Adaptability of Cattle-Raising to Multiple Stressors in the Dry Tropics of Chiapas, Mexico
Abstract
:1. Introduction
2. Case Studies
2.1. Technical-Economic Characteristics of Cattle Farms
2.2. Regional Vulnerability and Multiple Stressors
2.2.1. Climate Change and Drought
2.2.2. Market Conditions
3. Materials and Methods
3.1. Location and Characteristics of the Study Area
3.2. Methodology
3.2.1. Sustainable Livelihoods Analytical Framework
3.2.2. Sampling and Obtaining Data
3.2.3. Analysis of Farmers’ Livelihoods
3.2.4. Index of Adaptability
3.2.5. Statistical Analysis of Information
4. Results and Discussion
4.1. Capitals
4.2. Livelihood Strategies
4.3. Index of Adaptability of Cattle Farms to Multiple Stressors
4.4. Livelihood Strategies and Adaptability
4.5. Approaches to Adapting Cattle Farms to Multiple Stressors
4.5.1. Scenarios and Strategies for Facing the Climatic Stress Factor of Drought
4.5.2. Scenarios and Actions to Confront the Economic Stress Factor of Undesirable Market Conditions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. La Ganadería y sus Desafíos en América Latina y el Caribe. 2014. Available online: http://www.fao.org/agronoticias/agro-editorial/detalle/en/c/237808/ (accessed on 16 March 2016).
- Steinfeld, H.; Gerber, P.; Wassenaar, T.; Castel, V.; Rosales, M.; de Haan, C. Livestock’s Long Shadow, Environmental Issues and Options; LEAD-FAO: Rome, Italy, 2006. [Google Scholar]
- COLPOS. Estudio y Análisis del Mercado de los Productos del Sistema Bovinos Doble Propósito en el Estado de Veracruz; Colegio de Postgraduados: Veracruz, Mexico, 2010; p. 85. (In Spanish) [Google Scholar]
- SIAP. Sistema de Información Agroalimentaria y Pesquera. 2012. Available online: https://www.gob.mx/siap (accessed on 13 August 2014).
- IPCC. Fourth Assessment Report; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2007. [Google Scholar]
- IPCC. Appendix II: Glossary. In Climate Change 2014: Synthesis Report; Mach, K.J., Planton, S., von Stechow, C., Eds.; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; pp. 117–130. Available online: https://www.ipcc.ch/pdf/assessment-report/ar5/syr/AR5_SYR_FINAL_Annexes.pdf (accessed on 25 July 2017).
- McDowell, R.W. Environmental Impacts of Pasture-Based Farming; CAB International: London, UK, 2008; p. 298. [Google Scholar]
- Belliveau, S.; Smit, B.; Bradshaw, B. Multiple exposures and dynamic vulnerability: Evidence from the grape industry in the Okanagan Valley, Canada. Glob. Environ. Chang. 2006, 16, 364–378. [Google Scholar] [CrossRef]
- O’Brien, K.; Leichenko, R. Double exposure: Assessing the impacts of climate change within the context of economic globalization. Glob. Environ. Chang. 2000, 10, 221–232. [Google Scholar] [CrossRef]
- Adger, W.N. Vulnerability. Glob. Environ. Chang. 2006, 16, 268–281. [Google Scholar] [CrossRef]
- Smit, B.; Wandel, J. Adaptation, adaptive capacity and vulnerability. Glob. Environ. Chang. 2006, 16, 282–292. [Google Scholar] [CrossRef]
- Smit, B.; Burton, I.; Klein, R.J.T.; Wandel, J. An anatomy of adaptation to climate change and variability. Clim. Chang. 2000, 45, 223–251. [Google Scholar] [CrossRef]
- Nelson, R.; Kokic, P.; Crimp, S.; Martin, P.; Meinke, H.; Howden, S.M.; Nidumolu, U. The vulnerability of Australian rural communities to climate variability and change: Part II—Integrating impacts with adaptive capacity. Environ. Sci. Policy 2010, 13, 18–27. [Google Scholar] [CrossRef]
- Olsson, P.; Folke, C.; Berkes, F. Adaptive co-management for building resilience in social ecological systems. Environ. Manag. 2004, 34, 75–90. [Google Scholar] [CrossRef] [PubMed]
- Reyes, R.M. El Reparto de Tierras y la Política Agraria en Chiapas 1914–1988; Anexos estadísticos; UNAM: Mexico City, Mexico, 1992. (In Spanish) [Google Scholar]
- INEGI. Carta Edafologica en Escala 1:250,000; Instituto Nacional de Estadistica y Geografia; INEGI Publications: Mexico city, Mexico, 1985. (In Spanish) [Google Scholar]
- McCune, N.M.; Guevara, H.F.; Nahed-Toral, J.; Mendoza-Nazar, P.; Ovando, C.; Ruiz, S.B.; Medina, S.L. Social-Ecological Resilience and Maize Farming in Chiapas, Mexico. In Sustainable Development—Authoritative and Leading Edge Content for Environmental Management; Sime Curkovic: Rijeka, Croatia, 2012; pp. 485–512. [Google Scholar]
- Alfaro, R.; Diemont, S.; Ferguson, B.; Martin, J.F.; Nahed, J.; Álvarez, D.; Pinto, R. Steps toward sustainable ranching: An emergy evaluation of conventional and holistic management in Chiapas, Mexico. Agric. Syst. 2010, 103, 639–646. [Google Scholar] [CrossRef]
- Savory, A.; Butterfield, J. Holistic Management: A New Framework for Decision Making; Island Press: Washington, DC, USA, 1999; p. 618. [Google Scholar]
- Wadsworth, J. Dual purpuse cattle production: A system overview. In Dual Purpose Cattle Production Research; Anderson, S., Wadsworth, J., Eds.; International Workshop, IFS-FMVZ-UADY: Mérida, Mexico, 1992; pp. 2–27. [Google Scholar]
- Carabias, J.; Landa, R.; Collado, J.; Martínez, P. Agua, Medio Ambiente y Sociedad. Hacia la Gestión Integral de Recursos Hídricos en México; UNAM, El Colegio de México, Fundación Gonzalo Río Arronte: Mexico City, Mexico, 2005; p. 221. (In Spanish) [Google Scholar]
- Ramos, S.; Morales, H. Escenarios Climáticos Para el Estado de Chiapas; Universidad de Ciencias y Artes de Chiapas: Tuxtla Gutierrez, Mexico, 2010; p. 196. (In Spanish) [Google Scholar]
- Magaña, R.V.O. Los Impactos de “El Niño” en México; Centro de Ciencias de la Atmosfera, UNAM, Dirección General de Protección Civil, Secretaria de Gobernación: Mexico City, Mexico, 1999; p. 229. (In Spanish) [Google Scholar]
- Rueda, O.; Cuartas, C.; Naranjo, J.; Córdoba, C.; Murgueitio, E.; Anzola, H. Comportamiento de variables climáticas durante estaciones secas y de lluvia, bajo influencia del ENSO 2009–2010 (El Niño) y 2010–2011 (La Niña) dentro y fuera de sistemas silvopastoriles intensivos en el Caribe seco de Colombia. Rev. Colom. Cienc. Pecua. 2011, 24, 512. (In Spanish) [Google Scholar]
- Nardone, A.; Ronchi, B.; Lacetera, N.; Ranieri, M.S.; Bernabucci, U. Effects of climate changes on animal production and sustainability of livestock systems. Livest. Sci. 2010, 130, 57–69. [Google Scholar] [CrossRef]
- USDA. Mexico: Market Concentration in Selected Agricultural and Food Subsectors. Global Agricultural Information Network Report No. MX1042; 2011. Available online: http://gain.fas.usda.gov/Recent%20gain%20Publications/Market%20Concentration%20in%20Selected%20Agricultural%20and%20Food%20Subsectors_Mexico_Mexico_5-25-2011.pdf (accessed on 14 October 2017).
- Cavallotti, B. Ganadería bovina de carne y leche. Problemática y alternativas. El Cotid. 2014, 188, 95–102. (In Spanish) [Google Scholar]
- García, E. Modificaciones al Sistema de Clasificación Climática de Köppen; Serie de libros No. 6; Instituto de Geografía de la Universidad Autónoma de México: Mexico city, Mexico, 2004; p. 90. (In Spanish) [Google Scholar]
- SEPLAN. Agenda Estadística de Chiapas; Secretaría de Planeación; Gobierno del estado de Chiapas: Tuxtla Gutierrez, Mexico, 2000. (In Spanish)
- INE. Programa de Manejo de la Reserva de la Biosfera La Sepultura; Instituto Nacional de Ecología: Mexico city, Mexico, 1999; p. 249. (In Spanish)
- DFID. Sustainable Livelihoods Guidance Sheets; Emergency Nutrition Network (ENN); British Department for International Development: Oxford, UK, 1999.
- Chambers, R.; Conway, G.R. Sustainable Rural Livelihoods: Practical Concepts for the 21st Century; Discussion Paper 296; Institute of Development Studies: Brighton, UK, 1992. [Google Scholar]
- Adato, M.; Meizen-Dick, R. Assessing the Impact of Agricultural Research on Poverty Using the Sustainable Livelihoods Framework; FCND Discussion Paper 128, and EPTD Discussion Paper 89; International Food Policy Research Institute: Washington, DC, USA, 2002; p. 57. [Google Scholar]
- Morse, S.; McNamara, N. Sustainable Livelihood Approach: A Critique of Theory and Practice; Springer Science & Business Media: Dordrecht, The Netherlands, 2013. [Google Scholar]
- Gillham, B. Research Interviewing: The Range of Techniques; McGraw Hill Education: Berkshire, UK, 2005. [Google Scholar]
- Vallentine, J.F. Grazing Management; Academic Press Inc.: San Diego, CA, USA, 1990; pp. 302–308. [Google Scholar]
- Campbell, B.; Sayer, J.A.; Frost, P.; Vermeulen, S.; Ruiz Perez, M.; Cunningham, A.; Prabhu, R. Assessing the performance of natural resource systems. Conserv. Ecol. 2001, 5, 22. [Google Scholar] [CrossRef]
- Pouliotte, J.; Smit, B.; Westerhoff, L. Adaptation and development: Livelihoods and climate change in Subarnabad, Bangladesh. Clim. Dev. 2009, 1, 31–46. [Google Scholar] [CrossRef]
- Uy, N.; Takeuchi, Y.; Shaw, R. Local adaptation for livelihood resilience in Albay, Philippines. Environ. Hazards 2011, 19, 139–153. [Google Scholar] [CrossRef]
- McDowell, J.Z.; Hess, J. Accessing adaptation: Multiple stressors on livelihoods in the Bolivian Highlands under a changing climate. Glob. Environ. Chang. 2012, 22, 342–352. [Google Scholar] [CrossRef]
- Wright, H.; Kristjanson, P.; Bhatta, G. Understanding Adaptive Capacity: Sustainable Livelihoods and Food Security in Coastal Bangladesh; CCAFS Working Paper No. 32; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Copenhagen, Denmark, 2012; p. 30. [Google Scholar]
- Jacobs, B.; Nelson, R.; Kuruppu, N.; Leith, P. An Adaptive Capacity Guidebook: Assessing, Building and Evaluating the Capacity of Communities to Adapt in a Changing Climate; Southern Slopes Climate Change Adaptation Research Partnership (SCARP), University of Technology Sydney and University of Tasmania: Hobart, Tasmania, 2015; p. 20. [Google Scholar]
- Quand, A. Measuring livelihood resilience: The Household Livelihood Resilience Approach (HLRA). World Dev. 2018, 107, 253–263. [Google Scholar] [CrossRef]
- Vides, E. Interacción Entre Herbáceas y Gliricidia Sepium Bajo Diferentes Tipos de Fertilización y Prácticas de Manejo. Master’s Thesis, El Colegio de La Frontera Sur, Chiapas, Mexico, 2011. (In Spanish). [Google Scholar]
- SLE. Results of Soil Analysis. Soil Laboratory of El Colegio de La Frontera Sur (SLE); SLE: San Cristóbal de Las Casas, Mexico, 2019.
- Davis, B.; Winters, P.; Carletto, G.; Covarrubias, K.; Quiñones, E.J.; Zezza, A.; Stamoulis, K.; Azzarri, C.; DiGiuseppe, S. A cross-country comparison of rural income generating activities. World Dev. 2010, 38, 48–63. [Google Scholar] [CrossRef]
- Abdul-Razak, M.; Kruse, S. The adaptive capacity of smallholder farmers to climate change in the Northern Region of Ghana. Clim. Risk Manag. 2017, 17, 104–122. [Google Scholar]
- Defiesta, G.D.; Rapera, C.L. Measuring adaptive capacity of farmers to climate change and variability: Application of a composite index to an agricultural community in the Philippines. J. Environ. Sci. Manag. 2014, 17, 48–62. [Google Scholar]
- Berkes, F.; Ross, H. Community resilience: Toward an integrated approach. Soc. Nat. Resour. 2013, 26. [Google Scholar] [CrossRef]
- Wall, E.; Marzall, K. Adaptive capacity for climate change in Canadian rural communities. Local Environ. 2006, 11, 373–397. [Google Scholar] [CrossRef]
- Reid, P.; Vogel, C. Living and responding to multiple stressors in South Africa—glimpses from KwaZulu-Natal. Glob. Environ. Chang. 2006, 16, 195–206. [Google Scholar] [CrossRef]
- García-Barrios, L.; Galván-Miyoshi, Y.M.; Valdivieso-Pérez, I.A.; Masera, O.R.; Bocco, G.; Vandermeer, J. Neotropical forest conservation, agricultural intensification, and rural out-migration: The Mexican experience. BioScience 2009, 59, 863–873. [Google Scholar] [CrossRef]
- Speelman, E.; Groota, J.C.J.; Garcia-Barrios, L.; Kokc, K.; van Keulend, H.; Tittonella, P. From coping to adaptation to economic and institutional change. Trajectories of change in land-use management and social organization in a Biosphere Reserve community, Mexico. Land Use Policy 2014, 41, 31–44. [Google Scholar] [CrossRef]
- Abreu, M.; Grinevich, V.; Kitson, M.; Savona, M. Policies to enhance the ‘hidden innovation’ in services: Evidence and lessons from the UK, Service. Ind. J. 2008, 1, 99–118. [Google Scholar] [CrossRef]
- IPCC. Climate change 2013: The physical science basis. In Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Jarvis, A.; Lane, A.; Hijmans, J. The effect of climate change on crop wild relatives. Agric. Ecosyst. Environ. 2008, 126, 13–23. [Google Scholar] [CrossRef]
- Murgueitio, R.E.; Ibrahim, M. Ganadería y medio ambiente en América Latina. In Ganadería del Futuro; Murgueitio, E., Cuartas-Cardona, C.A., Naranjo-Ramírez, J.F., Eds.; Fundacion CIPAV: Cali, Colombia, 2008; pp. 19–39. (In Spanish) [Google Scholar]
- Alonso, J. Los sistemas silvopastoriles y su contribución al medio ambiente. Rev. Cuba. Cien. Agric. 2011, 45, 107–115. [Google Scholar]
- Ibrahim, M.; Mora, J. Potencialidades de los sistemas silvopastoriles para la generación de servicios ambientales. In Potencialidades de los Sistemas Silvopastoriles para la Generación de Servicios Ambientales; Ibrahim, M., Mora, J., Rosales, M., Eds.; Centro Agronómico Tropical de Investigación y Enseñanza: Turrialba, Costa Rica, 2006; pp. 10–22. (In Spanish) [Google Scholar]
- Murgueitio, R.E.; Chará, O.; Barahona, J.; Rolando, R.; Cuartas, C.C.; Naranjo, R.J. Los Sistemas Silvopastoriles intensivos (SSPi), herramienta de mitigación y adaptación al cambio climático. Trop. Subtrop. Agroecosyt. 2014, 17, 501–507. [Google Scholar]
- Pagiola, S.; Ríos, A.; Arcenas, A. Can the poor participate in payments for environmental services? Lessons from the Silvopastoral project in Nicaragua. Environ. Dev. Econ. 2008, 13, 299–325. [Google Scholar] [CrossRef]
- Bodin, Ö.; Crona, B.I. The role of social networks in natural resource governance: What relational patterns make a difference? Glob. Environ. Chang. 2009, 19, 366–374. [Google Scholar] [CrossRef]
- Dedieu, B. Adaptación de los sistemas ganaderos e incertidumbres en el futuro. In Adaptación y Transformaciones de las Agriculturas Pampeanas a Inicios del Siglo XXI, 1st ed.; Gasselin, P., Cloquell, S., Mosciaro, M., Eds.; Fundación CICCUS: Ciudad Autónoma de Buenos Aires, Argentina, 2013; Volume 1, pp. 263–280. (In Spanish) [Google Scholar]
- Delgadillo-Puga, C.; Sánchez-Muñoz, B.; Nahed-Toral, J.; Cuchillo-Hilario, M.; Díaz-Martínez, M.; Solis-Zabaleta, R.; Reyes-Hernández, A.; Castillo-Domíguez, R.M. Fatty acid content, health and risk indices, physicochemical composition, and somatic cell counts of milk from organic and conventional farming systems in tropical south-eastern Mexico. Trop. Anim. Health Prod. 2014, 46, 883–888. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Fox, J.; Haight, L. La política agrícola mexicana: Metas múltiples e intereses en conflicto. In Subsidios para la Desigualdad, las Políticas Públicas en México a Partir del Libre Comercio, 1st ed.; Fox, J., Haight, L., Eds.; Woodrow Wilson International Center for Scholars: Mexico city, Mexico, 2010; Volume 1, pp. 9–53. (In Spanish) [Google Scholar]
Frailesca Region | |||
---|---|---|---|
Highlands | Valley | ||
Indicators | Los Angeles | Calzada Larga | Holistic Farmer |
Total land surface, ha | 58.3 (±8.19) | 16.3 (±1.7) | 112.7 (±17.4) |
Grazing surface, ha | 45.9 (±6.5) | 13.9 (±12.5) | 92.1 (±1.3) |
Total animal units *, AU | 28.9 (±3.2) | 31.2 (±3.1) | 180.4 (±28.1) |
Stocking rate, AU/ha | 0.8 (±0.06) | 2.6 (±0.2) | 2.1 (±0.3) |
Cattle production system, % | |||
Sell calf after weaning | 57.9 | 16.7 | 6.5 |
Dual purpose | 42.1 | 83.3 | 93.5 |
Calf produced/ha, num. | 0.3 (±0.02) | 1.0 (±0.1) | 0.7 (±0.08) |
Milk produced/cow per year, l | 180.0 (±43.2) | 1844.8 (±137.9) | 2059.1 (±129.1) |
Milk produced/ha per year, l | 72.7 (±15.9) | 2970.6 (±308.3) | 2117.1 (±263.0) |
Net margin/cow per year, MX $ | 1735.6 (±278.7) | 3270.8 (±269.4) | 7649.1 (±1881.0) |
Net margin/ha per year, MX $ | 716.7 (±69.3) | 5340.8 (±556.1) | 8559.1 (±2650.0) |
Capitals | Criteria | Variables |
---|---|---|
Natural capital | Surface area and land characteristics (amount of flat and sloped land); presence of forest patches on the farm as indicator of agroecosystem health | Total surface area (ha); flat surface area (ha); forested surface area (ha) |
Physical capital | Amount of cattle, infrastructure, and machinery and other work equipment owned | Total animal units (AU); possession of machinery, non-mechanized equipment, and infrastructure (% of maximum possessed |
Financial capital | Income from agriculture and wage labor | Number of agricultural income sources; total income (MX $) |
Social capital | Membership in farmers’ organizations, which impact communities’ economic and social processes; employment generated on the farm for family members | Number of organizations to which the farm belongs; % of farmers from each case study that belong to at least one organizations; number of family members working on the farm |
Human capital | Formal educational level (elementary school on); experience in and knowledge of cattle raising; access to technical assistance and training | Farmers’ formal education level (years); years raising cattle; % of farmers from each case study with some level of technical assistance and training |
Farm | Total Surface Area (ha) | Standardized Percentage Values ** of Total Surface Area |
---|---|---|
1 | 32 | 59.3 |
2 | 27 | 50 |
3 | 54 * | 100 |
4 | 40 | 74.1 |
… | … | … |
75 | 36 | 66.7 |
Frailesca Region | ||||
---|---|---|---|---|
Highlands | Valley | |||
Los Angeles | Calzada Larga | Holistic Farms | F; p-Value | |
Capitals | n = 38 | n = 31 | n = 6 | |
Natural capital | ||||
Total surface area (ha) | 58.3 b (±8.1) | 16.3 c (±1.7) | 112.7 a (±17.4) | 20.5; 0.0001 |
Flat surface area (ha) | 1.6 c (±0.3) | 9.7 b (±1.0) | 95.2 a (±17.3) | 161.2; 0.0001 |
Forested surface area (ha) | 5.4 (±3.0) | 0.6 (±0.3) | 15 (±4.1) | 3.0; NS |
Physical capital | ||||
Total animal units (AU) | 28.9 b (±3.3) | 31.2 b (±3.1) | 180.4 a (±28.1) | 94.1; 0.0001 |
Possession of non-mechanized equipment (% of maximum possessed) | 6.5 c (±1.0) | 19.0 b (±4.3) | 88.7 a (±8.6) | 58.8; 0.0001 |
Possession of infrastructure (% of maximum possessed) | 6.2 c (±1.0) | 19.6 b (±3.4) | 83.3 a (±4.6) | 84.5; 0.0001 |
Possession of machinery (% of maximum possessed) | 10.3 b (±3.4) | 14.8 b (±4.3) | 98.3 a (±1.6) | 43.7; 0.0001 |
Financial capital | ||||
Diversity of agricultural income sources (num. income sources) | 3.2 a (±0.2) | 1.4 b (±0.1) | 1.3 b (±0.2) | 35.6; 0.0001 |
Total income (MX $) | 113,086 c (±10,816) | 244,138 b (±32,739) | 1,529,718 a (±413,185) | 60.0; 0.0001 |
Social capital | ||||
Per-farm membership in farmers’ organizations (num. organizations) | 1.13 a (±0.077) | 0.22 b (±0.076) | 1.16 a (±0.16) | 37.2; 0.0001 |
Farmers/community belonging to farmers’ organizations (%) | 92.1 a (±4,4) | 22.6 b (±7.6) | 100 a (±0.0) | 40.0; 0.0001 |
Human capital | ||||
Family members (num.) | 4.9 (±0.3) | 4.0 (±0.3) | 4.5 (±0.6) | 2.50; N.S |
Family labor (num. family members) | 1.8 a (±0.2) | 1.2 b (±0.1) | 2.2 a (±0.3) | 5.8; 0.001 |
Farmer’s formal education level (years) | 4.2 b (±0.6) | 3.5 b (±0.7) | 12.7 a (±0.9) | 16.3; 0.0001 |
Time raising cattle (years) | 15.4 b (±1.40) | 15.9 b (±1.11) | 31.8 a (±3.70) | 12.1; 0.0001 |
Farmers that have received some technical assistance and training (% who participate) | 31.6 b (±7.64) | 12.9 b (±6.12) | 100.0 a (±0.0) | 11.8; 0.0001 |
Frailesca Region | ||||
---|---|---|---|---|
Highlands | Valley | |||
Los Angeles | Calzada Larga | Holistic Farms | F; p-Value | |
Strategies | n = 38 | n = 31 | n = 6 | |
Income from staple foods | 21,207 a | 22,995 a | 0.0 b | 8.2; 0.0001 |
Income from shade coffee | 3516 a | 0.0 b | 0.0 b | 1.5; NS |
Income from cattle raising | 45,401 c | 202,116 b | 1,248,382 a | 53.7; 0.0001 |
Subtotal of agricultural income | 70,124 c | 225,111 b | 1,248,382 a | 51.2; 0.0001 |
Income from non-agricultural labor | 11,015 b | 1529 b | 156,667 a | 11.1; 0.0001 |
Income from welfare subsidies | 4967 a | 4280 a | 0.0 b | 7.7;0.0001 |
Income from agricultural subsidies | 18,375 b | 8883 c | 33,003 a | 15.9; 0.0001 |
Income from loans | 1000 b | 4335 b | 91,666 a | 14.7; 0.0001 |
Income from remittances | 7605 a | 0.0 b | 0.0 b | 2.6; NS |
Subtotal of non-agricultural income | 42,963 b | 19,027 b | 281,336 a | 14.3; 0.0001 |
Total Income | 113,087 b | 244,138 b | 1,529,718 a | 60.0;0.0001 |
Per capita income | 26,420 c | 71,488 b | 478,417 a |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar-Jiménez, J.R.; Nahed-Toral, J.; Parra-Vázquez, M.R.; Guevara-Hernández, F.; Pat-Fernández, L.A. Adaptability of Cattle-Raising to Multiple Stressors in the Dry Tropics of Chiapas, Mexico. Sustainability 2019, 11, 1955. https://doi.org/10.3390/su11071955
Aguilar-Jiménez JR, Nahed-Toral J, Parra-Vázquez MR, Guevara-Hernández F, Pat-Fernández LA. Adaptability of Cattle-Raising to Multiple Stressors in the Dry Tropics of Chiapas, Mexico. Sustainability. 2019; 11(7):1955. https://doi.org/10.3390/su11071955
Chicago/Turabian StyleAguilar-Jiménez, José Roberto, José Nahed-Toral, Manuel Roberto Parra-Vázquez, Francisco Guevara-Hernández, and Lucio Alberto Pat-Fernández. 2019. "Adaptability of Cattle-Raising to Multiple Stressors in the Dry Tropics of Chiapas, Mexico" Sustainability 11, no. 7: 1955. https://doi.org/10.3390/su11071955
APA StyleAguilar-Jiménez, J. R., Nahed-Toral, J., Parra-Vázquez, M. R., Guevara-Hernández, F., & Pat-Fernández, L. A. (2019). Adaptability of Cattle-Raising to Multiple Stressors in the Dry Tropics of Chiapas, Mexico. Sustainability, 11(7), 1955. https://doi.org/10.3390/su11071955