Impact of Landscape Structure on the Variation of Land Surface Temperature in Sub-Saharan Region: A Case Study of Addis Ababa using Landsat Data (1986–2016)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets and Data Pre-Processing
2.3. Land Use/Cover Mapping
2.4. Computation of LST
2.5. Urban-Rural Gradient Analysis
2.5.1. The Fraction of LULC and Urban-Rural Zone
2.5.2. LST Intensity
2.5.3. The Magnitude of the LSTI
2.6. LST Profile
2.7. Population Data
3. Results
3.1. The Spatiotemporal Distribution Pattern of the LST
3.2. Landscape Pattern and Its Changes
3.3. The Composition of the LULC and Expansion of IS
3.4. LST Behavior Pattern
4. Discussion
4.1. Urbanization and Changes in the LULC Structure
4.2. The Relationship between LST and LULC Composition
4.3. The Implication of the Results for Urban Sustainability
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations. The World’s Cities in 2018; United Nations, Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2018. [Google Scholar]
- United Nations. World Urbanization Prospects: The 2014 Revision, Highlights; United Nations, Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2015. [Google Scholar]
- United Nations. The Speed of Urbanization around the World; United Nations: New York, NY, USA, 2018; pp. 1–2. [Google Scholar]
- United Nations. Addis Ababa—Urban Profile; United Nations, Regional and Technical Cooperation Division, United Nations Human Settlements Programme (UN-HABITAT): New York, NY, USA, 2008. [Google Scholar]
- Guo, L.; Liu, R.; Men, C.; Wang, Q.; Miao, Y.; Zhang, Y. Quantifying and simulating landscape composition and pattern impacts on land surface temperature: A decadal study of the rapidly urbanizing city of Beijing, China. Sci. Total Environ. 2019, 654, 430–440. [Google Scholar] [CrossRef] [PubMed]
- Dissanayake, D.; Morimoto, T.; Murayama, Y.; Ranagalage, M.; Handayani, H.H. Impact of urban surface characteristics and socio-economic eariables on the spatial variation of land surface temperature in Lagos City, Nigeria. Sustainability 2019, 11, 25. [Google Scholar] [CrossRef]
- Feyissa, G.; Gebremariam, E. Mapping of landscape structure and forest cover change detection in the mountain chains around Addis Ababa: The case of Wechecha Mountain, Ethiopia. Remote Sens. Appl. Soc. Environ. 2018, 11, 254–264. [Google Scholar] [CrossRef]
- Staniec, M.; Nowak, H. The application of energy balance at the bare soil surface to predict annual soil temperature distribution. Energy Build. 2016, 127, 56–65. [Google Scholar] [CrossRef]
- Arsiso, B.K.; Mengistu Tsidu, G.; Stoffberg, G.H.; Tadesse, T. Influence of urbanization-driven land use/cover change on climate: The case of Addis Ababa, Ethiopia. Phys. Chem. Earth. 2018, 105, 212–223. [Google Scholar] [CrossRef]
- Munn, R.E. Descriptive Micrometeorology; Atmospheric Environment Service; Academic Press: Toronto, ON, Canada, 1966; p. 198. [Google Scholar]
- Oke, T.R. Boundary Layer Climates; Methuen and Co., Ltd.: London, UK, 1978; p. 372. [Google Scholar]
- Li, Z.-L.; Duan, S.-B. Land Surface Temperature. Compr. Remote Sens. 2018, 5, 264–283. [Google Scholar]
- Geremeskel, T.; Abera, M. The need for transformation: Local perception of climate change, vulnerability and adaptation versus ‘Humanitarian’ response in Afar Region, Ethiopia. In Climate Change Adaptation in Africa. Climate Change Management; Leal Filho, W., Belay, S., Kalangu, J., Menas, W., Munishi, P., Musiyiwa, K., Eds.; Springer: Cham, UK, 2017. [Google Scholar]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I (WGI) to the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC); Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- World Health Organization. WHO Guidance to Protect Health from Climate Change through Health Adaptation Planning; WHO, Department of Public Health Environment and Social Determinants of Health: Geneva, Switzerland, 2014. [Google Scholar]
- Feyisa, G.L.; Dons, K.; Meilby, H. Efficiency of parks in mitigating urban heat island effect: An example from Addis Ababa. Landsc. Urban Plan. 2014, 123, 87–95. [Google Scholar] [CrossRef]
- Ranagalage, M.; Estoque, R.C.; Murayama, Y. An urban heat island study of the Colombo Metropolitan Area, Sri Lanka, Based on Landsat Data (1997–2017). Isprs Int. J. Geo-Inf. 2017, 6, 189. [Google Scholar] [CrossRef]
- Ranagalage, M.; Estoque, R.C.; Handayani, H.H.; Zhang, X.; Morimoto, T.; Tadono, T.; Murayama, Y. Relation between urban volume and land surface temperature: A comparative study of planned and traditional cities in Japan. Sustainability 2018, 10, 2366. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Y.C. Dynamics of land surface temperature in response to land-use/cover change. Geogr. Res. 2011, 49, 23–36. [Google Scholar] [CrossRef]
- Handayani, H.H.; Murayama, Y.; Ranagalage, M.; Liu, F.; Dissanayake, D. Geospatial analysis of horizontal and vertical urban expansion using multi-spatial resolution data: A case study of Surabaya, Indonesia. Remote Sens. 2018, 10, 25. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, H.; Miao, C.; Ye, X.; Min, M. Linking heat source–sink landscape patterns with analysis of urban heat islands: Study on the fast-growing Zhengzhou City in Central China. Remote Sens. 2018, 10, 1268. [Google Scholar] [CrossRef]
- Li, J.; Song, C.; Cao, L.; Zhu, F.; Meng, X.; Wu, J. Impacts of landscape structure on surface urban heat islands: A case study of Shanghai, China. Remote Sens. Environ. 2011, 115, 3249–3263. [Google Scholar] [CrossRef]
- Pal, S.; Ziaul, S. Detection of land use and land cover change and land surface temperature in English Bazar urban centre. Egypt. J. Remote Sens. Sp. Sci. 2017, 20, 125–145. [Google Scholar] [CrossRef] [Green Version]
- Tarawally, M.; Xu, W.; Hou, W.; Mushore, T.D. Comparative analysis of responses of land surface temperature to long-term land use/cover changes between a coastal and Inland City: A case of Freetown and Bo Town in Sierra Leone. Remote Sens. 2018, 10, 112. [Google Scholar] [CrossRef]
- Fitts, Y.; Comby, J.; Renard, F.; Hadjiosif, A.; Alonso, L. Evaluation of the effect of urban redevelopment on surface urban heat islands. Remote Sens. 2019, 11, 299. [Google Scholar]
- Gunaalan, K.; Ranagalage, M.; Gunarathna, M.; Kumari, M.; Vithanage, M.; Srivaratharasan, T.; Saravanan, S.; Warnasuriya, T.W.S. Application of geospatial techniques for groundwater quality and availability assessment: A case study in Jaffna Peninsula, Sri Lanka. Isprs Int. J. Geo-Inf. 2018, 7, 20. [Google Scholar] [CrossRef]
- Wijesundara, N.C.; Abeysingha, N.S.; Dissanayake, D.M. GIS-based soil loss estimation using RUSLE model: A case of Kirindi Oya river basin, Sri Lanka. Model. Earth Syst. Environ. 2018, 4, 251–262. [Google Scholar] [CrossRef]
- Demissie, F.; Yeshitila, K.; Kindu, M.; Schneider, T. Land use/land cover changes and their causes in Libokemkem District of South Gonder, Ethiopia. Remote Sens. Appl. Soc. Environ. 2017, 8, 224–230. [Google Scholar] [CrossRef]
- Kindu, M.; Schneider, T.; Teketay, D.; Knoke, T. Land use/land cover change analysis using object-based classification approach in Munessa-Shashemene landscape of the ethiopian highlands. Remote Sens. 2013, 5, 2411–2435. [Google Scholar] [CrossRef]
- Dissanayake, D.; Morimoto, T.; Ranagalage, M. Accessing the soil erosion rate based on RUSLE model for sustainable land use management: A case study of the Kotmale watershed, Sri Lanka. Model. Earth Syst. Environ. 2018, 5, 291–306. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, J.; Wang, Y. Efficiency of landscape metrics characterizing urban land surface temperature. Landsc. Urban Plan. 2018, 180, 36–53. [Google Scholar] [CrossRef]
- Kifle Arsiso, B.; Mengistu Tsidu, G.; Stoffberg, G.H.; Tadesse, T. Climate change and population growth impacts on surface water supply and demand of Addis Ababa, Ethiopia. Clim. Risk Manag. 2017, 18, 21–33. [Google Scholar] [CrossRef]
- Wubneh, M. Addis Ababa, Ethiopia—Africa’s diplomatic capital. Cities 2013, 35, 255–269. [Google Scholar] [CrossRef]
- Abo-El-Wafa, H.; Yeshitela, K.; Pauleit, S. The use of urban spatial scenario design model as a strategic planning tool for Addis Ababa. Landsc. Urban Plan. 2018, 180, 308–318. [Google Scholar] [CrossRef]
- United States Geological Survey (USGS) Earth Explorer Home Page. Available online: https://earthexplorer.usgs.gov (accessed on 7 February 2019).
- United States Geological Survey (USGS) Landsat Missions: Landsat Science Products. Available online: https://www.usgs.gov/land-resources/nli/landsat/landsat-science-products (accessed on 7 February 2019).
- Ebabu, K.; Tsunekawa, A.; Haregeweyn, N.; Adgo, E.; Meshesha, D.T.; Aklog, D.; Masunaga, T.; Tsubo, M.; Sultan, D.; Fenta, A.A.; et al. Effects of land use and sustainable land management practices on runoff and soil loss in the Upper Blue Nile basin, Ethiopia. Sci. Total Environ. 2019, 648, 1462–1475. [Google Scholar] [CrossRef]
- Jin, B.; Ye, P.; Zhang, X.; Song, W.; Li, S. Object-Oriented method combined with deep convolutional neural networks for land-use-type classification of remote sensing images. J. Indian Soc. Remote Sens. 2019, 3, 1–15. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Monitoring surface urban heat island formation in a tropical mountain city using Landsat data (1987–2015). Isprs J. Photogramm. Remote Sens. 2017, 133, 18–29. [Google Scholar] [CrossRef]
- Myint, S.W.; Brazel, A.; Okin, G.; Buyantuyev, A. Combined effects of impervious surface and vegetation cover on air temperature variations in a rapidly expanding Desert City. GIScience Remote Sens. 2010, 47, 301–320. [Google Scholar] [CrossRef]
- Ranagalage, M.; Dissanayake, D.; Murayama, Y.; Zhang, X.; Estoque, R.C.; Perera, E.; Morimoto, T. Quantifying surface urban heat island formation in the World Heritage Tropical Mountain City of Sri Lanka. Isprs Int. J. Geo-Inf. 2018, 7, 341. [Google Scholar] [CrossRef]
- Stehman, S.V. Sampling designs for accuracy assessment of land cover. Int. J. Remote Sens. 2009, 30, 5243–5272. [Google Scholar] [CrossRef]
- World Population Data Website. Available online: https://www.worldpop.org/geodata/summary?id=2880 (accessed on 7 February 2019).
- United Nations—Population Division. World Population Prospects 2017. Available online: https://population.un.org/wpp/ (accessed on 17 February 2019).
- Tatem, A.J. WorldPop, open data for spatial demography. Sci. Data 2017, 4, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Wei, C.; Taubenböck, H.; Blaschke, T. Measuring urban agglomeration using a city-scale dasymetric population map: A study in the Pearl River Delta, China. Habitat Int. 2017, 59, 32–43. [Google Scholar] [CrossRef] [Green Version]
- Ye, T.; Zhao, N.; Yang, X.; Ouyang, Z.; Liu, X.; Chen, Q.; Hu, K.; Yue, W.; Qi, J.; Li, Z.; et al. Improved population mapping for China using remotely sensed and points-of-interest data within a random forests model. Sci. Total Environ. 2019, 658, 936–946. [Google Scholar] [CrossRef] [PubMed]
- Estoque, R.C.; Murayama, Y.; Akiyama, C.M. Pixel-based and object-based classifications using high- and medium-spatial-resolution imageries in the urban and suburban landscapes. Geocarto Int. 2015, 30, 1113–1129. [Google Scholar] [CrossRef]
- Ye, S.; Pontius, R.G.; Rakshit, R. A review of accuracy assessment for object-based image analysis: From per-pixel to per-polygon approaches. Isprs J. Photogramm. Remote Sens. 2018, 141, 137–147. [Google Scholar] [CrossRef]
- Bewket, W.; Abebe, S. Land-use and land-cover change and its environmental implications in a tropical highland watershed, Ethiopia. Int. J. Environ. Stud. 2013, 70, 126–139. [Google Scholar] [CrossRef]
- Melka, S.G. Ethiopia’s Data Ecosystem; United Nations, African Data Report: New York, NY, USA, 2016. [Google Scholar]
- World Bank Group. Addis Ababa, Ethiopia Enhancing Urban Resilience; World Bank Group: Washington, DC, USA, 2015. [Google Scholar]
- United Nation. Africa Review on Drought and Desertification; Economic and Social Council: New York, NY, USA, 2007. [Google Scholar]
- Manawadu, L.; Ranagalage, M. Urban Heat Islands and Vegetation Cover as a Controlling Factor. In Proceedings of the International Forestry and Environment Symposium 2013 of the Department of Forestry and Environmental Science, University of Sri Jayewardenepura, Thulhiriya, Sri Lanka, 10–11 January 2014; p. 125. [Google Scholar]
- Ranagalage, M.; Estoque, R.C.; Zhang, X.; Murayama, Y. Spatial changes of urban heat island formation in the Colombo District, Sri Lanka: Implications for sustainability planning. Sustainability 2018, 10, 1367. [Google Scholar] [CrossRef]
- Galagoda, R.U.; Jayasinghe, G.Y.; Halwatura, R.U.; Rupasinghe, H.T. The impact of urban green infrastructure as a sustainable approach towards tropical micro-climatic changes and human thermal comfort. Urban For. Urban Green. 2018, 34, 1–9. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations General Assembly: New York, NY, USA, 2015; Volume 16301, pp. 1–35. [Google Scholar]
- Lin, J.; Huang, B.; Chen, M.; Huang, Z. Modeling urban vertical growth using cellular automata-Guangzhou as a case study. Appl. Geogr. 2014, 53, 172–186. [Google Scholar] [CrossRef]
Sensor | Landsat-5 TM | Landsat-5 TM | Landsat-8 OLI/TIRS |
---|---|---|---|
Landsat Sensor ID | LT51680541986357XXX10 | LT51680542001350RSA00 | LC81680542016344LGN01 |
Temporal resolution | 23 December 1986 | 16 December 2001 | 9 December 2016 |
Spatial resolution | 30 × 30 m * (except for pan, TIR, and TIRS) | ||
Row/Path | 54/168 | ||
Time (GMT) ** | 06:59:25 | 07:19:50 | 07:40:41 |
LULC | 1986 | 2001 | 2016 | |||
---|---|---|---|---|---|---|
Area (ha.) | % | Area (ha.) | % | Area (ha.) | % | |
Bare land | 24,372.0 | 27.1 | 12,723.0 | 14.1 | 19,200.0 | 21.3 |
Built-up | 6262.3 | 7.0 | 14,033.0 | 15.6 | 30,700.0 | 34.1 |
Crop | 17,002.2 | 18.9 | 12,544.0 | 13.9 | 11,020.0 | 12.2 |
Forest | 18,406.0 | 20.5 | 20,957.0 | 23.3 | 18,713.0 | 20.8 |
Grassland | 23,721.3 | 26.4 | 29,611.0 | 32.9 | 10,228.0 | 11.4 |
Water | 236.2 | 0.3 | 132.0 | 0.1 | 139.0 | 0.2 |
Total | 90,000.0 | 100 | 90,000.0 | 100 | 90,000.0 | 100 |
LULC | Fraction Ratio | |||||
---|---|---|---|---|---|---|
1986 | 2001 | 2016 | ||||
R1 (URZ1–17) | R2 (URZ18-70) | R1 (URZ1–37) | R2 (URZ37–70) | R1 (URZ1–41) | R2 (URZ42–70) | |
BL | 5.6 | 26.8 | 6.3 | 15.4 | 6.6 | 24.0 |
IS | 59.0 | 6.1 | 54.9 | 7.5 | 70.8 | 25.5 |
GS1 | 4.0 | 23.4 | 20.0 | 24.2 | 16.4 | 25.4 |
GS2 | 31.4 | 43.7 | 18.8 | 52.9 | 6.2 | 25.1 |
Mean LST (°C) | 24.2 | 24.6 | 25.9 | 26.3 | 28.3 | 27.8 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dissanayake, D.; Morimoto, T.; Murayama, Y.; Ranagalage, M. Impact of Landscape Structure on the Variation of Land Surface Temperature in Sub-Saharan Region: A Case Study of Addis Ababa using Landsat Data (1986–2016). Sustainability 2019, 11, 2257. https://doi.org/10.3390/su11082257
Dissanayake D, Morimoto T, Murayama Y, Ranagalage M. Impact of Landscape Structure on the Variation of Land Surface Temperature in Sub-Saharan Region: A Case Study of Addis Ababa using Landsat Data (1986–2016). Sustainability. 2019; 11(8):2257. https://doi.org/10.3390/su11082257
Chicago/Turabian StyleDissanayake, DMSLB, Takehiro Morimoto, Yuji Murayama, and Manjula Ranagalage. 2019. "Impact of Landscape Structure on the Variation of Land Surface Temperature in Sub-Saharan Region: A Case Study of Addis Ababa using Landsat Data (1986–2016)" Sustainability 11, no. 8: 2257. https://doi.org/10.3390/su11082257
APA StyleDissanayake, D., Morimoto, T., Murayama, Y., & Ranagalage, M. (2019). Impact of Landscape Structure on the Variation of Land Surface Temperature in Sub-Saharan Region: A Case Study of Addis Ababa using Landsat Data (1986–2016). Sustainability, 11(8), 2257. https://doi.org/10.3390/su11082257