Investigation on the Possibility of Increasing the Environmental Safety and Fuel Efficiency of Vehicles by Means of Gasoline Nano-Additive
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Effect of the Additive on the Surface Tension and Saturated Vapor Pressure
3.2. Influence of the Additive on the Gasoline Specific Consumption
3.3. Effect of the Additive on Acoustic Oscillations in the Engine
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- BP Energy Outlook 2018. Available online: https://www.bp.com/en/global/corporate/energy-economics/energy-outlook.html (accessed on 7 January 2019).
- Yambyshev, F.D.; Shigabutdinov, R.M. Investigating the pollution of the atmosphere by motor transport. Int. J. Eng. Technol. 2018, 7, 231–234. [Google Scholar] [CrossRef]
- Magaril, E. Improvement of the environmental and operational characteristics of vehicles through decreasing the motor fuel density. Environ. Sci. Pollut. Res. 2016, 23, 6793–6802. [Google Scholar] [CrossRef] [PubMed]
- Schiavon, M.; Redivo, M.; Antonacci, G.; Rada, E.C.; Ragazzi, M.; Zardi, D.; Giovannini, L. Assessing the air quality impact of nitrogen oxides and benzene from road traffic and domestic heating and the associated cancer risk in an urban area of Verona (Italy). Atmos. Environ. 2015, 120, 234–243. [Google Scholar] [CrossRef]
- Istrate, I.A.; Oprea, T.; Rada, E.C.; Torretta, V. Noise and air pollution from urban traffic. WIT Trans. Ecol. Environ. 2014, 191, 1381–1389. [Google Scholar] [CrossRef]
- Huang, Y.; Surawski, N.C.; Organ, B.; Zhou, J.L.; Tang, O.H.H.; Chan, E.F.C. Fuel consumption and emissions performance under real driving: Comparison between hybrid and conventional vehicles. Sci. Total Environ. 2019, 659, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Hong, G.; Huang, R. Investigation to charge cooling effect and combustion characteristics of ethanol direct injection in a gasoline port injection engine. Appl. Energy 2015, 160, 244–254. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Hong, G.; Huang, R. Numerical investigation to the dual-fuel spray combustion process in an ethanol direct injection plus gasoline port injection (EDI+GPI) engine. Energy Convers. Manag. 2015, 92, 275–286. [Google Scholar] [CrossRef] [Green Version]
- Shin, L.; Lim, T.; Kim, M.Y.; Choi, J.Y. Can next-generation vehicles sustainably survive in the automobile market? Evidence from ex-ante market simulation and segmentation. Sustainability 2018, 10, 607. [Google Scholar] [CrossRef]
- Gibbs, L.; Anderson, B.; Barnes, K.; Engeler, G.; Freel, J.; Horn, J.; Ingham, M.; Kohler, D.; Lesnini, D.; MacArthur, R.; et al. Motor Gasolines Technical Review (FTR-1); Chevron Corporation: San Ramon, CA, USA, 2009. [Google Scholar]
- Daehn, G.S. Sustainable design and manufacture of lightweight vehicle structures. In Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance. Towards Zero Carbon Transportation; Folkson, R., Ed.; Woodhead Publishing Ltd.: Cambridge, UK, 2014; pp. 433–461. [Google Scholar]
- Priester, P.; Miramontes, M.; Wulfhorst, G. A generic code of urban mobility: How can cities drive future sustainable development? Transp. Res. Procedia 2014, 4, 90–102. [Google Scholar] [CrossRef]
- Datla, S.; Sahub, P.; Roh, H.; Sharma, S. a comprehensive analysis of the association of highway traffic with winter weather conditions. Procedia Soc. Behav. Sci. 2013, 104, 497–506. [Google Scholar] [CrossRef]
- Shen, Y.; Zeng, Z.; Wu, Z. Dynamic vehicle scheduling based on HTN. Chin. Control Conf. 2017, 8027828, 3066–3071. [Google Scholar] [CrossRef]
- Matani, A.G. Controlling air pollutions with euro-VI fuels. Indian J. Environ. Prot. 2018, 38, 601–605. [Google Scholar]
- Worldwide Fuel Charter. Available online: http://www.oica.net/worldwide-fuels-charter/ (accessed on 7 January 2019).
- Nurafiatin, L. Regulation vs. Field Data: Managing Fuel Quality. SAE Tech. Pap. 2019. [Google Scholar] [CrossRef]
- Silajdzic, S.; Mehic, E. Do environmental taxes pay off? the impact of energy and transport taxes on CO2 emissions in transition economies. South East Eur. J. Econ. Bus. 2018, 13, 126–143. [Google Scholar] [CrossRef]
- Lam, A.; Lee, S.; Mercure, J.-F.; Cho, Y.; Lin, C.H.; Pollitt, H.; Chewpreecha, U.; Billington, S. Policies and predictions for a low-carbon transition by 2050 in passenger vehicles in East Asia: Based on an analysis using the E3ME-FTT model. Sustainability 2018, 10, 1612. [Google Scholar] [CrossRef]
- Mayburov, I.; Leontyeva, Y. Fiscal instruments for regulating the sustainable development of urban transport systems in Russia. IOP Conf. Ser. Earth Environ. Sci. 2017, 72, 012016. [Google Scholar] [CrossRef]
- Mayburov, I.; Leontyeva, Y. Transport tax in Russia as a promising tool for the reduction of airborne emissions and the development of the road network. WIT Trans. Ecol. Environ. 2015, 198, 391–401. [Google Scholar] [CrossRef]
- Koupal, J.; Palacios, C. Impact of new fuel specifications on vehicle emissions in Mexico. Atmos. Environ. 2019, 41–49. [Google Scholar] [CrossRef]
- Han, J.; Forman, G.S.; Elgowainy, A.; Cai, H.; Wang, M.; DiVita, V.B. A comparative assessment of resource efficiency in petroleum refining. Fuel 2015, 157, 292–298. [Google Scholar] [CrossRef] [Green Version]
- Li, D.D. Crucial technologies supporting future development of petroleum refining industry. Chin. J. Catal. 2013, 34, 48–60. [Google Scholar] [CrossRef]
- Priyadarshi, D.; Paul, K.K.; Pradhan, S. Impacts of biodiesel, fuel additive, and injection pressure on engine emission and performance. J. Energy Eng. 2019, 145, 04019006. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, W.; Zhao, L. Combustion mechanisms and kinetics of fuel additives: A reaxff molecular simulation. Energy Fuels 2018, 32, 11852–11863. [Google Scholar] [CrossRef]
- Magaril, E.; Magaril, R. Fuel quality: Challenges to the sustainable development of automobile transport and approach to solution. E3S Web Conf. 2016, 6, 03001. [Google Scholar] [CrossRef]
- Magaril, E.; Magaril, R. Improving the environmental and performance characteristics of vehicles by introducing the surfactant additive into gasoline. Environ. Sci. Pollut. Res. 2016, 23, 17049–17057. [Google Scholar] [CrossRef]
- Srivastava, S.P.; Hancsók, J. Fuels and Fuel-Additives; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2014. [Google Scholar]
- Danilov, A.M. Development and use of fuel additives during 2006–2010. Chem. Technol. Fuels Oils 2012, 47, 470–484. [Google Scholar] [CrossRef]
- Sahoo, R.R.; Jain, A. Experimental analysis of nanofuel additives with magnetic fuel conditioning for diesel engine performance and emissions. Fuel 2019, 236, 365–372. [Google Scholar] [CrossRef]
- Al-Kayiem, H.H.; Wahhab, H.A.A.; Magaril, E.; Aziz, A.R.A. Performance and emissions investigation of a single cylinder diesel engine using enhanced blend biodiesel by nanoparticles. AIP Conf. Proc. 2018, 2035, 020008. [Google Scholar] [CrossRef]
- Yang, W.M.; An, H.; Chou, S.K.; Chua, K.J.; Mohan, B.; Sivasankaralingam, V.; Raman, V.; Maghbouli, A.; Li, J. Impact of emulsion fuel with nano-organic additives on the performance of diesel engine. Appl. Energy 2013, 112, 1206–1212. [Google Scholar] [CrossRef]
- Magaril, E. Carbon-free gasoline engine operation. Int. J. Sustain. Dev. Plan. 2015, 10, 100–108. [Google Scholar] [CrossRef] [Green Version]
- Magaril, E. The influence of carbonization elimination on the environmental safety and efficiency of vehicle operation. Int. J. Sustain. Dev. Plan. 2013, 8, 231–245. [Google Scholar] [CrossRef] [Green Version]
- Magaril, E.; Magaril, R. Impact of surfactants in micro concentrations on certain properties of organic liquids as a basis for improving some oil-and-gas industry processes and properties of gasoline. Colloids Surf. A Physicochem. Eng. Asp. 2017, 529, 733–738. [Google Scholar] [CrossRef]
- Zhu, L.; Chen, J.; Liu, Y.; Geng, R.; Yu, J. Experimental analysis of the evaporation process for gasoline. J. Loss Prev. Process Ind. 2012, 25, 916–922. [Google Scholar] [CrossRef]
- Huang, W.; Bai, J.; Zhao, S.; Lv, A. Investigation of oil vapor emission and its evaluation methods. J. Loss Prev. Process Ind. 2011, 24, 178–186. [Google Scholar] [CrossRef]
- Magaril, E.R.; Magaril, R.Z.; Bamburov, V.G. Specific features of combustion in gasoline-driven internal combustion engines. Combust. Explos. Shock Waves 2014, 50, 75–79. [Google Scholar] [CrossRef]
- Nagao, M. Mechanism of combustion chamber deposit interference and effect of gasoline additives on CCD formation. SAE Pap. 1995, 950741. [Google Scholar] [CrossRef]
- Bitting, W.H. Combustion chamber deposits: How We got here and why it’s important to develop a macro viewpoint. ACS Div. Pet. Chem. Inc. Prepr. 1996, 41, 301–303. [Google Scholar]
- Babisch, W.; Swart, W.; Houthuijs, D.; Selander, J.; Bluhm, G.; Pershagen, G.; Dimakopoulou, K.; Haralabidis, A.S.; Katsouyanni, K.; Davou, E.; et al. Exposure modifiers of the relationships of transportation noise with high blood pressure and noise annoyance. J. Acoust. Soc. Am. 2012, 132, 3788–3808. [Google Scholar] [CrossRef]
- Sørensen, M.; Lühdorf, P.; Ketzel, M.; Andersen, Z.J.; Tjønneland, A.; Overvad, K.; Raaschou-Nielsen, O. Combined effects of road traffic noise and ambient air pollution in relation to risk for stroke? Environ. Res. 2014, 133, 49–55. [Google Scholar] [CrossRef]
Variable to be Measured | Equipment |
---|---|
Surface tension | Tensiometer DVT50, KRUSS |
Reid vapor pressure (RVP) | Koehler K11500 |
Fuel consumption: bench tests | four-stroke four-cylinder engine ZMZ-4062.10 |
Fuel consumption: road tests | cars Lada Priora, Toyota Corolla Axio, Ford Focus 1.6 MT Ultra Comfort |
Acoustic vibrations | Brűel & Kjӕr noise audiometer (Denmark) 2226 |
Fuel | Gasoline Specific Consumption, l/h | Change, % |
---|---|---|
Gasoline without the additive | 3.43 | - |
Gasoline with the additive (10 ppm) | 3.35 | 2.3 |
Gasoline with the additive (18 ppm) | 3.28 | 4.4 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magaril, E.; Magaril, R.; Al-Kayiem, H.H.; Skvortsova, E.; Anisimov, I.; Rada, E.C. Investigation on the Possibility of Increasing the Environmental Safety and Fuel Efficiency of Vehicles by Means of Gasoline Nano-Additive. Sustainability 2019, 11, 2165. https://doi.org/10.3390/su11072165
Magaril E, Magaril R, Al-Kayiem HH, Skvortsova E, Anisimov I, Rada EC. Investigation on the Possibility of Increasing the Environmental Safety and Fuel Efficiency of Vehicles by Means of Gasoline Nano-Additive. Sustainability. 2019; 11(7):2165. https://doi.org/10.3390/su11072165
Chicago/Turabian StyleMagaril, Elena, Romen Magaril, Hussain H. Al-Kayiem, Elena Skvortsova, Ilya Anisimov, and Elena Cristina Rada. 2019. "Investigation on the Possibility of Increasing the Environmental Safety and Fuel Efficiency of Vehicles by Means of Gasoline Nano-Additive" Sustainability 11, no. 7: 2165. https://doi.org/10.3390/su11072165
APA StyleMagaril, E., Magaril, R., Al-Kayiem, H. H., Skvortsova, E., Anisimov, I., & Rada, E. C. (2019). Investigation on the Possibility of Increasing the Environmental Safety and Fuel Efficiency of Vehicles by Means of Gasoline Nano-Additive. Sustainability, 11(7), 2165. https://doi.org/10.3390/su11072165