Does the Development of Information and Communication Technology and Transportation Infrastructure Affect China’s Educational Inequality?
Abstract
:1. Introduction
2. Literature Review and Research Hypothesis
2.1. Educational Inequality
2.2. ICT and Educational Inequality
2.3. Transportation Infrastructure and Educational Inequality
3. Variables and Models
3.1. Data Source
3.2. Variable Construction
3.2.1. Dependent Variable
3.2.2. Independent Variables
3.2.3. Controlled Variables
3.3. Empirical Models
4. Research Results
4.1. Descriptive Statistics
4.2. Empirical Results
4.2.1. Regression Analysis of the Overall Sample
4.2.2. Regression Analysis of the Overall Sample in Different Periods
4.2.3. Regression Analysis of the Overall Sample in Different Regions
5. Discussion
6. Conclusions and Recommendations
Author Contributions
Funding
Conflicts of Interest
Appendix A
Variables | LLC | IPS | ADF-Fisher | PP-Fisher | Stable or Not |
---|---|---|---|---|---|
EduIneq | −6.1363 *** | 1.3983 | 46.6849 | 94.6206 *** | No |
ICT | −8.3802 *** | −1.4766 | 82.569 ** | 112.274 *** | No |
TRANS | −10.8197 *** | −3.5485 *** | 125.39 *** | 138.475 *** | Yes |
INFL | −35.1408 *** | −9.0169 *** | 244.058 *** | 449.23 *** | Yes |
UNEM | −9.5518 *** | −1.7777 ** | 98.8156 *** | 101.764 *** | Yes |
GOV | −10.0648 *** | −1.1293 | 78.9216 | 53.2447 | No |
EDU | −5.4649 *** | −0.4543 | 68.6602 | 51.8042 | No |
FIV | −10.5637 *** | −1.3802 | 88.161 ** | 94.6012 *** | Yes |
ΔEduIneq | −18.6069 *** | −4.6505 *** | 179.14 *** | 304.595 *** | Yes |
ΔICT | −14.3184 *** | −3.8374 *** | 156.852 *** | 276.858 *** | Yes |
ΔTRANS | −19.3405 *** | −5.1003 *** | 188.87 *** | 295.705 *** | Yes |
ΔINFL | −46.0877 *** | −9.1431 *** | 296.054 *** | 385.31 *** | Yes |
ΔUNEM | −17.6622 *** | −2.4659 *** | 120.753 *** | 125.128 *** | Yes |
ΔGOV | −14.9639 *** | −1.9267 ** | 108.604 *** | 153.813 *** | Yes |
ΔEDU | −13.22 *** | −2.2245 ** | 119.807 *** | 151.604 *** | Yes |
ΔFIV | −17.2492 *** | −4.4288 *** | 175.484 *** | 293.804 *** | Yes |
Test Method | Hypothesis | Statistic | p Value |
---|---|---|---|
F test | H0: The true model is a mixed regression model H1: The true model is a fixed effects model | 3.0362 | 0.0000 |
Hausman test | H0: The true model is a random effect model H1: The true model is a fixed effects model | 86.9791 | 0.0000 |
References
- Ferreira, F.H.G.; Gignoux, J. The Measurement of educational inequality: Achievement and opportunity. World Bank Econ. Rev. 2014, 28, 210–246. [Google Scholar] [CrossRef]
- Golley, J.; Kong, S.T. Inequality of opportunity in China’s educational outcomes. China Econ. Rev. 2018, 51, 116–128. [Google Scholar] [CrossRef]
- Picard, N.; Wolff, F.C. Measuring educational inequalities: A method and an application to Albania. J. Popul. Econ. 2010, 23, 989–1023. [Google Scholar] [CrossRef]
- Braga, M.; Checchi, D.; Meschi, E. Educational policies in a long-run perspective. Econ. Policy 2013, 28, 45–100. [Google Scholar] [CrossRef]
- Valerio Mendoza, O.M. Heterogeneous determinants of educational achievement and inequality across urban China. China Econ. Rev. 2018, 51, 129–148. [Google Scholar] [CrossRef]
- McKenzie, D.; Rapoport, H. Can migration reduce educational attainment? Evidence from Mexico. J. Popul. Econ. 2011, 24, 1331–1358. [Google Scholar] [CrossRef]
- Epple, D.; Romano, R.; Sieg, H. The intergenerational conflict over the provision of public education. J. Public Econ. 2012, 96, 255–268. [Google Scholar] [CrossRef]
- Hendel, I.; Shapiro, J.; Willen, P. Educational opportunity and income inequality. J. Public Econ. 2005, 89, 841–870. [Google Scholar] [CrossRef] [Green Version]
- Checchi, D.; van de Werfhorst, H.G. Policies, skills and earnings: How educational inequality affects earnings inequality. Socio Econ. Rev. 2018, 16, 137–160. [Google Scholar] [CrossRef]
- Tselios, V. The Granger-causality between income and educational inequality: A spatial cross-regressive VAR framework. Ann. Reg. Sci. 2014, 53, 221–243. [Google Scholar] [CrossRef]
- Budría, S.; Moro-Egido, A.I. Education, educational mismatch, and wage inequality: Evidence for Spain. Econ. Educ. Rev. 2008, 27, 332–341. [Google Scholar] [CrossRef] [Green Version]
- Guarini, G.; Laureti, T.; Garofalo, G. Territorial and individual educational inequality: A Capability Approach analysis for Italy. Econ. Model. 2018, 71, 247–262. [Google Scholar] [CrossRef]
- Rodríguez-Pose, A.; Tselios, V. Inequalities in income and education and regional economic growth in western Europe. Ann. Reg. Sci. 2010, 44, 349–375. [Google Scholar] [CrossRef]
- Hanushek, E.A.; Woessmann, L. Do better schools lead to more growth? Cognitive skills, economic outcomes, and causation. J. Econ. Growth 2012, 17, 267–321. [Google Scholar] [CrossRef] [Green Version]
- Yu, N.; Yu, B.; de Jong, M.; Storm, S. Does inequality in educational attainment matter for China’s economic growth? Int. J. Educ. Dev. 2015, 41, 164–173. [Google Scholar] [CrossRef]
- Meschi, E.; Scervini, F. Expansion of schooling and educational inequality in Europe: The educational kuznets curve revisited. Oxf. Econ. Pap. 2014, 66, 660–680. [Google Scholar] [CrossRef]
- Östergren, O.; Lundberg, O.; Artnik, B.; Bopp, M.; Borrell, C.; Kalediene, R.; Leinsalu, M.; Martikainen, P.; Regidor, E.; Rodríguez-Sanz, M.; et al. Educational expansion and inequalities in mortality—A fixed-effects analysis using longitudinal data from 18 European populations. PLoS ONE 2017, 12, e0182526. [Google Scholar] [CrossRef] [PubMed]
- Angus, L.; Snyder, I.; Sutherland-Smith, W. ICT and educational (dis)advantage: Families, computers and contemporary social and educational inequalities. Br. J. Sociol. Educ. 2004, 25, 3–18. [Google Scholar] [CrossRef]
- Nachmias, R.; Mioduser, D.; Forkosh-Baruch, A. ICT use in education: Different uptake and practice in Hebrew-speaking and Arabic-speaking schools in Israel. J. Comput. Assist. Learn. 2010, 26, 492–506. [Google Scholar] [CrossRef]
- Tan, C.Y. Theoretical discussion on forms of cultural capital in Singapore. Asia Pac. Educ. Rev. 2013, 14, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Tondeur, J.; Sinnaeve, I.; van Houtte, M.; van Braak, J. ICT as cultural capital: The relationship between socioeconomic status and the computer-use profile of young people. New Media Soc. 2011, 13, 151–168. [Google Scholar] [CrossRef]
- Nath, H.K.; Liu, L. Information and communications technology (ICT) and services trade. Inf. Econ. Policy 2017, 41, 81–87. [Google Scholar] [CrossRef]
- Bornman, E. Information society and digital divide in South Africa: Results of longitudinal surveys. Inf. Commun. Soc. 2016, 19, 264–278. [Google Scholar] [CrossRef]
- Ayanso, A.; Lertwachara, K. An analytics approach to exploring the link between ICT development and affordability. Gov. Inf. Q. 2015, 32, 389–398. [Google Scholar] [CrossRef]
- Chao, C.-M.; Yu, T.-K. How to overcome the digital divide? An empirical study of Taiwan’s DOCs. Aslib J. Inf. Manag. 2016, 68, 628–642. [Google Scholar] [CrossRef]
- Park, S. Digital inequalities in rural Australia: A double jeopardy of remoteness and social exclusion. J. Rural Stud. 2017, 54, 399–407. [Google Scholar] [CrossRef]
- Yu, T.-K.; Lin, M.-L.; Liao, Y.-K. Understanding factors influencing information communication technology adoption behavior: The moderators of information literacy and digital skills. Comput. Hum. Behav. 2017, 71, 196–208. [Google Scholar] [CrossRef]
- Billon, M.; Crespo, J.; Lera-López, F. Educational inequalities: Do they affect the relationship between Internet use and economic growth? Inf. Dev. 2018, 34, 447–459. [Google Scholar] [CrossRef]
- Nunn, S. Public and Private Built Investment in the New Economy: Exploring Regional Differences, 1990–2000. J. Urban Plan. Dev. 2004, 130, 125–132. [Google Scholar] [CrossRef]
- Schaffer, A.; Siegele, J. Efficient Use of Regional Transport Infrastructure, Communication Networks, and Human Capital. J. Infrastruct. Syst. 2009, 15, 263–272. [Google Scholar] [CrossRef]
- Matas, A.; Raymond, J.-L.; Roig, J.-L. Job Accessibility and Female Employment Probability: The Cases of Barcelona and Madrid. Urban Stud. 2010, 47, 769–787. [Google Scholar] [CrossRef]
- Yu, H. The influential factors of China’s regional energy intensity and its spatial linkages: 1988–2007. Energy Policy 2012, 45, 583–593. [Google Scholar] [CrossRef]
- Hannum, E.; Wang, M. Geography and educational inequality in China. China Econ. Rev. 2006, 17, 253–265. [Google Scholar] [CrossRef]
- Dalal, P.; Goulias, K.G. Literacy, Access, and Mobility. Transp. Res. Rec. J. Transp. Res. Board 2010, 2193, 132–139. [Google Scholar] [CrossRef]
- Whitacre, B.; Gallardo, R.; Strover, S. Does rural broadband impact jobs and income? Evidence from spatial and first-differenced regressions. Ann. Reg. Sci. 2014, 53, 649–670. [Google Scholar] [CrossRef]
- Li, Y.; DaCosta, M.N. Transportation and income inequality in China: 1978–2007. Transp. Res. Part A Policy Pract. 2013, 55, 56–71. [Google Scholar] [CrossRef]
- Ahangari, H.; Garrick, N.W.; Atkinson-Palombo, C. Relationship between Human Capital and Transportation Sustainability for the United States and Selected European Countries. Transp. Res. Rec. J. Transp. Res. Board 2016, 2598, 92–101. [Google Scholar] [CrossRef]
- Teulings, C.N.; Ossokina, I.V.; de Groot, H.L.F. Land use, worker heterogeneity and welfare benefits of public goods. J. Urban Econ. 2018, 103, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Salike, N.; Luan, F.; He, M. Heterogeneous effects of inter- and intra-city transportation infrastructure on economic growth: Evidence from Chinese cities. Cambridge J. Reg. Econ. Soc. 2016, 9, 571–587. [Google Scholar] [CrossRef]
- Liu, Z. Institution and inequality: The hukou system in China. J. Comp. Econ. 2005, 33, 133–157. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. Available online: http://data.stats.gov.cn/ (accessed on 15 December 2018).
- Ministry of Education of the People’s Republic of China. Available online: http://www.moe.gov.cn/s78/A03/ghs_left/s182/ (accessed on 19 December 2018).
- Ministry of Finance of the People’s Republic of China. Available online: http://www.mof.gov.cn/zhengwuxinxi/caizhengshuju/ (accessed on 19 December 2018).
- Zhang, X.; Kanbur, R. Spatial inequality in education and health care in China. China Econ. Rev. 2005, 16, 189–204. [Google Scholar] [CrossRef]
- International Communication Union. Available online: https://www.itu.int/en/ITU-D/Statistics/Pages/publications/misr2018.aspx (accessed on 5 January 2019).
- Tong, T.; Yu, T.E. Transportation and economic growth in China: A heterogeneous panel cointegration and causality analysis. J. Transp. Geogr. 2018, 73, 120–130. [Google Scholar] [CrossRef]
- Yu, N.; De Jong, M.; Storm, S.; Mi, J. Transport Infrastructure, Spatial Clusters and Regional Economic Growth in China. Transp. Rev. 2012, 32, 3–28. [Google Scholar] [CrossRef]
- The Central People’s Government of the People’s Republic of China. Available online: http://www.gov.cn/zwgk/2011-01/12/content_1783332.htm (accessed on 3 January 2019).
Dimension | Indicators | Indicator Weights | Dimension Weights |
---|---|---|---|
ICT access | Fixed telephone subscriptions per 100 inhabitants | 25% | 40% |
Mobile cellular telephone subscriptions per 100 inhabitants | 25% | ||
Percentage of households with a computer | 25% | ||
Percentage of households with Internet access | 25% | ||
ICT use | Percentage of individuals using the Internet | 50% | 40% |
Fixed broadband subscriptions per 100 inhabitants | 50% | ||
ICT skills | Mean years of schooling | 33% | 20% |
Secondary gross enrolment ratio | 33% | ||
Tertiary gross enrolment ratio | 33% |
Abbreviations | Variables | Definitions |
---|---|---|
EduIneq | Educational inequality | Educational inequality is the unbalancing distribution of educational resources, and is measured by the Gini coefficient on education. |
ICT | Information and communication technology | Information and communication technology is measured by the ICT development index. |
TRANS | Transportation infrastructure | Transportation infrastructure is measured by the proportion of growth of transportation investment to the regional GDP. |
INFL | Inflation | Inflation is measured by consumer price index. |
UNEM | Unemployment rate | Unemployment rate is measured by the proportion of the unemployed individuals to the all individuals in the labor force. |
GOV | Government intervention | Government intervention is measured by the proportion of government fiscal expenditure to the regional GDP. |
EDU | Education expenditure | Education expenditure is measured by the proportion of fiscal expenditure on education to the regional population. |
FIV | Fixed assets investment | Fixed assets investment is measured by the proportion of total fixed assets investment to the regional GDP. |
Variables | Observations | Mean | Median | Maximum | Minimum | Standard Deviation |
---|---|---|---|---|---|---|
EduIneq | 341 | 0.2287 | 0.2157 | 0.5301 | 0.1699 | 0.0535 |
ICT | 341 | 0.2875 | 0.2406 | 0.7703 | 0.0753 | 0.1557 |
TRANS | 341 | 0.034 | 0.0264 | 0.1905 | 0.0043 | 0.0251 |
INFL | 341 | 0.0292 | 0.025 | 0.101 | −0.023 | 0.02 |
UNEM | 341 | 0.0351 | 0.036 | 0.051 | 0.012 | 0.0066 |
GOV | 341 | 0.2483 | 0.2068 | 1.3792 | 0.0837 | 0.1902 |
EDU | 341 | 0.1341 | 0.1259 | 0.5163 | 0.0223 | 0.0822 |
FIV | 341 | 0.702 | 0.6912 | 1.3862 | 0.2398 | 0.23 |
Variable | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 |
---|---|---|---|---|---|
ICT | 0.0313 * | 0.0324 * | 0.0305 | ||
(1.6839) | (1.7559) | (0.6319) | |||
TRANS | −0.0901 ** | −0.0916 ** | 0.2706 *** | ||
(−2.4059) | (−2.4551) | (3.8492) | |||
ICT 2 | 0.0011 | ||||
(0.0195) | |||||
TRANS 2 | −2.6839 *** | ||||
(−5.9285) | |||||
INFL | 0.1614 * | 0.1308 | 0.1399 | 0.1614 * | 0.115 |
(1.8306) | (1.4869) | (1.5934) | (1.8254) | (1.3896) | |
UNEM | 0.4291 * | 0.3741 * | 0.3958 * | 0.4294 * | 0.2968 |
(1.8895) | (1.6563) | (1.7567) | (1.8824) | (1.3952) | |
GOV | −0.0273 | −0.033 | −0.033 | −0.0273 | −0.0038 |
(−0.7697) | (−0.9346) | (−0.9393) | (−0.7685) | (−0.1146) | |
GOVt−1 | 0.1387 *** | 0.1492 *** | 0.1476 *** | 0.1387 *** | 0.1362 *** |
(4.4225) | (4.7529) | (4.7183) | (4.414) | (4.6019) | |
EDU | 0.0384 | 0.0201 | 0.0323 | 0.0384 | 0.0362 |
(0.8604) | (0.4587) | (0.7295) | (0.8589) | (0.8754) | |
EDUt−1 | −0.0729 * | −0.0805 * | −0.0792 * | −0.0728 * | −0.0679 * |
(−1.6984) | (−1.8833) | (-1.8604) | (−1.6932) | (−1.6865) | |
FIV | 0.0039 | 0.0053 | 0.0051 | 0.0039 | −0.001 |
(0.3717) | (0.5102) | (0.4912) | (0.3715) | (−0.0997) | |
FIVt−1 | −0.0138 | −0.0112 | −0.013 | −0.0138 | −0.0107 |
(−1.1333) | (−0.93) | (−1.0826) | (−1.1295) | (−0.9433) | |
GINIt−1 | 0.4193 *** | 0.4521 *** | 0.4508 *** | 0.4193 *** | 0.5259 *** |
(8.1994) | (8.6197) | (8.6274) | (8.1671) | (10.34) | |
Constant | 0.0856 *** | 0.0928 *** | 0.0826 *** | 0.0857 *** | 0.0675 *** |
(5.024) | (5.8164) | (4.8842) | (4.667) | (4.3307) | |
Province | Yes | Yes | Yes | Yes | Yes |
Year | Yes | Yes | Yes | Yes | Yes |
Adjusted R2 | 0.9766 | 0.9768 | 0.977 | 0.9765 | 0.9795 |
Observations | 310 | 310 | 310 | 310 | 310 |
Cross sections | 31 | 31 | 31 | 31 | 31 |
F statistic | 263.7567 *** | 266.7793 *** | 263.6003 *** | 257.4878 *** | 296.4835 *** |
D.W. statistic | 2.177 | 2.1462 | 2.1417 | 2.1771 | 2.2073 |
Variable | Model 6 | Model 7 | Model 8 | Model 9 | Model 10 | Model 11 |
---|---|---|---|---|---|---|
2006–2010 | 2011–2016 | |||||
ICT | 0.0051 | 0.1928 * | 0.0455 * | −0.0081 | ||
(0.1147) | (1.717) | (1.8011) | (−0.1226) | |||
TRANS | 0.0502 | −0.2547 | −0.1641 *** | 0.1093 | ||
(0.6334) | (−1.5926) | (−3.4059) | (0.9853) | |||
ICT 2 | −0.2745 * | 0.0788 | ||||
(−1.7968) | (1.0013) | |||||
TRANS 2 | 4.3522 ** | −1.7275 *** | ||||
(2.1778) | (−2.7973) | |||||
INFL | −0.0157 | −0.0015 | 0.0471 | 0.2054 | 0.3393 * | 0.1495 |
(−0.1417) | (−0.014) | (0.4229) | (1.19) | (1.8913) | (0.8819) | |
UNEM | 0.4236 | 0.2909 | 0.4771 | 0.1049 | 0.2719 | 0.1863 |
(0.6653) | (0.4651) | (0.778) | (0.3356) | (0.8367) | (0.602) | |
GOV | 0.045 | 0.0465 | 0.0615 | −0.0317 | −0.0009 | −0.0272 |
(0.655) | (0.691) | (0.9161) | (−0.6104) | (−0.0174) | (−0.5319) | |
GOVt−1 | 0.1029 * | 0.1145 ** | 0.0569 | 0.2128 *** | 0.2212 *** | 0.1921 *** |
(1.7387) | (2.0093) | (0.9405) | (4.5077) | (4.5228) | (4.0673) | |
EDU | 0.0561 | −0.045 | 0.1821 | 0.1153 ** | 0.1180 ** | 0.0953 ** |
(0.3576) | (−0.2971) | (1.1284) | (2.4156) | (2.3817) | (2.0663) | |
EDUt−1 | 0.0045 | 0.0219 | −0.1307 | −0.1038 ** | −0.0946 * | −0.0875 * |
(0.0274) | (0.1404) | (−0.7687) | (−2.2338) | (−1.9657) | (−1.889) | |
FIV | −0.0248 | −0.0217 | −0.0373 | 0.0085 | 0.0065 | 0.0047 |
(−0.9096) | (−0.8071) | (−1.3752) | (0.6948) | (0.5043) | (0.3885) | |
FIVt−1 | −0.0011 | −0.0077 | 0.0149 | −0.0003 | −0.006 | 0.0008 |
(−0.0422) | (−0.2893) | (0.5522) | (-0.0183) | (−0.4041) | (0.0543) | |
GINIt−1 | 0.3182 ** | 0.3382 ** | 0.2438 * | 0.1919 ** | 0.1051 | 0.2829 *** |
(2.2838) | (2.478) | (1.7504) | (2.316) | (1.272) | (3.265) | |
Constant | 0.1156 ** | 0.099 ** | 0.1369 *** | 0.1071 *** | 0.1117 *** | 0.1001 *** |
(2.5366) | (2.1602) | (3.132) | (4.1087) | (4.0045) | (3.9074) | |
Province | Yes | Yes | Yes | Yes | Yes | Yes |
Year | Yes | Yes | Yes | Yes | Yes | Yes |
Adjusted R2 | 0.9791 | 0.9798 | 0.9803 | 0.9813 | 0.9799 | 0.9819 |
Observations | 124 | 124 | 124 | 186 | 186 | 186 |
Cross sections | 31 | 31 | 31 | 31 | 31 | 31 |
F statistic | 131.7712 *** | 136.5271 *** | 139.7662 *** | 211.7463 *** | 196.633 *** | 218.6626 *** |
D.W. statistic | 1.8393 | 1.8956 | 1.7956 | 2.251 | 2.2809 | 2.2521 |
Variable | Model 12 | Model 13 | Model 14 | Model 15 | Model 16 | Model 17 | Model 18 | Model 19 | Model 20 |
---|---|---|---|---|---|---|---|---|---|
East | East | East | Central | Central | Central | West | West | West | |
ICT | −0.0252 | −0.0856 | 0.0256 | 0.0012 | 0.0891 | 0.2854 | |||
(−1.0421) | (−1.1765) | (0.6643) | (0.0083) | (1.491) | (1.6586) | ||||
TRANS | 0.0691 | 0.0043 | −0.0392 | −0.048 | −0.145 ** | 0.3635 *** | |||
(0.8193) | (0.018) | (−0.4836) | (−0.1963) | (−2.493) | (3.038) | ||||
ICT 2 | 0.0639 | 0.0539 | −0.3954 | ||||||
(0.8791) | (0.1646) | (−1.1443) | |||||||
TRANS 2 | 1.159 | 0.1401 | −3.3157 *** | ||||||
(0.2888) | (0.0459) | (−4.7918) | |||||||
INFL | −0.0951 | −0.0887 | −0.0823 | 0.111 | 0.1285 | 0.1079 | 0.0945 | 0.1602 | 0.0804 |
(−0.6987) | (−0.6549) | (−0.6031) | (0.5903) | (0.6789) | (0.5694) | (0.5849) | (0.9793) | (0.5517) | |
UNEM | 0.6449 * | 0.6692 ** | 0.7079 ** | 0.224 | 0.2573 | 0.262 | −0.9394 | −0.835 | −0.9465 * |
(1.9777) | (2.0655) | (2.1846) | (0.832) | (0.9411) | (0.986) | (−1.4902) | (−1.2932) | (−1.6854) | |
GOV | −0.0192 | −0.0313 | −0.0137 | 0.1827 | 0.1774 | 0.1849 | −0.0935 * | −0.0949 * | −0.0564 |
(−0.2339) | (−0.3906) | (−0.1654) | (1.6148) | (1.4927) | (1.6186) | (−1.7418) | (−1.7222) | (−1.1652) | |
GOVt−1 | −0.0196 | −0.0054 | −0.011 | −0.1224 | −0.1157 | −0.1252 | 0.1728 *** | 0.159 *** | 0.1433 *** |
(−0.243) | (−0.0661) | (−0.1357) | (−1.0888) | (−0.9768) | (−1.1099) | (3.6224) | (3.2606) | (3.3604) | |
EDU | 0.0337 | 0.029 | 0.0483 | −0.1817 | −0.1783 | −0.1697 | 0.0671 | 0.0929 | 0.0645 |
(0.4572) | (0.3974) | (0.6607) | (−1.4996) | (−1.4323) | (−1.402) | (0.9034) | (1.2256) | (0.9699) | |
EDUt−1 | −0.1075 | −0.1206 | −0.094 | 0.1929 | 0.1849 | 0.2075 | −0.0436 | −0.0196 | −0.0039 |
(−1.5303) | (−1.6852) | (−1.3436) | (1.4088) | (1.3215) | (1.5275) | (−0.6246) | (−0.2742) | (−0.0626) | |
FIV | 0.0161 | 0.0183 | 0.0172 | 0.0031 | 0.0034 | 0.0018 | −0.0228 | −0.029 | −0.0198 |
(1.0692) | (1.2459) | (1.1386) | (0.1988) | (0.216) | (0.1114) | (−0.9623) | (−1.1758) | (−0.9345) | |
FIVt−1 | −0.0042 | −0.0052 | −0.0098 | −0.0098 | −0.01 | −0.0099 | −0.0131 | −0.0116 | −0.0201 |
(−0.2163) | (−0.2702) | (−0.521) | (−0.5645) | (−0.5735) | (−0.5608) | (−0.5311) | (−0.4532) | (−0.9053) | |
GINIt−1 | 0.301 *** | 0.3164 *** | 0.3411 *** | 0.6433 *** | 0.633 *** | 0.6435 *** | 0.3372 *** | 0.278 *** | 0.4596 *** |
(2.7617) | (2.9107) | (3.3428) | (6.5566) | (6.4889) | (6.4745) | (3.5907) | (2.9921) | (5.1721) | |
Constant | 0.145 *** | 0.1569 *** | 0.1197 *** | 0.0499 * | 0.0519 | 0.0527 * | 0.19 *** | 0.1735 *** | 0.1573 *** |
(3.933) | (4.0264) | (4.407) | (1.725) | (1.6593) | (1.7825) | (4.3026) | (3.6318) | (3.9202) | |
Province | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Yea | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Adjusted R2 | 0.9149 | 0.915 | 0.9138 | 0.9346 | 0.9343 | 0.934 | 0.9784 | 0.9772 | 0.9824 |
Observations | 110 | 110 | 110 | 80 | 80 | 80 | 120 | 120 | 120 |
Cross sections | 11 | 11 | 11 | 8 | 8 | 8 | 12 | 12 | 12 |
F statistic | 40.0606 *** | 40.1151 *** | 39.5262 *** | 42.7898 *** | 42.6127 *** | 42.4153 *** | 174.7024 *** | 165.4577 *** | 215.5114 *** |
D.W. statistic | 2.1522 | 2.1623 | 2.2006 | 2.4831 | 2.4182 | 2.5428 | 2.1181 | 2.2254 | 2.2564 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, P.; Chen, F.; Wang, W.; Song, P.; Zhu, C. Does the Development of Information and Communication Technology and Transportation Infrastructure Affect China’s Educational Inequality? Sustainability 2019, 11, 2535. https://doi.org/10.3390/su11092535
Zhou P, Chen F, Wang W, Song P, Zhu C. Does the Development of Information and Communication Technology and Transportation Infrastructure Affect China’s Educational Inequality? Sustainability. 2019; 11(9):2535. https://doi.org/10.3390/su11092535
Chicago/Turabian StyleZhou, Peng, Fengwen Chen, Wei Wang, Peixin Song, and Chenliang Zhu. 2019. "Does the Development of Information and Communication Technology and Transportation Infrastructure Affect China’s Educational Inequality?" Sustainability 11, no. 9: 2535. https://doi.org/10.3390/su11092535
APA StyleZhou, P., Chen, F., Wang, W., Song, P., & Zhu, C. (2019). Does the Development of Information and Communication Technology and Transportation Infrastructure Affect China’s Educational Inequality? Sustainability, 11(9), 2535. https://doi.org/10.3390/su11092535