Severe Drought in Finland: Modeling Effects on Water Resources and Assessing Climate Change Impacts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Finland’s Water Resources and Climate
2.2. Study Area
2.3. Study Methodology
2.4. Observations and Materials Used
2.5. First Analysis Phase: Hydrological Model
- RSN = net shortwave radiation
- RLN = net longwave radiation
- RLAT = latent heat flux
- RSEN = sensible heat flux
- RP = heat content of liquid precipitation
- RG = heat exchange of the soil surface
- CO = heat deficit of the snowpack (cold content)
2.6. The Drought of 1939–1942 as a Reference Drought
2.7. Climate Scenarios
- Pmod/Tmod = the modified daily precipitation/air temperature
- Pobs/Tobs = the observed daily precipitation/air temperature
- ΔP/ΔT = the precipitation/temperature change
- sm = the monthly scaling factor
- as, bs = the coefficients of the seasonal linear transfer functions
2.8. Analysis of Drought Impact on Key Water-Use Sectors
3. Results
3.1. Hydrological Results: Impact on Surface Water and Groundwater
3.1.1. Surface Water
3.1.2. Groundwater
3.2. Climate Change Impact on Discharge and Water Levels
3.3. Impact of Severe Drought on Selected Water-Related Sectors
3.3.1. Hydropower
3.3.2. Groundwater and Water Supply
3.3.3. Other Impacts of a Severe Drought
4. Discussion
4.1. Methodological and Climate Change-Related Findings
4.2. Policy Implications
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Naumann, G.; Spinoni, J.; Vogt, J.V.; Barbosa, P. Assessment of drought damages and their uncertainties in Europe. Environ. Res. Lett. 2015, 10, 124013. [Google Scholar] [CrossRef]
- Spinoni, J.; Naumann, G.; Vogt, J.V.; Barbosa, P. The biggest drought events in Europe from 1950 to 2012. J. Hydrol. Reg. Stud. 2015, 3, 509–524. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F. Drought: Past Problems and Future Scenario; Earthscan: London, UK; Washington, DC, USA, 2011; p. 233. [Google Scholar]
- DG Environment—European Commission, Water Scarcity and Droughts; Second Interim Report; European Commission: 2007. Available online: http://ec.europa.eu/environment/water/quantity/pdf/comm_droughts/2nd_int_report.pdf (accessed on 14 April 2019).
- Gerber, N.; Mirzabaev, A.; WMO; GWP. Benefits of Action and Costs of Inaction: Drought Mitigation and Preparedness—A Literature Review; WMO and GWP: Geneva, Switzerland; Stockholm, Sweden, 2017; p. 24. [Google Scholar]
- Mohammad, A.H.; Jung, H.C.; Odeh, T.; Bhuiyan, C.; Hussein, H. Understanding the impact of droughts in the Yarmouk basin, Jordan: Monitoring droughts through meteorological and hydrological drought indices. Arab. J. Geosci. 2018, 11, 103. [Google Scholar] [CrossRef]
- Morid, S.; Smakhtin, V.; Moghaddasi, M. Comparison of seven meteorological indices for drought monitoring in Iran. Int. J. Climatol. 2006, 26, 971–985. [Google Scholar] [CrossRef]
- Silander, J.; Järvinen, E.A. Vuosien 2002–2003 Poikkeuksellisen Kuivuuden Vaikutukset [Effects of Severe Drought of 2002/2003]; Finnish Environment 731; Finnish Environment Institute: Helsinki, Finland, 2004; p. 79. [Google Scholar]
- Knutson, C.; Hayes, M.; Phillips, T. How to Reduce Drought Risk; Western Drought Coordination Council: Lincoln, NE, USA, 1998; p. 43. [Google Scholar]
- Sojamo, S.; Ahopelto, L.; Marttunen, M.; Belinskij, A.; Veijalainen, N.; Keskinen, M. Vesiturvallisuus—Mikä sen merkitys on Suomelle? Vesitalous. 2017. Available online: http://winlandtutkimus.fi/wp-content/uploads/2016/09/Sojamo-et-al.-2017_vesiturvallisuus-.pdf (accessed on 4 April 2019).
- Cook, C.; Bakker, K. Water security: Debating an emerging paradigm. Glob. Environ. Chang. 2012, 22, 94–102. [Google Scholar] [CrossRef]
- UN-Water. Water Security and the Global Water Agenda: A Un-Water Analytical Brief; United Nations University—Institute for Water, Environment and Health: Tokyo, Japan, 2013. [Google Scholar]
- Jääskeläinen, J.; Veijalainen, N.; Syri, S.; Marttunen, M.; Zakeri, B. Energy security impacts of a severe drought on the future finnish energy system. J. Environ. Manag. 2018, 217, 542–554. [Google Scholar] [CrossRef]
- European Commission. Common Implementation Strategy for the Water Framework Directive (2000/60/ec), Guidance Document No. 24: River Basin Management in a Changing Climate; European Commission: Brussels, Belgium, 2009. [Google Scholar]
- Veijalainen, N.; Korhonen, J.; Vehviläinen, B.; Koivusalo, H. Modelling and statistical analysis of catchment water balance and discharge in finland in 1951–2099 using transient climate scenarios. J. Water Clim. Chang. 2012, 3, 55–78. [Google Scholar] [CrossRef]
- Ruosteenoja, K.; Jylhä, K.; Kämäräinen, M. Climate projections for finland under the rcp forcing scenarios. Geophysica 2016, 51, 17–50. [Google Scholar]
- Jylhä, K.; Ruosteenoja, K.; Räisänen, J.; Venäläinen, A.; Tuomenvirta, H.; Ruokolainen, L.; Saku, S.; Seitola, T. Arvioita Suomen Muuttuvasta Ilmastosta Sopeutumistutkimuksia Varten; ACCLIM-Hankkeen Raportti; Ilmatieteen laitos: Helsinki, Finland, 2009; pp. 1–102. [Google Scholar]
- Hohenthal, J. Meteorologisen Kuivuuden Esiintyminen Pohjois-Euroopassa. Master’s thesis, University of Turku, Turku, Finland, 2009. [Google Scholar]
- Wong, W.K.; Beldring, S.; Engen-Skaugen, T.; Haddeland, I.; Hisdal, H. Climate change effects on spatiotemporal patterns of hydroclimatological summer droughts in norway. J. Hydrometeorol. 2011, 12, 1205–1220. [Google Scholar] [CrossRef]
- Stahl, K.; Hisdal, H.; Hannaford, J.; Tallaksen, L.; Van Lanen, H.; Sauquet, E.; Demuth, S.; Fendekova, M.; Jordar, J. Streamflow trends in europe: Evidence from a dataset of near-natural catchments. Hydrol. Earth Syst. Sci. 2010, 14, 2367–2382. [Google Scholar] [CrossRef]
- Wilson, D.; Hisdal, H.; Lawrence, D. Has streamflow changed in the nordic countries?—Recent trends and comparisons to hydrological projections. J. Hydrol. 2010, 394, 334–346. [Google Scholar] [CrossRef]
- Forzieri, G.; Feyen, L.; Rojas, R.; Flörke, M.; Wimmer, F.; Bianchi, A. Ensemble projections of future streamflow droughts in europe. Hydrol. Earth Syst. Sci. 2014, 18, 85–108. [Google Scholar] [CrossRef]
- Roudier, P.; Andersson, J.C.M.; Donnelly, C.; Feyen, L.; Greuell, W.; Ludwig, F. Projections of future floods and hydrological droughts in europe under a +2 °C global warming. Clim. Chang. 2016, 135, 341–355. [Google Scholar] [CrossRef]
- Ahopelto, L.; Veijalainen, N.; Guillaume, J.H.A.; Keskinen, M.; Marttunen, M.; Varis, O. Can there be water scarcity with abundance of water? Analyzing water stress during a severe drought in finland. Sustainability 2019, 11, 1548. [Google Scholar] [CrossRef]
- Eurostat. Water Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php/Water_statistics#Water_as_a_resource (accessed on 15 January 2019).
- Kossida, M.; Kakava, A.; Tekidou, A.; Iglesias, A.; Mimikou, M. Vulnerability to Water Scarcity and Drought in Europe; 3/2012; ETC/ICM: Prague, Czech Republic, 2012; p. 102. [Google Scholar]
- Salminen, J.M.; Veiste, P.J.; Koskiaho, J.T.; Tikkanen, S. Improving data quality, applicability and transparency of national water accounts—A case study for finland. Water Resour. Econ. 2018, 24, 25–39. [Google Scholar] [CrossRef]
- Energiateollisuus. Vesivoima. Available online: Https://energia.Fi/perustietoa_energia-alasta/energiantuotanto/sahkontuotanto/vesivoima (accessed on 27 February 2019).
- Jääskeläinen, J.J.; Höysniemi, S.; Syri, S.; Tynkkynen, V.-P. Finland’s dependence on russian energy—Mutually beneficial trade relations or an energy security threat? Sustainability 2018, 10, 3445. [Google Scholar] [CrossRef]
- Peel, M.C.; Finlayson, B.L.; Mcmahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. Discuss. 2007, 4, 439–473. [Google Scholar] [CrossRef]
- Pirinen, P.; Simola, H.; Aalto, J.; Kaukoranta, J.P.; Karlsson, P.; Ruuhela, R. Tilastoja Suomen Ilmastosta 1981–2010 (Climatological Statistics of Finland 1981–2010); Ilmtieteen laitos: Helsinki, Finland, 2012; Volume 2012. [Google Scholar]
- Korhonen, J. Suomen Vesistöjen Virtaaman ja Vedenkorkeuden Vaihtelut; Suomen ympäristökeskus: Helsinki, Finland, 2007; p. 120. [Google Scholar]
- Førland, E.J.; Allerup, P.; Dahlström, B.; Elomaa, E.; Jónsson, T.; Madsen, H.; Perälä, J.; Rissanen, P.; Vedin, H.; Vejen, F. Manual for Operational Correction of Nordic Precipitation Data.; Met.no: Oslo, Norway, 1996; p. 65. [Google Scholar]
- Taskinen, A.; Söderholm, K. Operational correction of daily precipitation measurements in Finland. Boreal Environ. Res. 2016, 21, 1–24. [Google Scholar]
- Ylhäisi, J. Sademääräsimulaatiot Ensembles-Hankkeen Alueellisissa Ilmastomalleissa. Master’s Thesis, University of Helsinki, Helsinki, Finland, 2009. [Google Scholar]
- Vehviläinen, B.; Huttunen, M.; Huttunen, I. Hydrological forecasting and real time monitoring in Finland: The watershed simulation and forecasting system (WSFS). In Proceedings of the International Conference on Innovation, Advances and Implementation of Flood Forecasting Technology, Tromsø, Norway, 17–19 October 2005. [Google Scholar]
- Vehviläinen, B. Snow Cover Models in Operational Watershed Forecasting; National board of WATERS and the Environment, Finland: Helsinki, Finland, 1992; p. 112. [Google Scholar]
- Vehviläinen, B.; Huttunen, M. Climate change and water resources in Finland. Boreal Environ. Res. 1997, 2, 3–18. [Google Scholar]
- Veijalainen, N. Estimation of Climate Change Impacts on Hydrology and Floods in Finland. Ph.D. Thesis, Aalto University, Helsinki, Finland, 2012. [Google Scholar]
- Bergström, S. Development and Application of a Conceptual Runoff Model for Scandinavian Catchments; SMHI: Norrköping, Sweden, 1976; p. 134. [Google Scholar]
- Shuttleworth, W.J. Evaporation. Chapter 4. In Handbook of Hydrology; Maidment, D.R., Ed.; McGraw-Hill: New York, NY, USA, 1992; pp. 1–53. [Google Scholar]
- Huttunen, M.; Joukainen, S.; Vehviläinen, B. Vesistömallien Kehittäminen Vuoden 1999 Tutkimusohjelman Loppuraportti; Finnish Environment Institute: Helsinki, Finland, 2001. [Google Scholar]
- Jakkila, J.; Vento, T.; Rousi, T.; Vehviläinen, B. Smos soil moisture data validation in the Aurajoki watershed, finland. Hydrol. Res. 2014, 45, 684–702. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F.; Roderick, M.L. Little change in global drought over the past 60 years. Nature 2012, 491, 435–438. [Google Scholar] [CrossRef]
- Mäkinen, R.; Orvomaa, M.; Veijalainen, N.; Huttunen, I. The climate change and groundwater regimes in Finland. In Proceedings of the 11th International Specialized Conference on Watershed & River Basin Management, Budapest, Hungary, 4–5 September 2008. [Google Scholar]
- Hooke, R.; Jeeves, T.A. Direct search solution of numerical and statistical problems. J. ACM 1961, 8, 212–229. [Google Scholar] [CrossRef]
- Kuusisto, E. Drought has also troubled Finland. In Water Cycle-Hydrological Service in Finland 1908–2008; Kuusisto, E., Ed.; Finnish Environment Institute: Hämeenlinna, Finland, 2008. [Google Scholar]
- Kuusisto, E. Droughts in Finland—Past, present and future. In Proceedings of the Hydrology Days 2004, Fort Collins, CO, USA, 10–12 March 2004. [Google Scholar]
- Seftigen, K.; Linderholm, H.W.; Drobyshev, I.; Niklasson, M. Reconstructed drought variability in southeastern Sweden since the 1650s. Int. J. Climatol. 2013, 33, 2449–2458. [Google Scholar] [CrossRef]
- Helama, S.; Lindholm, M. Droughts and rainfall in south-eastern Finland since ad 874, inferred from scots pine ring-widths. Boreal Environ. Res. 2003, 8, 171–183. [Google Scholar]
- Bye, T.; Bruvoll, A.; Anne, F.R. The Importance of Volatility in Inflow in a Deregulated Hydrodominated Power Market; Statistics Norway: Kongsvinger, Norway, 2006; p. 32. [Google Scholar]
- Arnell, N.W. The effect of climate change on hydrological regimes in europe: A continental perspective. Glob. Environ. Chang. 1999, 9, 5–23. [Google Scholar] [CrossRef]
- Andréasson, J.; Bergström, S.; Carlsson, B.; Graham, L.P.; Lindström, G. Hydrological Change—Climate Change Impact Simulations for Sweden. Ambio 2004, 33, 228–234. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Moss, R.H.; Nakicenovic, N.; O’Neill, B.C. Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategie; IPCC: Geneva, Switzerland, 2009. [Google Scholar]
- Hatva, T.; Lapinlampi, T.; Vienonen, S. Kaivon Paikka. Selvitykset ja Tutkimukset Kiinteistön Kaivon Paikan Määrittämiseksi; Suomen Ympäristökeskus: Helsinki, Finand, 2008. [Google Scholar]
- Agreement between the Republic of Finland and the Union of Soviet Socialist Republics Concerning the Regulations Governing Lake Saimaa and the Vuoksi River (Signed 26 October 1989, Entered into Force 9 October 1991) 1663 unts 325. 1991. Available online: https://treaties.un.org/doc/publication/unts/volume%201663/v1663.pdf (accessed on 24 January 2019).
- Veijalainen, N.; Jakkila, J.; Nurmi, T.; Vehviläinen, B.; Marttunen, M.; Aaltonen, J. Suomen Vesivarat ja Ilmastonmuutos—Vaikutukset ja Muutoksiin Sopeutuminen. Wateradapt-Projektin Loppuraportti; Finnish Environment Institute: Helsinki, Finland, 2012; p. 138. [Google Scholar]
- Hydrologinen Kuukausitilasto—Kartat, Kuvaajat ja Taulukot Vuodelle 2018. Available online: http://wwwi3.ymparisto.fi/i3/paasivu/FIN/2018/etusivu/etusivu.htm (accessed on 28 February 2019).
- Bye, T.; Bruvoll, A.; Aune, F.R. Inflow shortages in deregulated power markets—Reasons for concern? Energy Econ. 2008, 30, 1693–1711. [Google Scholar] [CrossRef]
- Forsman, J.; Vilén, K.; Patronen, J.; Revuelta, J.; Cobo, I. Selvitystyö Tarvittavasta Tehoreservin Määrästä Ajanjaksolle 2017–2022; Pöyry Management Consulting Oy: Vantaa, Finland, 2016; p. 41. [Google Scholar]
- NordREG. Nordic Market Report 2011: Development in the Nordic Electricity Market; NordREG: Copenhagen, Denmark, 2011; p. 62. [Google Scholar]
- Vienonen, S.; Rintala, J.; Orvomaa, M.; Santala, E.; Maunula, M. Ilmastonmuutoksen Vaikutukset ja Sopeutumistarpeet Vesihuollossa; Suomen Ympäristökeskus: Helsinki, Finland, 2012. [Google Scholar]
- ROTI. Rakennetun omaisuuden tila 2017; RIL: Helsinki, Finland, 2017; Available online: https://www.ril.fi/media/2017/2017-vaikuttaminen/roti-2017/taustat/roti-2017_painettu-raportti.pdf (accessed on 11 February 2019).
- Arosilta, A.; Liponkoski, M. Kuntien ja vesihuoltolaitosten toiminta liite 9/1 poikkeuksellisen kuivuuden 2002–2003 aikana—Kyselyn tulokset. In Vuosien 2002–2003 Poikkeuksellisen Kuivuuden Vaikutukset; Silander, J., Järvinen, E.A., Eds.; Finnish Environment Institute: Helsinki, Finland, 2004. [Google Scholar]
- SYKE. Valtakunnallinen Leväyhteenveto 2018: Helteinen Kesä toi Merialueille Poikkeuksellisen Runsaita Sinileväkukintoja, Järvillä Sinileväkausi Aikaistui. Available online: https://www.ymparisto.fi/fi-FI/Vesi/Valtakunnallinen_levayhteenveto_2018_Hel%2847750%29 (accessed on 20 February 2019).
- LUKE. Crop Production Statistics. Available online: https://stat.luke.fi/en/crop-production-statistics (accessed on 20 February 2019).
- Metla. Metsien Alttius Bioottisille Tuhoille ja Kuivuudelle. Available online: http://www.Metla.Fi/life/climforisk/webtool/#/fi/susceptibility (accessed on 3 September 2018).
- Lehner, B.; Döll, P.; Alcamo, J.; Henrichs, T.; Kaspar, F. Estimating the impact of global change on flood and drought risks in europe: A continental, integrated analysis. Clim. Chang. 2006, 75, 273–299. [Google Scholar] [CrossRef]
- Madsen, H.; Lawrence, D.; Lang, M.; Martinkova, M.; Kjeldsen, T.R. Review of trend analysis and climate change projections of extreme precipitation and floods in europe. J. Hydrol. 2014, 519, 3634–3650. [Google Scholar] [CrossRef]
- Bergström, S.; Andréasson, J.; Veijalainen, N.; Vehviläinen, B.; Einarsson, B.; Jónsson, S.; Kurpniece, L.; Kriauciuniene, J.; Meilutyte-Barauskiene, D.; Beldring, S.; et al. Modelling climate change impacts on the hydropower system. In Climate Change and Energy Systems: Impacts, Risks and Adaptation in the Nordic and Baltic Countries; Thorsteinsson, T., Björnsson, H., Eds.; Nordic Council of Ministers: Copenhagen, Denmark, 2012; Volume 502, pp. 113–146. [Google Scholar]
- Lawrence, D.; Hisdal, H. Hydrological Projections for Flooding in Norway under a Future Climate; Norwegian Water Resources and Energy Directorate: Oslo, Norway, 2011; p. 47. [Google Scholar]
- Korhonen, J. Long-Term Changes and Variability of the Winter and Spring Season Hydrological Regime in Finland. Ph.D. Thesis, University of Helsinki, Helsinki, Finland, 2019. [Google Scholar]
- Luomaranta, A.; Aalto, J.; Jylhä, K. Snow cover trends in finland over 1961–2014 based on gridded snow depth observations. Int. J. Climatol. 2019. [Google Scholar] [CrossRef]
- Mikkonen, S.; Laine, M.; Mäkelä, H.M.; Gregow, H.; Tuomenvirta, H.; Lahtinen, M.; Laaksonen, A. Trends in the average temperature in finland, 1847–2013. Stoch. Environ. Res. Risk Assess. 2015, 29, 1521–1529. [Google Scholar] [CrossRef]
- Ault, T.R.; Cole, J.E.; Overpeck, J.T.; Pederson, G.T.; Meko, D.M. Assessing the risk of persistent drought using climate model simulations and paleoclimate data. J. Clim. 2014, 27, 7529–7549. [Google Scholar] [CrossRef]
- Moon, H.; Gudmundsson, L.; Seneviratne, S.I. Drought persistence errors in global climate models. J. Geophys. Res. Atmos. 2018, 123, 3483–3496. [Google Scholar] [CrossRef] [PubMed]
- Metsätalousministeriö, M.-J. Kansallinen Ilmastonmuutokseen Sopeutumissuunnitelma 2022; Maa-ja Metsätalousministeriö: Helsinki, Finland, 2014. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: Report on the Review of the European Water Scarcity and Droughts Policy; European Commission: Brussels, Belgium, 2012. [Google Scholar]
- Ahola, K. Valmiusharjoituksen Onnistumiseen Vaikuttavat Tekijät Osallistujien Näkökulmasta. Master’s thesis, Maanpuolustuskorkeakoulu, Helsinki, Finland, 2014; 58 p. Available online: https://www.doria.fi/bitstream/handle/10024/102381/SM%20858.pdf?sequence=2 (accessed on 4 April 2019).
- Pesonen, P. Maakuntauudistus—Toimijoiden Välisen Varautumisyhteistyön Tukeminen Alueellisen Yhteisen Varautumisen Tietotarpeiden Selvittämisellä. Master’s thesis, Aalto University, Espoo, Finland, 2017. [Google Scholar]
- European Commission. Report from the Commission to the European Parliament and to the Council on the Implementation of the Water Framework Directive (2000/60/ec) and Floods Directive (2007/60/ec). Commission Staff Working Document-Second River Basins Management Plans—Member State: Finland. 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=SWD:2019:46:FIN&qid=1551205988853&from=EN (accessed on 24 January 2019).
- Hoff, H. Understanding the Nexus, Background Paper for the Bonn 2011 Conference: The Water, Energy and Food Security Nexus; Stockholm Environment Institute: Bonn, Germany, 2011. [Google Scholar]
- Bazilian, M.; Rogner, H.; Howells, M.; Hermann, S.; Arent, D.; Gielen, D.; Steduto, P.; Mueller, A.; Komor, P.; Tol, R.S.J.; et al. Considering the energy, water and food nexus: Towards an integrated modelling approach. Energy Policy 2011, 39, 7896–7906. [Google Scholar] [CrossRef]
- Keskinen, M.; Guillaume, J.H.A.; Kattelus, M.; Porkka, M.; Räsänen, T.A.; Varis, O. The water-energy-food nexus and the transboundary context: Insights from large asian rivers. Water 2016, 8, 193. [Google Scholar] [CrossRef]
Abbreviation | RCP | GCM | T Change 2040–2069 | P Change 2040–2069 |
---|---|---|---|---|
Average RCP2.6 | 2.6 | average of 28 GCMs | 1.9 °C | 5.8% |
Average RCP4.5 | 4.5 | average of 28 GCMs | 2.5 °C | 7.4% |
Average RCP8.5 | 8.5 | average of 28 GCMs | 3.4 °C | 10.6% |
Warm and wet 1 | 4.5 | MIROC-ESM-CHEM | 4.1 °C | 14.2% |
Warm and dry 1 | 4.5 | HadGEM2-CC | 2.9 °C | 7.0% |
Cold and wet 1 | 4.5 | CESM1-BGC | 2.1 °C | 7.4% |
Cold and dry 1 | 4.5 | CESM1-BGC | 1.5 °C | 0.8% |
River, Observation Point | Observed Discharge (m3/s) | Simulated Discharge (m3/s) | Difference (%) |
---|---|---|---|
Kemijoki (Isohaara) | 404 | 413 | 2.2 |
Oulujoki (Pyhäkoski) | 151 | 141 | −6.6 |
Kokemäenjoki (Harjavalta) | 107 | 111 | 3.7 |
Kymijoki (Anjala) | 136 | 150 | 10 |
Vuoksi (Imatra) | 361 | 331 | −8.3 |
Time Period | Average Annual Discharge (m3/s) | Change of Average Annual Discharge (%) | Minimum Monthly Discharge (m3/s) | Change of Minimum Monthly Discharge (%) | |
---|---|---|---|---|---|
Southern and Central Finland * | |||||
Control period | 1981–2010 | 1810 | 592 | ||
Climate scenarios for the period 2040–2069 with control period | Average RCP2.6 | 1820 | 0.3 | 491 | −17 |
Average RCP4.5 | 1830 | 1.4 | 487 | −18 | |
Average RCP8.5 | 1870 | 3.2 | 476 | −20 | |
Warm and wet | 1980 | 9.5 | 465 | −21 | |
Warm and dry | 1800 | −0.5 | 449 | −24 | |
Cold and wet | 1820 | 0.4 | 489 | −17 | |
Cold and dry | 1690 | −6.7 | 462 | −22 | |
Reference drought | 1939–1942 | 946 | 533 | ||
Climate scenarios for the period 2040–2069 with reference drought | Average RCP2.6 | 964 | 1.9 | 491 | −7.8 |
Average RCP4.5 | 980 | 3.6 | 487 | −8.6 | |
Average RCP8.5 | 1010 | 6.9 | 476 | −11 | |
Warm and wet | 1110 | 17 | 465 | −13 | |
Warm and dry | 941 | −0.5 | 449 | −16 | |
Cold and wet | 923 | −2.4 | 489 | −8.2 | |
Cold and dry | 895 | −5.4 | 462 | −13 | |
Northern Finland * | |||||
Control period | 1981–2010 | 1810 | 592 | ||
Climate scenarios for the period 2040–2069 with the control period | Average RCP2.6 | 2270 | 4.8 | 803 | 0.5 |
Average RCP4.5 | 2290 | 6.0 | 775 | −3.0 | |
Average RCP8.5 | 2390 | 10 | 688 | −14 | |
Warm and wet | 2370 | 9.7 | 726 | −9.2 | |
Warm and dry | 2210 | 2.3 | 676 | −15 | |
Cold and wet | 2380 | 10 | 841 | 5.2 | |
Cold and dry | 2000 | −7.5 | 628 | −21 | |
Reference drought | 1939–1942 | 1510 | 815 | ||
Climate scenarios for the period 2040–2069 with the reference drought | Average RCP2.6 | 1590 | 5.0 | 803 | −1.4 |
Average RCP4.5 | 1600 | 6.1 | 775 | −4.8 | |
Average RCP8.5 | 1680 | 11 | 688 | −16 | |
Warm and wet | 1680 | 11 | 726 | −11 | |
Warm and dry | 1510 | −0.2 | 676 | −17 | |
Cold and wet | 1700 | 12 | 841 | 3.2 | |
Cold and dry | 1380 | −8.5 | 628 | −23 |
Period | Average Discharge (m3/s) of Major Hydropower Plants 1,2 | Annual Production (TW) of Major Hydropower Plants 1 |
---|---|---|
Simulated control period 1981–2010 | 202 | 12.0 |
Simulated reference drought—third year (1941 weather) | 112 | 6.8 |
Simulated reference drought—fourth year (1942 weather) | 106 | 6.5 |
Climate change 2040–2069 | 217 | 12.9 |
Simulated climate change with control period | 217 | 12.9 |
Simulated reference drought—third year (1941 weather) | 113 | 6.8 |
Simulated reference drought—fourth year (1942 weather) | 107 | 6.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Veijalainen, N.; Ahopelto, L.; Marttunen, M.; Jääskeläinen, J.; Britschgi, R.; Orvomaa, M.; Belinskij, A.; Keskinen, M. Severe Drought in Finland: Modeling Effects on Water Resources and Assessing Climate Change Impacts. Sustainability 2019, 11, 2450. https://doi.org/10.3390/su11082450
Veijalainen N, Ahopelto L, Marttunen M, Jääskeläinen J, Britschgi R, Orvomaa M, Belinskij A, Keskinen M. Severe Drought in Finland: Modeling Effects on Water Resources and Assessing Climate Change Impacts. Sustainability. 2019; 11(8):2450. https://doi.org/10.3390/su11082450
Chicago/Turabian StyleVeijalainen, Noora, Lauri Ahopelto, Mika Marttunen, Jaakko Jääskeläinen, Ritva Britschgi, Mirjam Orvomaa, Antti Belinskij, and Marko Keskinen. 2019. "Severe Drought in Finland: Modeling Effects on Water Resources and Assessing Climate Change Impacts" Sustainability 11, no. 8: 2450. https://doi.org/10.3390/su11082450
APA StyleVeijalainen, N., Ahopelto, L., Marttunen, M., Jääskeläinen, J., Britschgi, R., Orvomaa, M., Belinskij, A., & Keskinen, M. (2019). Severe Drought in Finland: Modeling Effects on Water Resources and Assessing Climate Change Impacts. Sustainability, 11(8), 2450. https://doi.org/10.3390/su11082450