | −0.0620 *** (−3.07) | ||||||
W3lag_master | 0.3999 ** (2.48) | ||||||
W3lag_doctor | −0.1835 (−0.22) | ||||||
W1y | 0.2695 ** (2.37) | 0.0292 (0.19) | |||||
W1u | 0.2976 ** (2.44) | 0.0879 (0.57) | |||||
N | 403 | 403 | 403 | 403 | 403 | 403 | 403 |
LogL | −808.36 | −801.08 | −792.61 | −805.74 | −805.66 | −801.06 | −800.92 |
LR1 | 139.76 *** | 149.59 *** | 128.91 *** | 143.49 *** | 143.77 *** | 149.62 *** | 149.83 *** |
LR2 | - | - | 16.94 *** | - | - | 9.35 ** | 9.48 ** |
LR3 | - | - | - | - | - | 0.04 | 0.32 |
AIC | 1636.71 | 1630.16 | 1621.22 | 1633.47 | 1633.32 | 1632.12 | 1631.84 |
BIC | 1676.70 | 1686.14 | 1693.20 | 1677.46 | 1677.31 | 1692.11 | 1691.83 |
Pseudo.R2 | 0.5665 | 0.5863 | 0.5783 | 0.5794 | 0.5709 | 0.5866 | 0.5874 |
y:tfpch | Short Term Effect | Long Term Effect | ||||
---|---|---|---|---|---|---|
Direct Effect | Spillover Effect | Total Effect | Direct Effect | Spillover Effect | Total Effect | |
techschool | −0.0055 (−0.69) | −0.0032 *** (−3.01) | −0.0033 *** (−3.17) | −0.0119 (−0.71) | −0.0069 *** (−3.02) | −0.0071 *** (−3.18) |
undergraduate | 0.0024 (0.21) | 0.0039 ** (2.18) | 0.0038 ** (2.22) | 0.0052 (0.20) | 0.0083 ** (2.17) | 0.0082 ** (2.23) |
master | −0.0038 (−0.05) | −0.0293 ** (−2.13) | −0.0285 ** (−2.11) | −0.0082 (−0.05) | −0.0632 ** (−2.15) | −0.0614 ** (−2.09) |
doctor | 0.0529 (0.16) | 0.3415 *** (2.76) | 0.3322 *** (2.75) | 0.1141 (0.17) | 0.7360 *** (2.74) | 0.7159 *** (2.75) |
y | X | Direct Effect | Spillover Effect | Total Effect | |||
---|---|---|---|---|---|---|---|
Coefficient | t Value | Coefficient | t Value | Coefficient | t Value | ||
tfpgrowth | techschoolh | −0.0008 | −0.69 | −0.0005 *** | −3.01 | −0.0005 *** | −3.17 |
undergraduatea | 0.0003 | 0.21 | 0.0005 ** | 2.18 | 0.0005 ** | 2.22 | |
master | −0.0004 | −0.05 | −0.0033 ** | −2.13 | −0.0032 ** | −2.11 | |
doctor | 0.0050 | 0.16 | 0.0320 *** | 2.76 | 0.0311 *** | 2.75 |
y | X | Direct Effect | Spillover Effect | Total Effect | |||
---|---|---|---|---|---|---|---|
Coefficient | t Value | Coefficient | t Value | Coefficient | t Value | ||
Technical progress | techsch | −0.0023 | −0.23 | −0.0088 *** | −6.72 | −0.0086 *** | −6.74 |
undergraduatea | −0.0047 | −0.33 | 0.0040 * | 1.83 | 0.0037 * | 1.75 | |
master | 0.0218 | 0.24 | −0.0300 * | −1.76 | −0.0283 * | −1.7 | |
doctor | 0.4462 | 1.1 | 0.7316 *** | 4.76 | 0.7224 *** | 4.81 | |
Technical efficiency | techschoolh | −0.0056 | −0.31 | 0.0077 ** | 3.26 | 0.0073 ** | 3.17 |
undergraduatea | 0.0111 | 0.43 | 0.0027 | 0.69 | 0.0030 | 0.78 | |
master | −0.0983 | −0.61 | −0.0178 | −0.58 | −0.0204 | −0.68 | |
doctor | −0.1878 | −0.25 | −0.5596 ** | −2.04 | −0.5476 ** | −2.04 |
tfpch:GDP/L | Direct Effect | Spillover Effect | Total Effect | |||
---|---|---|---|---|---|---|
Coefficient | t Value | Coefficient | t Value | Coefficient | t Value | |
Techschool | 0.0011 | 0.16 | −0.0042 *** | −4.14 | −0.0040 *** | −4.07 |
undergraduate | −0.0195 *** | −1.84 | 0.0028 * | 1.67 | 0.0020 | 1.27 |
master | −0.0151 | −0.23 | −0.0723 *** | −5.56 | −0.0704 *** | −5.56 |
doctor | 0.5606 *** | 1.87 | 0.8537 *** | 7.43 | 0.8443 *** | 7.52 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Bi, C. Effects of Higher Education Levels on Total Factor Productivity Growth. Sustainability 2019, 11, 1790. https://doi.org/10.3390/su11061790
Liu J, Bi C. Effects of Higher Education Levels on Total Factor Productivity Growth. Sustainability. 2019; 11(6):1790. https://doi.org/10.3390/su11061790
Chicago/Turabian StyleLiu, Jie, and Chao Bi. 2019. "Effects of Higher Education Levels on Total Factor Productivity Growth" Sustainability 11, no. 6: 1790. https://doi.org/10.3390/su11061790
APA StyleLiu, J., & Bi, C. (2019). Effects of Higher Education Levels on Total Factor Productivity Growth. Sustainability, 11(6), 1790. https://doi.org/10.3390/su11061790