Density of Biogas Power Plants as An Indicator of Bioenergy Generated Transformation of Agricultural Landscapes
Abstract
:1. Introduction
- (1)
- to delineate the zones of different level of impacts in terms of landscape change by biogas production in agrarian landscapes based on a density map of installed electrical capacity (IC) of the biogas power plants;
- (2)
- to quantify the impact of biogas power plants via size- and shape- related landscape metrics as well as diversity indices and to investigate the statistical relationships between the IC of biogas power plants and the various metrics.
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Databases
2.3. Landscape Metrics
2.4. Spatial and Statistical Analysis
3. Results
3.1. Delineation of the Bioenergy Impact Zones
3.2. Validation of the Delineated Impact Zones
3.2.1. Land Cover Changes Inside the Impact Zones
3.2.2. Landscape Metrics Inside the Impact Zones
3.2.3. Land Cover Diversity Inside the Impact Zones
3.2.4. Link between Installed Electrical Capacity (IC) and Changes in Land Use and Landscape Indices in the Impact Zones
4. Discussion
4.1. Comparative Analyses of the Bioenergy Impact Zones
4.2. Statistical Analysis of the Landscape Metric Parameters in the Bioenergy Impact Zones
4.3. Land Cover Diversity Changes in the Bioenergy Impact Zones
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix
Investigated Feature | Database Used for Calculation | Index | Name and Description | Corresponding Question |
---|---|---|---|---|
Area | CLC | MPS | Mean Patch Size where aij represents the area of the jth patch in the ith class, ni represents the number of patches in the ith class, n represents the number of patches (>0) | What is the average land cover patch size, and how are the values distributed? |
Edges | CLC | TE | Total Edge where eik represents the edge length between the ith and kth patch types, m represents the number of the patch class (<=0). | How much of a landscape or a land cover patch type is composed of edges? |
Shape complexity | CL | MSI | Mean Shape Index where pij represents the perimeter of the jth patch in class ith, aij represents the area of the jth patch in class ith, ni represents the number of patches in the ith class, n represents the number of patches (>=1) | How compact are the patches on average (in comparison to a circle)? |
CLC | MFRACT | Mean Fractal Dimension where pij represents the perimeter of the jth patch in class ith, aij represents the area of the jth patch in class ith, ni represents the number of patches in the ith class, n represents the number of patches (1–2) | How complex or irregular is the form of the land cover patch? | |
Diversity metrics | CLC and ASE | SDI | Shannon Diversity Index Where (m) represents the number of different land cover types, Pi = the relative abundance of different land cover types | How diverse is the landscape? |
CLC and ASE | SEI | Shannon Evenness Index SEI covers the number of different land cover types (m) and their relative abundance (Pi) | How equal is the distribution of the land cover patches in the landscape? | |
CLC and ASE | RI | Richness Index presents simply the variety or number of patch types in landscape level. | How many different land cover patch types build the landscape? |
Year | Landscape Diversity Indices | Impact Zones Based on Their IC Density | Total Study Area | ||
---|---|---|---|---|---|
Impact Zone A | Impact Zone B | Impact Zone C | |||
2000 | Richness | 20 | 32 | 32 | 32 |
Shannon Diversity | 1.207 | 1.506 | 1.523 | 1.757 | |
Shannon Evenness | 0.403 | 0.435 | 0.44 | 0.507 | |
2012 | Richness | 20 | 31 | 31 | 33 |
Shannon Diversity | 1.067 | 1.354 | 1.464 | 1.597 | |
Shannon Evenness | 0.356 | 0.394 | 0.419 | 0.457 |
Sum of Squares | df | Mean Square | F | Sig. | ||
---|---|---|---|---|---|---|
AWMPS | Between Groups | 2.26 × 1019 | 2 | 1.13 × 1019 | 27 | 3.578 × 10−12 |
Within Groups | 4.54 × 1020 | 1087 | 4.18 × 1017 | |||
Total | 4.77 × 1020 | 1089 | ||||
AWMTE | Between Groups | 1.11 × 1014 | 2 | 5.56 × 1013 | 25.612 | 1.352 × 10−11 |
Within Groups | 2.36 × 1015 | 1087 | 2.17 × 1012 | |||
Total | 2.47 × 1015 | 1089 | ||||
AWMSI | Between Groups | 1.62 × 103 | 2 | 811.289 | 10.891 | 2.074 × 10−5 |
Within Groups | 8.10 × 104 | 1087 | 74.491 | |||
Total | 8.26 × 104 | 1089 | ||||
AWMFRACT | Between Groups | 2.56 × 10−3 | 2 | 0.001 | 0.515 | 0.598 |
Within Groups | 2.681 | 1078 | 0.002 | |||
Total | 2.684 | 1080 |
Dependent Variable | Mean Difference (I-J) | Std. Error | Sig. | ||
---|---|---|---|---|---|
AWMPS | Impact zone A | Impact zone B | −1.665 × 108 | 5.84 × 107 | 1.226 × 10−2 |
Impact zone C | −4.047 × 108 | 6.08 × 107 | 5.223 × 10−9 | ||
Impact zone B | Impact zone A | 1.665 × 108 | 5.84 × 107 | 1.226 × 10−2 | |
Impact zone C | −2.382 × 108 | 4.29 × 107 | 1.103 × 10−7 | ||
Impact zone C | Impact zone A | 4.047 × 108 | 6.08 × 107 | 5.223 × 10−9 | |
Impact zone B | 2.382 × 108 | 4.29 × 107 | 1.103 × 10−7 | ||
AWMTE | Impact zone A | Impact zone B | −3.833 × 105 | 1.33 × 105 | 1.123 × 10−2 |
Impact zone C | −9.048 × 105 | 1.38 × 105 | 5.384 × 10−9 | ||
Impact zone B | Impact zone A | 3.833 × 105 | 1.33 × 105 | 1.123 × 10−2 | |
Impact zone C | −5.215 × 105 | 9.78 × 104 | 3.550 × 10−7 | ||
Impact zone C | Impact zone A | 9.048 × 105 | 1.38 × 105 | 5.384 × 10−9 | |
Impact zone B | 5.215 × 105 | 9.78 × 104 | 3.550 × 10−7 | ||
AWMSI | Impact zone A | Impact zone B | −1.029 | 7.79 × 10−1 | 0.384 |
Impact zone C | −3.231 | 8.11 × 10−1 | 2.140 × 10−4 | ||
Impact zone B | Impact zone A | 1.029 | 7.79 × 10−1 | 0.384 | |
Impact zone C | −2.203 | 5.73 × 10−1 | 3.737 × 10−4 | ||
Impact zone C | Impact zone A | 3.231 | 8.11 × 10−1 | 2.140 × 10−4 | |
Impact zone B | 2.203 | 5.73 × 10−1 | 3.737 × 10−4 | ||
AWMFRACT | Impact zone A | Impact zone B | 0.004 | 4.51 × 10−3 | 0.590 |
Impact zone C | 0.004 | 4.69 × 10−3 | 0.637 | ||
Impact zone B | Impact zone A | −0.004 | 4.51 × 10−3 | 0.590 | |
Impact zone C | 0.000 | 3.32 × 10−3 | 0.998 | ||
Impact zone C | Impact zone A | −0.004 | 4.69 × 10−3 | 0.637 | |
Impact zone B | 0.000 | 3.32 × 10−3 | 0.998 |
Sum of Squares | df | Mean Square | F | Sig. | ||
---|---|---|---|---|---|---|
AWMPS | Between Groups | 1.18 × 1018 | 2 | 5.91 × 1017 | 5.941 | 0.003 |
Within Groups | 1.08 × 1020 | 1088 | 9.95 × 1016 | |||
Total | 1.09 × 1020 | 1090 | ||||
AWMTE | Between Groups | 1.08 × 1013 | 2 | 5.41 × 1012 | 5.658 | 0.004 |
Within Groups | 1.04 × 1015 | 1088 | 9.56 × 1011 | |||
Total | 1.05 × 1015 | 1090 | ||||
AWMSI | Between Groups | 742.387 | 2 | 371.194 | 5.425 | 0.005 |
Within Groups | 74,438.765 | 1088 | 68.418 | |||
Total | 75,181.153 | 1090 | ||||
AWMFRACT | Between Groups | 0.027 | 2 | 0.014 | 4.714 | 0.009 |
Within Groups | 3.142 | 1088 | 0.003 | |||
Total | 3.169 | 1090 |
Dependent Variable | Mean Difference (I-J) | Std. Error | Sig. | ||
---|---|---|---|---|---|
AWMPS | Impact zone A | Impact zone B | −6.27 × 107 | 2.84 × 107 | 0.071 |
Impact zone C | 4.37 × 106 | 2.96 × 107 | 0.988 | ||
Impact zone B | Impact zone A | 6.27 × 107 | 2.84 × 107 | 0.071 | |
Impact zone C | 6.71 × 107 | 2.09 × 107 | 0.004 | ||
Impact zone C | Impact zone A | −4.37 × 106 | 2.96 × 107 | 0.988 | |
Impact zone B | −6.71 × 107 | 2.09 × 107 | 0.004 | ||
AWMTE | Impact zone A | Impact zone B | −1.52 × 105 | 8.81 × 104 | 0.196 |
Impact zone C | 6.08 × 104 | 9.17 × 104 | 0.785 | ||
Impact zone B | Impact zone A | 1.52 × 105 | 8.81 × 104 | 0.196 | |
Impact zone C | 2.13 × 105 | 6.49 × 104 | 0.003 | ||
Impact zone C | Impact zone A | −6.08 × 104 | 9.17 × 104 | 0.785 | |
Impact zone B | −2.13 × 105 | 6.49 × 104 | 0.003 | ||
AWMSI | Impact zone A | Impact zone B | −7.17 × 10−2 | 7.45 × 10−1 | 0.995 |
Impact zone C | 1.66 | 7.75 × 10−1 | 0.082 | ||
Impact zone B | Impact zone A | 7.17 × 10−2 | 7.45 × 10−1 | 0.995 | |
Impact zone C | 1.73 | 5.49 × 10−1 | 0.005 | ||
Impact zone C | Impact zone A | −1.6 | 7.75 × 10−1 | 0.082 | |
Impact zone B | −1.73 | 5.49 × 10−1 | 0.005 | ||
AWMFRACT | Impact zone A | Impact zone B | 3.05 × 10−3 | 4.84 × 10−3 | 0.803 |
Impact zone C | 1.25 × 10−2 | 5.04 × 10−3 | 0.035 | ||
Impact zone B | Impact zone A | −3.05 × 10−3 | 4.84 × 10−3 | 0.803 | |
Impact zone C | 9.48 × 10−3 | 3.56 × 10−3 | 0.022 | ||
Impact zone C | Impact zone A | −1.25 × 10−2 | 5.04 × 10−3 | 0.035 | |
Impact zone B | −9.48 × 10−3 | 3.56 × 10−3 | 0.022 |
Sum of Squares | df | Mean Square | F | Sig. | ||
---|---|---|---|---|---|---|
SDI | Between Groups | 8.776 | 2 | 4.388 | 26.623 | 5.09 × 10−12 |
Within Groups | 182.614 | 1108 | 0.165 | |||
Total | 191.390 | 1110 | ||||
SEI | Between Groups | 3.545 | 2 | 1.773 | 13.991 | 9.98 × 10−7 |
Within Groups | 140.383 | 1108 | 0.127 | |||
Total | 143.929 | 1110 | ||||
RI | Between Groups | 76.733 | 2 | 38.366 | 20.631 | 1.60 × 10−9 |
Within Groups | 2060.522 | 1108 | 1.860 | |||
Total | 2137.255 | 1110 |
Dependent Variable | Mean Difference (I-J) | Std. Error | Sig. | ||
---|---|---|---|---|---|
SDI | Impact zone A | Impact zone B | −0.150040 | 0.036519 | 0.000126 |
Impact zone C | −0.268 | 0.037869 | 0.000000 | ||
Impact zone B | Impact zone A | 0.150 | 0.036519 | 0.000126 | |
Impact zone C | −0.118 | 0.026599 | 0.000029 | ||
Impact zone C | Impact zone A | 0.268 | 0.037869 | 0.000000 | |
Impact zone B | 0.118 | 0.026599 | 0.000029 | ||
SEI | Impact zone A | Impact zone B | −0.122 | 0.032019 | 0.000445 |
Impact zone C | −0.176 | 0.033203 | 0.000000 | ||
Impact zone B | Impact zone A | 0.122 | 0.032019 | 0.000445 | |
Impact zone C | −0.054 | 0.023321 | 0.055313 | ||
Impact zone C | Impact zone A | 0.176 | 0.033203 | 0.000000 | |
Impact zone B | 0.054 | 0.023321 | 0.055313 | ||
RI | Impact zone A | Impact zone B | −0.360 | 0.123 | 0.009628 |
Impact zone C | −0.763 | 0.127 | 0.000000 | ||
Impact zone B | Impact zone A | 0.360 | 0.123 | 0.009628 | |
Impact zone C | −0.403 | 0.089 | 0.000021 | ||
Impact zone C | Impact zone A | 0.763 | 0.127 | 0.000000 | |
Impact zone B | 0.403 | 0.089 | 0.000021 |
References and Notes
- EU Directive 2009/28/EC of the European parliament and of the council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Off. J. Eur. Union 2009, 52, 16–62.
- EEA Renewable Energy in Europe 2017. Recent Growth and Knock-on Effects. EEA Report No 3/2017. Available online: https://www.eea.europa.eu/publications/renewable-energy-in-europe-2017 (accessed on 27 April 2019).
- EC (European Commission) Optimal Use of Biogas from Waste Streams. An Assessment of the Potential of Biogas from Digestion in the EU beyond 2020—European Commission. Available online: https://ec.europa.eu/energy/en/studies/optimal-use-biogas-waste-streams-assessment-potential-biogas-digestion-eu-beyond-2020 (accessed on 9 May 2018).
- Sahoo, K.; Mani, S.; Das, L.; Bettinger, P. GIS-based assessment of sustainable crop residues for optimal siting of biogas plants. Biomass Bioenergy 2018, 110, 63–74. [Google Scholar] [CrossRef]
- Van der Horst, D.; Martinat, S.; Navratil, J.; Dvorak, P.; Chmielova, P. What can the location of biogas plants tell us about agricultural change? A Case Study from the Czech Republic. Deturope 2018, 10, 33–52. [Google Scholar]
- Di Leo, S.; Salvia, M. Local strategies and action plans towards resource efficiency in South East Europe. Renew. Sustain. Energy Rev. 2017, 68, 286–305. [Google Scholar] [CrossRef]
- Gao, M.; Wang, D.; Wang, H.; Wang, X.; Feng, Y. Biogas potential, utilization and countermeasures in agricultural provinces: A case study of biogas development in Henan Province, China. Renew. Sustain. Energy Rev. 2019, 99, 191–200. [Google Scholar] [CrossRef]
- Scheftelowitz, M.; Becker, R.; Thrän, D. Improved power provision from biomass: A retrospective on the impacts of German energy policy. Biomass Bioenergy 2018, 111, 1–12. [Google Scholar] [CrossRef]
- AdV Working Committee of the Surveying Authorities of the States of the Federal Republic of Germany—AdV-Online. Available online: http://www.adv-online.de/Products/Geotopography/ATKIS/ (accessed on 9 May 2018).
- Delzeit, R.; Britz, W.; Holm-Müller, K. Modelling regional input markets with numerous processing plants: The case of green maize for biogas production in Germany. Environ. Model. Softw. 2012, 32, 74–84. [Google Scholar] [CrossRef]
- Gasso, V.; Oudshoorn, F.W.; de Olde, E.; Sørensen, C.A.G. Generic sustainability assessment themes and the role of context: The case of Danish maize for German biogas. Ecol. Indic. 2015, 49, 143–153. [Google Scholar] [CrossRef]
- Appel, F.; Ostermeyer-Wiethaup, A.; Balmann, A. Effects of the German Renewable Energy Act on structural change in agriculture—The case of biogas. Util. Policy 2016, 41, 172–182. [Google Scholar] [CrossRef]
- Lüker-Jans, N.; Simmering, D.; Otte, A. The impact of biogas plants on regional dynamics of permanent grassland and maize area—The example of Hesse, Germany (2005–2010). Agric. Ecosyst. Environ. 2017, 241, 24–38. [Google Scholar] [CrossRef]
- Laggner, B.; Orthen, N.; Osterburg, B.; Röder, N. Ist die zunehmende Biogasproduktion die alleinige Ursache für den Grünlandschwund in Deutschland?—Eine Analyse von georeferenzierten Daten zur Landnutzung. Raumforsch. Raumordn. 2014, 72, 195–209. [Google Scholar] [CrossRef]
- Schleupner, C.; Link, P.M. Potential impacts on important bird habitats in Eiderstedt (Schleswig-Holstein) caused by agricultural land use changes. Appl. Geogr. 2008, 28, 237–247. [Google Scholar] [CrossRef]
- Brandt, K.; Glemnitz, M. Assessing the regional impacts of increased energy maize cultivation on farmland birds. Environ. Monit. Assess. 2014, 186, 679–697. [Google Scholar] [CrossRef] [PubMed]
- Lupp, G.; Steinhäußer, R.; Starick, A.; Gies, M.; Bastian, O.; Albrecht, J. Forcing Germany’s renewable energy targets by increased energy crop production: A challenge for regulation to secure sustainable land use practices. Land Use Policy 2014, 36, 296–306. [Google Scholar] [CrossRef]
- Link, P.M.; Schleupner, C. Agricultural land use changes in Eiderstedt: Historic developments and future plans. Coastline Rep. 2007, 9, 928–2734. [Google Scholar]
- Duttmann, R.; Hassenpflug, W.; Bach, M.; Lungershausen, U.; Frank, J. Winderosion in Schleswig-Holstein; Landesamt für Landwirtschaft, Umwelt und ländliche Räume des Landes Schleswig-Holstein (LLUR): Hamburg, Germany, 2011; ISBN 978-3-937937-56-4. [Google Scholar]
- Duttmann, R.; Schwanebeck, M.; Nolde, M.; Horn, R. Predicting Soil Compaction Risks Related to Field Traffic during Silage Maize Harvest. Soil Sci. Soc. Am. J. 2014, 78, 408. [Google Scholar] [CrossRef]
- Svoboda, N.; Taube, F.; Kluß, C.; Wienforth, B.; Kage, H.; Ohl, S.; Hartung, E.; Herrmann, A. Crop production for biogas and water protection—A trade-off? Agric. Ecosyst. Environ. 2013, 177, 36–47. [Google Scholar] [CrossRef]
- Klu. Biogaserzeugung und-nutzung: Ökologische Leitplanken für die Zukunft Vorschläge der Kommission Landwirt-schaft beim Umweltbundesamt (KLU); Agriculture Commission at the German Federal Environment Agency: Dessau-Roßlau, Germany, 2013. [Google Scholar]
- Claus, S.; Taube, F.; Wienforth, B.; Svoboda, N.; Sieleing, K.; Kage, H.; Senbayram, M.; Dittert, K.; Gericke, D.; Pacholski, A.; et al. Life-cycle assessment of biogas production under the environmental conditions of northern Germany: Greenhouse gas balance. J. Agric. Sci. 2014, 152, 172–181. [Google Scholar] [CrossRef]
- Duttmann, R.; Brunotte, J.; Bach, M. Spatial analyses of field traffic intensity and modeling of changes in wheel load and ground contact pressure in individual fields during a silage maize harvest. Soil Tillage Res. 2013, 126, 100–111. [Google Scholar] [CrossRef]
- Pantaleo, A.; De Gennaro, B.; Shah, N. Assessment of optimal size of anaerobic co-digestion plants: An application to cattle farms in the province of Bari (Italy). Renew. Sustain. Energy Rev. 2013, 20, 57–70. [Google Scholar] [CrossRef]
- Schmidt, C. Entwicklung der Anbauflächen für Silomais Seit 1999. Available online: https://tu-dresden.de/bu/architektur/ila/lp/ressourcen/dateien/Forschung/abgeschlossene-forschung/monitoring-kula-kartenserie-arbeitspaket2/karte5?lang=de (accessed on 11 March 2019).
- Oppelt, N.; Rathjens, H.; Kuhwald, K.; Oppelt, N.; Rathjens, H.; Doernhoefer, K. Integration of Land Cover Data into the Open Source Model SWAT. In Proceedings of the First Sentinel-2 Preparatory Symposium, Frascati, Italy, 23–27 April 2012. [Google Scholar]
- Kandziora, M.; Dörnhöfer, K.; Oppelt, N.; Müller, F. Detecting Land Use and Land Cover Changes in Northern German Agricultural Landscapes to Assess Ecosystem Service Dynamics. Landsc. Online 2014, 35, 1–24. Available online: https://www.landscapeonline.de/103097lo201435 (accessed on 28 April 2019). [CrossRef]
- Feng, Y.; Liu, Y.; Tong, X. Spatiotemporal variation of landscape patterns and their spatial determinants in Shanghai, China. Ecol. Indic. 2018, 87, 22–32. [Google Scholar] [CrossRef]
- Uuemaa, E.; Antrop, M.; Roosaare, J.; Marja, R.; Mander, Ü. Landscape Metrics and Indices: An Overview of Their Use in Landscape Research. Living Rev. Landsc. Res. 2009, 3, 1–28. [Google Scholar] [CrossRef]
- Uuemaa, E.; Mander, Ü.; Marja, R. Trends in the use of landscape spatial metrics as landscape indicators: A review. Ecol. Indic. 2013, 28, 100–106. [Google Scholar] [CrossRef]
- Schindler, S.; von Wehrden, H.; Poirazidis, K.; Wrbka, T.; Kati, V. Multiscale performance of landscape metrics as indicators of species richness of plants, insects and vertebrates. Ecol. Indic. 2013, 31, 41–48. [Google Scholar] [CrossRef]
- Borges, F.; Glemnitz, M.; Schultz, A.; Stachow, U. Assessing the habitat suitability of agricultural landscapes for characteristic breeding bird guilds using landscape metrics. Environ. Monit. Assess. 2017, 189, 166. [Google Scholar] [CrossRef]
- Szilassi, P.; Bata, T.; Szabó, S.; Czúcz, B.; Molnár, Z.; Mezősi, G. The link between landscape pattern and vegetation naturalness on a regional scale. Ecol. Indic. 2017, 81, 252–259. [Google Scholar] [CrossRef]
- Šímová, P.; Gdulová, K. Landscape indices behavior: A review of scale effects. Appl. Geogr. 2012, 34, 385–394. [Google Scholar] [CrossRef]
- Lausch, A.; Blaschke, T.; Haase, D.; Herzog, F.; Syrbe, R.-U.; Tischendorf, L.; Walz, U. Understanding and quantifying landscape structure—A review on relevant process characteristics, data models and landscape metrics. Ecol. Modell. 2015, 295, 31–41. [Google Scholar] [CrossRef]
- Weissteiner, C.J.; García-Feced, C.; Paracchini, M.L. A new view on EU agricultural landscapes: Quantifying patchiness to assess farmland heterogeneity. Ecol. Indic. 2016, 61, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Turner, M.G. Landscape Ecology: What Is the State of the Science? Annu. Rev. Ecol. Evol. Syst. 2005, 36, 319–344. [Google Scholar] [CrossRef]
- Turner, M.G. Landscape Ecology: The Effect of Pattern on Process. Annu. Rev. Ecol. Syst. 1989, 20, 171–197. [Google Scholar] [CrossRef]
- Frondoni, R.; Mollo, B.; Capotorti, G. A landscape analysis of land cover change in the Municipality of Rome (Italy): Spatio-temporal characteristics and ecological implications of land cover transitions from 1954 to 2001. Landsc. Urban Plan. 2011, 100, 117–128. [Google Scholar] [CrossRef]
- Liu, H.; Weng, Q. Landscape metrics for analysing urbanization-induced land use and land cover changes. Geocarto Int. 2013, 28, 582–593. [Google Scholar] [CrossRef]
- Singh, S.; Srivastava, P.; Szabo, S.; Petropoulos, G.; Gupta, M.; Islam, T. Landscape transform and spatial metrics for mapping spatio-temporal land cover dynamics using Earth Observation datasets. Geocarto Int. 2015, 32, 1–34. [Google Scholar] [CrossRef]
- DWD Weather of Schleswig 1981–2010. Available online: https://www.dwd.de/EN/weather/weather_climate_local/schleswigholstein_hamburg/schleswig/_node.html (accessed on 13 August 2018).
- Bundesamt für Kartographie und Geodäsie Digitales Basis-Landschaftsmodell (AAA-Modellierung) Basis-DLM (AAA). Available online: http://www.geodatenzentrum.de/docpdf/basis-dlm-aaa.pdf (accessed on 9 May 2018).
- Fao World reference base for soil resources 2014 International soil classification system for naming soils and creating legends for soil maps Update 2015 WORLD SOIL RESOURCES REPORTS.
- EEA and ETC-TE CLC Update CLC 2000 Project. Technical Guidelines. Final Version. Available online: http://land.copernicus.eu/user-corner/technical-library/techrep89.pdf (accessed on 9 May 2018).
- Bossard, M.; Feranec, J.; Otahel, J. CORINE Land Cover Technical Guide—Addendum 2000 Part I State-of-Play Production Methods of the CORINE land Cover Database; European Environment Agency: Copenhagen, Denmark, 2000. [Google Scholar]
- Landesamt für Landwirtschaft, Umwelt und ländliche Räume Schleswig-Holstein. Data set on biogas power plants in Schleswig-Holstein 2014.
- EEA. The Thematic Accuracy of CLC 2000. Assessment Using LUCAS (Land Use/cover Area Frame Statistical Survey); EEA: Coppenhagen, Denmark, 2006. [Google Scholar]
- Statistiches Amt für Hamburg und Schleswig-Holstein. Kartenatlas zur Landwirtschaftszählung; Statistiches Amt für Hamburg und Schleswig-Holstein: Hamburg, Germany, 2010. [Google Scholar]
- Walz, U. Landscape Structure, Landscape Metrics and Biodiversity. Living Rev. Landsc. Res. 2011, 5. [Google Scholar] [CrossRef] [Green Version]
- Szabó, S. Tájmetriai mérőszámok alkalmazási lehetőségeinek vizsgálata a tájanalízisben; University of Debrecen: Debrecen, Hungary, 2009. [Google Scholar]
- Lang, S.; Tiede, D. vLATE Extension for ArcGIS—Vektorbasiertes Tool zur quantitativen Landschaftsstrukturanalyse; ESRI Anwenderkonferenz: Innsbruck, Austria, 2003. [Google Scholar]
- Baldwin, D.J.B.; Weaver, K.; Schnekenburger, F.; Perera, A.H. Sensitivity of landscape pattern indices to input data characteristics on real landscapes: Implications for their use in natural disturbance emulation. Landsc. Ecol. 2004, 19, 255–271. [Google Scholar] [CrossRef]
- Buyantuyev, A.; Wu, J. Effects of thematic resolution on landscape pattern analysis. Landsc. Ecol. 2007, 22, 7–13. [Google Scholar] [CrossRef]
- Uuemaa, E.; Roosaare, J.; Mander, Ü. Scale dependence of landscape metrics and their indicatory value for nutrient and organic matter losses from catchments. Ecol. Indic. 2005, 5, 350–369. [Google Scholar] [CrossRef]
- Wu, J. Effects of changing scale on landscape pattern analysis: Scaling relations. Landsc. Ecol. 2004, 19, 125–138. [Google Scholar] [CrossRef]
- Environmental Systems Research Institute (ESRI) ArcGIS Desktop 10.3, Redland, USA, 2014.
- Jenks, G. The Data Model Concept in Statistical Mapping. In International Yearbook of Cartography; George Philip: London, UK, 1967. [Google Scholar]
- Beyer, H.L. Geospatial Modelling Environment. Available online: http://www.spatialecology.com/gme/gmedownload.htm (accessed on 28 April 2019).
- Gustafson, E.J. Minireview: Quantifying Landscape Spatial Pattern: What Is the State of the Art? Ecosystems 1998, 1, 143–156. [Google Scholar] [CrossRef]
- Statistical Service Centre (SSC) Microsoft Excel add-in diversity calculator, Reading University, 2010.
- IBM SPSS IBM SPSS Statistics for windows 2013.
- MELUND. Monitoring Energiewende und Klimaschutz Schleswig-Holstein. 2018. Available online: https://www.schleswig-holstein.de/DE/Schwerpunkte/Energiewende/Daten/_documents/monitoring.html (accessed on 27 April 2019).
- Leuschner, C.; Krause, B.; Meyer, S.; Bartels, M. Structural change in the arable land and grassland of Lower Saxony and Schleswig-Holstein since 1950. Natur und Landscaft 2014, 89, 386–391. [Google Scholar]
- Delzeit, R.; Kellner, U. The impact of plant size and location on profitability of biogas plants in Germany under consideration of processing digestates. Biomass Bioenergy 2013, 52, 43–53. [Google Scholar] [CrossRef]
- Auburger, S.; Petig, E.; Bahrs, E. Assessment of grassland as biogas feedstock in terms of production costs and greenhouse gas emissions in exemplary federal states of Germany. Biomass Bioenergy 2017, 101, 44–52. [Google Scholar] [CrossRef]
- Morris, E.K.; Caruso, T.; Buscot, F.; Fischer, M.; Hancock, C.; Maier, T.S.; Meiners, T.; Müller, C.; Obermaier, E.; Prati, D.; et al. Choosing and using diversity indices: Insights for ecological applications from the German Biodiversity Exploratories. Ecol. Evol. 2014, 4, 3514–3524. [Google Scholar] [CrossRef]
- Riedel, W. Extremer Landschaftswandelt durch agrarische Fehlentwicklungen. Das Beispiel des nördlichen Schleswig-Holstein. Naturschutz und Landschaftsplan. 2013, 45, 29–32. [Google Scholar]
- Jerrentrup, J.S.; Dauber, J.; Strohbach, M.W.; Mecke, S.; Mitschke, A.; Ludwig, J.; Klimek, S. Impact of recent changes in agricultural land use on farmland bird trends. Agric. Ecosyst. Environ. 2017, 239, 334–341. [Google Scholar] [CrossRef]
- Kuhwald, M.; Dörnhöfer, K.; Oppelt, N.; Duttmann, R.; Kuhwald, M.; Dörnhöfer, K.; Oppelt, N.; Duttmann, R. Spatially Explicit Soil Compaction Risk Assessment of Arable Soils at Regional Scale: The SaSCiA-Model. Sustainability 2018, 10, 1618. [Google Scholar] [CrossRef]
- Blaschke, T. The role of the spatial dimension within the framework of sustainable landscapes and natural capital. Landsc. Urban Plan. 2006, 75, 198–226. [Google Scholar] [CrossRef]
- Forman, R.T.T. Land Mosaics: The Ecology of Landscapes and Regions; Island Press: Washington, DC, USA, 2014; ISBN 0521479800. [Google Scholar]
- Fu, B.-J.; Hu, C.-X.; Chen, L.-D.; Honnay, O.; Gulinck, H. Evaluating change in agricultural landscape pattern between 1980 and 2000 in the Loess hilly region of Ansai County, China. Agric. Ecosyst. Environ. 2006, 114, 387–396. [Google Scholar] [CrossRef] [Green Version]
- Moser, D.; Zechmeister, H.G.; Plutzar, C.; Sauberer, N.; Wrbka, T.; Grabherr, G. Landscape patch shape complexity as an effective measure for plant species richness in rural landscapes. Landsc. Ecol. 2002, 17, 657–669. [Google Scholar] [CrossRef]
- Renetzeder, C.; Schindler, S.; Peterseil, J.; Prinz, M.A.; Mücher, S.; Wrbka, T. Can we measure ecological sustainability? Landscape pattern as an indicator for naturalness and land use intensity at regional, national and European level. Ecol. Indic. 2010, 10, 39–48. [Google Scholar] [CrossRef]
- Turner, M.G. Spatial and temporal analysis of landscape patterns. Landsc. Ecol. 1990, 4, 21–30. [Google Scholar] [CrossRef]
Corine Land Cover (CLC) | Agricultural Structure Survey (ASE) | Biogas Power Plants | |
---|---|---|---|
Scale | 1: 100,000 (>25 ha) | Municipality level (local scale) | Coordinates of power plant site |
Nomenclature | 44 classes, 37 relevant in Germany | Every types of agricultural plants and animals | |
Used time scales | 2000, 2012 | 2003, 2010 | 2014 |
Coverage | Europe | Schleswig-Holstein (Germany) | Schleswig-Holstein (Germany) |
Source | Federal Statistical Office | Federal Statistical Office | Federal-state office |
Landscape Diversity Indices | Impact Zones Based on Their IC Density | Entire Study Area | |||
---|---|---|---|---|---|
Impact Zone A | Impact Zone B | Impact Zone C | |||
Agricultural diversity | Richness | −4.543 | −4.009 | −3.377 | −3.849 |
Shannon Diversity | −0.642 | −0.56 | −0.478 | −0.541 | |
Shannon Evenness | −0.012 | −0.014 | −0.031 | −0.019 | |
Crop diversity | Richness | −1.718 | −1.359 | −0.955 | −1.261 |
Shannon Diversity | −0.509 | −0.359 | −0.241 | −0.337 | |
Shannon Evenness | −0.266 | −0.144 | −0.091 | −0.142 |
CLC Category | CLC Code | Shape or Size Related Landscape Indices | Impact Zones Based on Their IC Density | Entire Study Area | ||
---|---|---|---|---|---|---|
Impact Zone A | Impact Zone B | Impact Zone C | ||||
Non-irrigated arable land | 211 | AWMPS | 0.269 ** | 0.033 | 0,319* | 0.128 * |
AWMTE | 0.270 ** | 0.038 | 0.285 | 0.139 * | ||
AWMSI | 0.295 ** | 0.039 | 0.248 | 0.144 * | ||
AWMFRACT | 0.260 * | 0.008 | 0.171 | 0.121 * | ||
Pasture | 231 | AWMPS | −0.201 * | −0.02 | −0.176 | −0.056 |
AWMTE | −0.216 * | −0.02 | −0.167 | −0.056 | ||
AWMSI | −0.243 * | −0.012 | −0.171 | −0.06 | ||
AWMFRACT | −0.250 * | −0.012 | −0.246 | −0.08 | ||
N | 97 | 148 | 46 | 291 |
Land Cover Types | Impact Zones Based on Their IC Density | Total Study Area | ||
---|---|---|---|---|
Impact Zone A | Impact Zone B | Impact Zone C | ||
Total agricultural areas | 0.562 ** | 0.428 ** | 0.183 ** | 0.397 ** |
Arable lands | 0.541 ** | 0.394 ** | 0.152 ** | 0.365 ** |
Silage maize | 0.572 ** | 0.389 ** | 0.238 ** | 0.462 ** |
Pasture | 0.457 ** | 0.242 ** | 0.177 ** | 0.339 ** |
Rye | 0.254 ** | 0.194 ** | 0.013 | 0.196 ** |
Fallow | 0.216 ** | 0.153 ** | 0.082 | 0.108 ** |
Wheat | 0.182 * | 0.235 ** | 0.133 ** | 0.137 ** |
Winter wheat | 0.178 * | 0.242 ** | 0.158 ** | 0.145 ** |
Barley | 0.097 | 0.140 ** | 0.123 * | 0.085 ** |
Potato | 0.086 | 0.128 ** | 0.064 | 0.054 |
Winter rape | 0.185 * | 0.217 ** | 0.115* | 0.119** |
Triticale | 0.138 | 0.080 | 0.170 ** | 0.076 * |
N | 160 | 544 | 408 | 1112 |
Land Cover Diversity Indices | Impact Zones Based on Their IC Density | Entire Study Area | ||
---|---|---|---|---|
Impact Zone A | Impact Zone B | Impact Zone C | ||
Richness Index | −0.297 ** | −0.228 ** | −0.094 | −0.241 ** |
Shannon Diversity Index | −0.234 ** | −0.098 * | −0.029 | −0.137 ** |
Shannon Evenness Index | −0.257 ** | −0.011 | 0.02 | −0.019 |
N | 160 | 544 | 408 | 1112 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Csikos, N.; Schwanebeck, M.; Kuhwald, M.; Szilassi, P.; Duttmann, R. Density of Biogas Power Plants as An Indicator of Bioenergy Generated Transformation of Agricultural Landscapes. Sustainability 2019, 11, 2500. https://doi.org/10.3390/su11092500
Csikos N, Schwanebeck M, Kuhwald M, Szilassi P, Duttmann R. Density of Biogas Power Plants as An Indicator of Bioenergy Generated Transformation of Agricultural Landscapes. Sustainability. 2019; 11(9):2500. https://doi.org/10.3390/su11092500
Chicago/Turabian StyleCsikos, Nandor, Malte Schwanebeck, Michael Kuhwald, Peter Szilassi, and Rainer Duttmann. 2019. "Density of Biogas Power Plants as An Indicator of Bioenergy Generated Transformation of Agricultural Landscapes" Sustainability 11, no. 9: 2500. https://doi.org/10.3390/su11092500
APA StyleCsikos, N., Schwanebeck, M., Kuhwald, M., Szilassi, P., & Duttmann, R. (2019). Density of Biogas Power Plants as An Indicator of Bioenergy Generated Transformation of Agricultural Landscapes. Sustainability, 11(9), 2500. https://doi.org/10.3390/su11092500