Diagnosing Phosphorus Limitation in Subtropical Forests in China under Climate Warming
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Atmosphere–Vegetation Interaction Model (AVIM2)
2.3.2. Diagnose of Additional P Demand
2.3.3. Theil-Sen Regression
2.3.4. Field Sampling
2.3.5. Laboratory Analysis
3. Results
3.1. Spatial Pattern of NPP and NPP Trends
3.2. Changes of NPP for Different Forest Types
3.3. Spatial Pattern of Additional Accumulated Phosphorus Demand
3.4. Changes of Additional Phosphorus Demand for Different Forest Types
3.5. The Latitudinal Distribution of Additional Phosphorus Demand in Subtropical China
3.6. Observed Soil Available Phosphorus in Forest Sites
3.7. Past Phosphorus Consumptions in Forest Sites
3.8. Prediction of Future Phosphorus Limitation in Forest Sites
4. Discussion
4.1. Factors Affecting Phosphorus Limitation in Subtropical China
4.2. Comparison of Past and Future Phosphorus Limitations in Subtropical China
4.3. Comparison of Phosphorus Limitations between Low and High Mineralization Rate Scenarios
4.4. Comparison of Phosphorus Limitation with Other Studies
4.5. Limitations and Further Studies
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sistla, S.A.; Schimel, J.P. Stoichiometric flexibility as a regulator of carbon and nutrient cycling in terrestrial ecosystems under change. New Phytol. 2012, 196, 68–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Graaff, M.; Van Groenigen, K.; Six, J.; Hungate, B.K. Interactions between plant growth and soil nutrient cycling under elevated CO2: A meta-analysis. Glob. Chang. Biol. 2010, 12, 2077–2091. [Google Scholar] [CrossRef]
- Elser, J.; Bracken, M.; Cleland, E.; Gruner, D.; Harpole, W.; Hillebrand, H.; Ngai, J.; Seabloom, E.; Shurin, J.; Smith, J. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 2007, 10, 1135–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapin, F.S.I. The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst. 1980, 11, 233–260. [Google Scholar] [CrossRef]
- Aerts, R.; Chapin, F.S. The Mineral Nutrition of Wild Plants Revisited: A Re-evaluation of Processes and Patterns. Adv. Ecol. Res. 2000, 30, 1–67. [Google Scholar]
- IPCC. Climate Change 2014: Synthesis Report; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Delpierre, N.; Soudani, K.; Francois, C.; Köstner, B.; Pontailler, J.Y.; Nikinmaa, E.; Misson, L.; Aubinet, M.; Bernhofer, C.; Granier, A.; et al. Exceptional Carbon Uptake in European Forests during the Warm Spring of 2007: A Data-Model Analysis. Glob. Chang. Biol. 2009, 15, 1455–1474. [Google Scholar] [CrossRef]
- Wu, Z.; Dijkstra, P.; Koch, G.; Penuelas, J.; Hungate, B. Responses of Terrestrial Ecosystems to Temperature and Precipitation Change: A Meta-Analysis of Experimental Manipulation. Glob. Chang. Biol. 2011, 17, 927–942. [Google Scholar] [CrossRef]
- Nemani, R.R.; White, M.A.; Pierce, L.; Votava, P.; Coughlan, J.; Running, S.W. Biospheric monitoring and ecological forecasting. Am. Geophys. Union 2003, 12, 6. [Google Scholar]
- Friedlingstein, P.; Cox, P.; Betts, R.; Bopp, L.; von Bloh, W.; Brovkin, V.; Cadule, P.; Doney, S.; Eby, M.; Fung, I.; et al. Climate–Carbon Cycle Feedback Analysis: Results from the C4MIP Model Intercomparison. J. Clim. 2006, 19, 3337–3353. [Google Scholar] [CrossRef] [Green Version]
- Ito, A. A historical meta-analysis of global terrestrial net primary productivity: Are estimates converging? Glob Chang Biol. Glob. Chang. Biol. 2011, 17, 3161–3175. [Google Scholar] [CrossRef]
- Cao, M.; Prince, S.; Li, K.; Tao, B.; Small, J.; Shao, X. Response of Terrestrial Carbon Uptake to Climate Interannual Variability in China. Glob. Chang. Biol. 2003, 9, 536–546. [Google Scholar] [CrossRef]
- Fang, J.; Piao, S.; Field, C.B.; Pan, Y.; Guo, Q.; Zhou, L.; Peng, C.; Tao, S. Increasing Net Primary Production in China from 1982 to 1999. Front. Ecol. Environ. 2003, 1, 293–297. [Google Scholar] [CrossRef]
- Piao, S.; Fang, J.; Zhou, L.; Zhu, B.; Tan, K.; Tao, S. Changes in vegetation net primary productivity from 1982 to 1999 in China. Glob. Biogeochem. Cycles 2005, 19. [Google Scholar] [CrossRef]
- Gu, F.; Zhang, Y.; Huang, M.; Tao, B.; Guo, R.; Yan, C. Effects of climate warming on net primary productivity in China during 1961–2010. Ecol. Evol. 2017, 7, 6736–6746. [Google Scholar] [CrossRef]
- Ji, J.; Huang, M.; Li, K. Prediction of carbon exchanges between China terrestrial ecosystem and atmosphere in 21st century. Sci. China 2008, 51, 885–898. [Google Scholar] [CrossRef]
- Walker, T.W.; Syers, J.K. The fate of phosphorus during pedogenesis. Geoderma 1976, 15, 1–19. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Howarth, R.W. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 1991, 13, 87–115. [Google Scholar] [CrossRef]
- Vitousek, P.M. Litterfall, Nutrient Cycling, and Nutrient Limitation in Tropical Forests. Ecology 1984, 65, 285–298. [Google Scholar] [CrossRef]
- Okin, G.; Mladenov, N.; Wang, L.; Cassel, D.; Caylor, K.K.; Ringrose, S.; Macko, S.A. Spatial patterns of soil nutrients in two southern African savannas. J. Geophys. Res. Biogeosci. 2008, 113, G02011. [Google Scholar] [CrossRef]
- Mahowald, N.; Jickells, T.D.; Baker, A.R.; Artaxo, P.; Benitez-Nelson, C.R.; Bergametti, G.; Bond, T.C.; Chen, Y.; Cohen, D.D.; Herut, B. Global Distribution of Atmospheric Phosphorus Sources, Concentrations and Deposition Rates, and Anthropogenic Impacts. Glob. Biogeochem. Cycles 2008, 22, 37–42. [Google Scholar] [CrossRef]
- Wang, W.; Tang, X.; Huang, M. Forest Ecosystem Carbon Stocks in China—Dynamics and Mechanisms; Science China Press: Beijing, China, 2018. [Google Scholar]
- Huang, W.; Zhou, G.; Liu, X.; Zhang, D.; Xu, Z.; Liu, S. Effects of elevated carbon dioxide and nitrogen addition on foliar stoichiometry of nitrogen and phosphorus of five tree species in subtropical model forest ecosystems. Environ. Pollut. 2012, 168, 113–120. [Google Scholar] [CrossRef]
- Huang, W.; Zhou, G.; Liu, J.; Duan, H.; Liu, X.; Fang, X.; Zhang, D. Shifts in soil phosphorus fractions under elevated CO2 and N addition in model forest ecosystems in subtropical China. Plant Ecol. 2014, 215, 1373–1384. [Google Scholar] [CrossRef]
- Dong, W.Y.; Zhang, X.Y.; Liu, X.Y.; Fu, X.L.; Chen, F.S.; Wang, H.M.; Sun, X.M.; Wen, X.F. Responses of soil microbial communities and enzyme activities to nitrogen and phosphorus additions in Chinese fir plantations of subtropical China. Biogeosciences 2015, 12, 5537–5546. [Google Scholar] [CrossRef]
- Kou, L.; Guo, D.; Yang, H.; Gao, W.; Li, S. Growth, Morphological Traits and Mycorrhizal Colonization of Fine Roots Respond Differently to Nitrogen Addition in a Slash Pine Plantation in Subtropical China. Plant Soil 2015, 391, 207–218. [Google Scholar] [CrossRef]
- Zheng, M.; Huang, J.; Chen, H.; Wang, H.; Mo, J. Responses of Soil Acid Phosphatase and Beta-Glucosidase to Nitrogen and Phosphorus Addition in Two Subtropical Forests in Southern China. Eur. J. Soil Biol. 2015, 68, 77–84. [Google Scholar] [CrossRef]
- Wang, Y.P.; Law, R.M.; Pak, B. A global model of carbon, nitrogen and phosphorus cycles for the terrestrial biosphere. Biogeosciences 2010, 7, 2261–2282. [Google Scholar] [CrossRef] [Green Version]
- Goll, D.S.; Brovkin, V.; Parida, B.; Reick, C.H.; Kattge, J.; Reich, P.B.; Van Bodegom, P.; Niinemets, Ü. Nutrient limitation reduces land carbon uptake in simulations with a model of combined carbon, nitrogen and phosphorus cycling. Biogeosciences 2012, 9, 3547–3569. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Thornton, P.E.; Ricciuto, D.M.; Post, W.M. The role of phosphorus dynamics in tropical forests—A modeling study using CLM-CNP. Biogeosciences 2013, 11, 14439–14473. [Google Scholar] [CrossRef]
- Peñuelas, J.; Poulter, B.; Sardans, J.; Ciais, P.; Van, d.V.M.; Bopp, L.; Boucher, O.; Godderis, Y.; Hinsinger, P.; Llusia, J. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nat. Commun. 2013, 4, 2934. [Google Scholar] [CrossRef]
- Wieder, W.R.; Cleveland, C.C.; Smith, W.K.; Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nat. Geosci. 2015, 8, 441. [Google Scholar] [CrossRef]
- Sun, Y.; Peng, S.; Goll, D.S.; Ciais, P.; Guenet, B.; Guimberteau, M.; Hinsinger, P.; Janssens, I.A.; Penuelas, J.; Piao, S.; et al. Diagnosing phosphorus limitations in natural terrestrial ecosystems in carbon cycle models. Earths Future 2017, 5, 730–749. [Google Scholar] [CrossRef] [Green Version]
- Sheffield, J.; Goteti, G.; Wood, E.F. Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land Surface Modeling. J. Climate 2006, 19, 3088–3111. [Google Scholar] [CrossRef]
- Zhang, S.; Ping, G.; Huang, M. The Feature Extraction and Data Fusion of Regional Soil Textures Based on GIS Techniques. Clim. Environ. Res. 2004, 9, 65–79. [Google Scholar]
- Ji, J. A Climate-Vegetation Interaction Model: Simulating Physical and Biological Processes at the Surface. J. Biogeogr. 1995, 22, 445. [Google Scholar] [CrossRef]
- Huang, M.; Ji, J.; Li, K.; Liu, Y.; Yang, F.; Tao, B. The Ecosystem Carbon Accumulation after Conversion of Grasslands to Pine Plantations in Subtropical Red Soil of South China. Chem. Phys. Meteorol. 2007, 59, 439–448. [Google Scholar]
- Wu, S.H.; Yin, Y.H.; Zhao, D.S.; Huang, M.; Shao, X.M.; Dai, E. Impact of future climate change on terrestrial ecosystems in China. Int. J. Climatol. 2010, 30, 866–873. [Google Scholar] [CrossRef]
- Liu, W.; Su, J.; Li, S.; Zhang, Z.; Li, Z. Stoichiometry study of C, N and P in plant and soil at different successional stages of monsoon evergreen broadleaved forest in Pu’er, Yunnan Province. Acta Ecol. Sin. 2010, 30, 6581–6590. [Google Scholar]
- Lin, X.; Wen, X.; Huang, F.; Gan, X.; Zhang, W.; Huang, Y. Ecological Stoichiometry Characteristics of Seedlings of Six Tropical and Subtropical Broad-leaved Tree Species. For. Environ. Sci. 2016, 32, 10–16. [Google Scholar]
- Reed, S.C.; Townsend, A.R.; Davidson, E.A.; Cleveland, C.C. Stoichiometric patterns in foliar nutrient resorption across multiple scales. New Phytol 2012, 196, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Y.; Fang, X.; Xiang, W.; Deng, X.; Peng, C. Stoichiometric and Nutrient Resorption Characteristics of Dominant Tree Species in Subtropical Chinese Forests. Ecol. Evol. 2017, 7, 1–11. [Google Scholar] [CrossRef]
- Fan, H.; Wu, J.; Liu, W.; Yuan, Y.; Hu, L.; Cai, Q. Linkages of Plant and Soil C:N:P Stoichiometry and Their Relationships to Forest Growth in Subtropical Plantations. Plant Soil 2015, 392, 127–138. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.; Westoby, M.; Ackerly, D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.; Diemer, M.; et al. The World-Wide Leaf Economics Spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S.; Li, R.; Yan, J.; Sha, L.; Han, S. C:N:P stoichiometric characteristics of four forest types’dominant tree species in China. Chin. J. Plant Ecol. 2011, 35, 587–595. [Google Scholar]
- Li, L. C, N and P Ecological Stoichiometric Ratios among Leaves-Litter-Soil Systems in Secondary Forest of Different Degraded Stage in Middle Subtropics. Master’s Thesis, Central South University of Forestry and Technology, Changsha, China, 2017. [Google Scholar]
- Akritas, M.G.; Murphy, S.A.; Lavalley, M.P. The Theil-Sen Estimator With Doubly Censored Data and Applications to Astronomy. Publ. Am. Stat. Assoc. 1995, 90, 170–177. [Google Scholar] [CrossRef]
- Fernandes, R.; Leblanc, S.G. Parametric (modified least squares) and non-parametric (Theil–Sen) linear regressions for predicting biophysical parameters in the presence of measurement errors. Remote Sens. Environ. 2005, 95, 303–316. [Google Scholar] [CrossRef]
- Mann, H.B. Non-parametric tests against trend. Econ. J. Econ. Soc. 1945, 13, 163–171. [Google Scholar]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1975. [Google Scholar]
- Zhang, C.; Tian, H.; Liu, J.; Wang, S.; Liu, M.; Pan, S.; Shi, X. Pools and Distributions of Soil Phosphorous in China. Global Biogeochem. Cy. 2005, 19, GB1020. [Google Scholar] [CrossRef]
- Tang, X.; Wang, Y.P.; Zhou, G.; Liu, S.; Liu, S.; Zhang, Q.; Liu, J.; Yan, J. Different patterns of ecosystem carbon accumulation between a young and an old-growth subtropical forest in Southern China. Plant Ecol. 2011, 212, 1385–1395. [Google Scholar] [CrossRef]
- Olsen, S.R.; Sommers, L.E. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982. [Google Scholar]
- Piao, S.; Ciais, P.; Lomas, M.; Beer, C.; Liu, H.; Fang, J.; Friedlingstein, P.; Huang, Y.; Muraoka, H.; Son, Y.; et al. Contribution of Climate Change and Rising CO2 to Terrestrial Carbon Balance in East Asia: A Multi-Model Analysis. Global Planet. Change 2011, 75, 133–142. [Google Scholar] [CrossRef]
- Cao, J.; Yan, W.; Xiang, W.; Chen, X.; Lei, P.; Xiang, J. Characteristics of soil phosphorus in different aged stands of Chinese fir plantations in Huitong, Hunan Province. Acta Ecol. Sin. 2014, 34, 6519–6527. [Google Scholar]
- Elser, J.J.; Fagan, W.F.; Kerkhoff, A.J.; Swenson, N.G.; Enquist, B.J. Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change. New Phytol. 2010, 186, 593–608. [Google Scholar] [CrossRef]
- Yuan, Z.Y.; Chen, H.Y.H. Decoupling of nitrogen and phosphorus in terrestrial plants associated with global changes. Nat. Clim. Chang. 2015, 5, 465–469. [Google Scholar] [CrossRef]
- Hermans, C.; Hammond JPWhite, P.J.; Verbruggen, N. How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci. 2006, 11, 610–617. [Google Scholar] [CrossRef] [Green Version]
- Pizzeghello, D. Phosphorus cycle in agricultural soils. Phosphorus forms and P-sorption properties after long-term mineral and manure applications. Agric. Ecosyst. Environ. 2011, 141, 58–66. [Google Scholar] [CrossRef]
Pool | Ref | Ref | RSB | Ref | |||
---|---|---|---|---|---|---|---|
EBF | root | 433.62 (177.02–585.82) | [39,40] | 0.22 | [22] | 0.58 | [41] |
wood | 479.62 (269.02–828.16) | [39,40] | 0.72 | ||||
leaf | 431.41 (208.11–779.13) | [39,42,43,44,45,46] | 0.06 | ||||
ENF | root | 386.92 (224.84–404.80) | [39,40] | 0.19 | 0.58 | ||
wood | 726.67 (554.01-1025.48) | [39,40] | 0.73 | ||||
leaf | 568.55 (333.12–843.06) | [39,42,43,44,45,46] | 0.08 | ||||
DBF | root | 513 (410–615) | [39,40] | 0.24 | 0.46 | ||
wood | 2187 (1750–2625) | [39] | 0.70 | ||||
leaf | 622 (192–1052) | [39,42,43,44,45,46] | 0.06 |
Forest Site | ASP | |||||
---|---|---|---|---|---|---|
EBF | ENF | EBF | ENF | EBF | ENF | |
Shennongjia | 812 | 1068 | 173 (21.4) | 99 (9.3) | 17 (2.1) | 10 (0.9) |
Qian Yanzhou | 937 | 950 | 239 (25.5) | 120 (12.7) | 24 (2.6) | 12 (1.3) |
Mt. Gongga | 3432 | 1297 | 231 (6.7) | 113 (0.87) | 23 (0.7) | 11 (0.1) |
Dinghushan | 2063 | 1001 | 180 (8.7) | 86 (0.86) | 18 (0.9) | 9 (0.1) |
Forest Site | ΔT (°C) | ΔNPP | ||
---|---|---|---|---|
Shennongjia | 3.99 | 327 | 568 | 57 |
Qian Yanzhou | 3.41 | 368 | 644 | 65 |
Mt. Gongga | 2.91 | 371 | 651 | 65 |
Dinghushan | 2.32 | 381 | 668 | 67 |
Scenario | Shennongjia | Qian Yanzhou | Mt. Gongga | Dinghushan |
---|---|---|---|---|
RCP4.5 () | 32.1 | 24.7 | 12.8 | 27 |
RCP8.5 () | 62.2 | 68.4 | 32.2 | 47 |
RCP4.5 () | 3.2 | 2.5 | 1.3 | 2.7 |
RCP8.5 () | 6.3 | 6.9 | 3.3 | 4.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Huang, M.; Gu, F.; Yan, H.; Wang, S.; He, H.; Wang, Z.; Sun, X.; Xu, W.; Yang, F.; et al. Diagnosing Phosphorus Limitation in Subtropical Forests in China under Climate Warming. Sustainability 2019, 11, 2202. https://doi.org/10.3390/su11082202
Wang N, Huang M, Gu F, Yan H, Wang S, He H, Wang Z, Sun X, Xu W, Yang F, et al. Diagnosing Phosphorus Limitation in Subtropical Forests in China under Climate Warming. Sustainability. 2019; 11(8):2202. https://doi.org/10.3390/su11082202
Chicago/Turabian StyleWang, Na, Mei Huang, Fengxue Gu, Huimin Yan, Shaoqiang Wang, Honglin He, Zhaosheng Wang, Xiangyang Sun, Wenting Xu, Fengting Yang, and et al. 2019. "Diagnosing Phosphorus Limitation in Subtropical Forests in China under Climate Warming" Sustainability 11, no. 8: 2202. https://doi.org/10.3390/su11082202
APA StyleWang, N., Huang, M., Gu, F., Yan, H., Wang, S., He, H., Wang, Z., Sun, X., Xu, W., Yang, F., & Chu, G. (2019). Diagnosing Phosphorus Limitation in Subtropical Forests in China under Climate Warming. Sustainability, 11(8), 2202. https://doi.org/10.3390/su11082202