Adsorption of Paracetamol in Hospital Wastewater Through Activated Carbon Filters
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Textural Characterization
3.2. Chemical Characterization
3.3. Kinetic Study
3.3.1. Pseudo-First Order Kinetic Model
3.3.2. Pseudo-Second Order Kinetic Model
3.3.3. Intraparticle Diffusion Kinetics
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Escher, B.I.; Baumgartner, R.; Koller, M.; Treyer, K.; Lienert, J.; McArdell, C.S. Environmental toxicology and risk assessment of pharmaceuticals from hospital wastewater. Water Res. 2011, 45, 75–92. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Benigna, I.; Sorlini, S.; Torretta, V. Overview of the Main Disinfection Processes for Wastewater and Drinking Water Treatment Plants. Sustainability 2018, 10, 86. [Google Scholar] [CrossRef]
- Petrie, B.; Barden, R.; Kasprzyk-Hordern, B. A review on emerging contaminats in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring. Water Res. 2015, 72, 3–27. [Google Scholar] [CrossRef] [PubMed]
- Rossner, A.; Snyder, S.A.; Knappe, D.R.U. Removal of emerging contaminants of concern by alternative adsorbents. Water Res. 2009, 43, 3787–3796. [Google Scholar] [CrossRef] [PubMed]
- De García, S.O.; Pinto, G.P.; Encina, P.G.; Mata, R.I. Consumption and occurrence of pharmaceutical and personal care products in the aquatic environment in Spain. Sci. Total Environ. 2013, 444, 451–465. [Google Scholar] [CrossRef] [PubMed]
- Deo, R.P.; Halden, R.U. Pharmaceuticals in the built and natural water environment of the United States. Water 2013, 5, 1346–1365. [Google Scholar] [CrossRef]
- Gómez-Chaparro, M.; García-Sanz-Calcedo, J.; Armenta-Márquez, L. Study on the Use and Consumption of Water in Spanish Private Hospitals as related to Healthcare Activity. Urban Water J. 2018, 15, 601–608. [Google Scholar] [CrossRef]
- Al Sawaf, M.B.; Karaca, F. Different stakeholders’ opinions toward the sustainability of common textile wastewater treatment technologies in Turkey: A Case study Istanbul province. Sustain. Cities Soc. 2018, 42, 194–205. [Google Scholar] [CrossRef]
- González, A.G.; García-Sanz-Calcedo, J.; Salgado, D.R. Quantitative Determination of Potable Cold Water Consumption in German Hospitals. Sustainability 2018, 10, 932. [Google Scholar] [CrossRef]
- Kovalova, L.; Siegrist, H.; Singer, H.; Wittmer, A.; McArdell, C. Hospital wastewater treatment by membrane bioreactor: Performance and efficiency for organic micropollutant elimination. Environ. Sci. Technol. 2012, 46, 1536–1545. [Google Scholar] [CrossRef] [PubMed]
- Thiebault, T.; Boussafir, M.; Le Milbeau, C. Occurrence and removal efficiency of pharmaceuticals in an urban wastewater treatment plant: Mass balance, fate and consumption assessment. J. Environ. Chem. Eng. 2017, 5, 2894–2902. [Google Scholar] [CrossRef]
- Escola Casas, M.; Chhetri, R.K.; Ooi, G.; Hansen, K.M.S.; Litty, K.; Christensson, M.; Kragelund, C.; Andersen, H.R.; Bester, K. Biodegradation of pharmaceuticals in hospital wastewater by staged moving bed biofilm reactors. Water Res. 2015, 83, 293–302. [Google Scholar] [CrossRef]
- Macías-García, A.; Corzo, M.G.; Domínguez, M.A.; Franco, M.A.; Naharro, J.M. Study of the adsorption and electro-adsorption process of Cu (II) ions within thermally and chemically modified activated carbon. J. Hazard. Mater. 2017, 328, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, P.; Ghaedi, M.; Dashtian, M.R.; Rahimi, M.R.; Purkait, M.K. Removal of methyl orange by copper sulphide nanoparticles loaded activated carbon kinetic and isotherm investigation. J. Mol. Liq. 2016, 219, 299–305. [Google Scholar] [CrossRef]
- Zhou, Q.; Duan, Y.F.; Hong, Y.G.; Zhu, C.; She, M.; Zhang, J.; Wei, H.Q. Experimental and kinetic studies of gas-phase mercury adsorption by ram and bromide modified activated carbon. Fuel Process. Technol. 2015, 134, 325–332. [Google Scholar] [CrossRef]
- Nekonei, F.; Nekonei, S.; Tyagi, I.; Gupta, V.K. Kinetic, thermodynamic and isotherm studies for acid blue 129 removal liquids using copper oxide nanoparticle-modified activated carbon as a novel adsorbent. J. Mol. Liq. 2015, 201, 124–133. [Google Scholar] [CrossRef]
- Krishnan, K.A.; Anirudhan, T.S. Removal of cadmium (II) from aqueous solutions by steam-activated sulphurised carbon prepared from sugar-bagasse pith: Kinetics and equilibrium studies. Water Sa 2003, 29, 147–156. [Google Scholar] [CrossRef]
- Pezoti, O.; Cazetta, A.L.; Bedin, K.C.; Souza, L.S.; Martins, A.C.; Silva, T.L.; Junior, O.O.S.; Visentainer, J.V.; Almeida, V.C. NaOH-activated carbon of high surface area produced from guava seeds as a high-efficiency adsorbent for amoxicillin removal: Kinetic, isotherm and thermodynamic studies. Chem. Eng. J. 2016, 288, 778–788. [Google Scholar] [CrossRef]
- Yu, F.; Li, Y.; Han, S.; Ma, J. Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere 2016, 153, 365–385. [Google Scholar] [CrossRef]
- Nielsen, L.; Biggs, M.J.; Skinner, W.; Bandosz, T.J. The effects of activated carbon surface features on the reactive adsorption of carbamazepine and sulfamethoxazole. Carbon 2014, 80, 419–432. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhang, D.; Han, X.; Xing, B. Adsorption of antibiotic ciprofloxacin on carbon nanotubes: pH dependence and thermodynamics. Chemosphere 2014, 95, 150–155. [Google Scholar] [CrossRef]
- Álvarez-Torrellas, S.; Rodríguez, A.; Ovejero, G.; García, J. Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials. Chem. Eng. J. 2016, 283, 936–947. [Google Scholar] [CrossRef]
- Ersan, G.; Kaya, Y.; Apul, O.G.; Karanfil, T. Adsorption of organic contaminants by graphene nanosheets, carbon nanotubes and granular activated carbons under natural organic matter preloading conditions. Sci. Total Environ. 2016, 565, 811–817. [Google Scholar] [CrossRef] [Green Version]
- Rakic, V.; Rac, V.; Krmar, M.; Otman, O.; Auroux, A. The adsorption of pharmaceutically active compounds from aqueous solutions onto activated carbons. J. Hazard. Mater. 2015, 282, 141–149. [Google Scholar] [CrossRef]
- Altmann, J.; Sperlich, A.; Jekel, M. Integrating organic micropolluant removal into tertiary filtration: Combining PAC adsorption with advances phosphosrus removal. Water Res. 2015, 84, 58–65. [Google Scholar] [CrossRef]
- Altmann, J.; Rehfeld, D.; Träder, K.; Sperlich, A.; Jekel, M. Combination of granular activated carbon adsorption and deep-bed filtration as a single advanced wastewater treatment step for organic micropolluant and phosphorus removal. Water Res. 2016, 92, 131–139. [Google Scholar] [CrossRef]
- Radovic, L.R.; Moreno-Castilla, C.; Rivera-Utrilla, J. Carbon materials as adsorbents in aqueous solutions. Chem. Phys. Carbon 2001, 27, 227–406. [Google Scholar]
- Blanchard, G.; Maunaye, M.; Martin, G. Removal of Heavy Metals from Waters by Means of Natural Zeolites. Water Res. 1984, 18, 1501. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. A Comparison of Chemisorption Kinetic Models Applied to Pollutant Removal on Various Sorbents. Process Saf. Environ. Prot. 1998, 76, 332. [Google Scholar] [CrossRef]
- Weber, W.J.; Morris, J.C. Advances in water pollution research: Removal of biologically resistant pollutant from wastewater by adsorption. In Proceedings of the 1st International Conference on Water Pollution Symposium, Oxford, UK, 1 September 1962; pp. 231–266. [Google Scholar]
- Olivares-Marín, M.; Fernández-González, C.; García, A.M.; Gómez-Serrano, V. Porous structure of activated carbon prepared from cherry stones by chemical activation with phosphoric acid. Energy Fuels 2007, 21, 2942–2949. [Google Scholar] [CrossRef]
- Karen, J.; Peña, H.; Giraldo, L.; Moreno, J.C. Preparation of activated carbon from orange peel by chemical activation. Physical and chemical characterization. Rev. Colomb. Quím. 2012, 41, 311–323. [Google Scholar]
- Pretsch, W.; Clerc, E.; Seibl, T.; Simon, J. Tabla Para la Elucidación Estructural de Compuestos Orgánicos por Métodos de Espectroscópicos; Alambra: Madrid, Spain, 1980. [Google Scholar]
- Melillo, M.; Phillips, G.J.; Davies, J.G.; Lloyd, A.W.; Tennison, S.R.; Kozynchenko, O.P.; Mikhalovsky, S.V. The effect of protein binding on ibuprofen adsorption to activated carbons. Carbon 2004, 42, 565–571. [Google Scholar] [CrossRef]
- Otero, M.A.; Grande, C.A.; Rodrigues, E. Adsorption of salicylic acid onto polymeric adsorbents and activated charcoal. React. Funct. Polym. 2004, 60, 203–213. [Google Scholar] [CrossRef]
- Bridelli, M.G.; Ciati, A.; Crippa, P.R. Binding of chemicals to melanins re-examined: Adsorption of some drugs to the surface melanin particles. Biophys. Chem. 2006, 119, 137–145. [Google Scholar] [CrossRef]
- Ruiz, B.; Cabrita, I.; Mestre, A.S.; Parra, J.B.; Pires, J.; Carvalho, A.P.; Ania, C.O. Surface heterogeneity effects of activated carbons on the kinetics of paracetamol removal from aqueoussolution. Appl. Surf. Sci. 2010, 256, 5171–5175. [Google Scholar] [CrossRef]
- Wen, D.; Ho, Y.S.; Tang, X. Comparative sorption kinetic studies of ammonium onto zeolite. J. Hazard. Mater. 2006, 133, 252–256. [Google Scholar] [CrossRef]
- Mukoko, T.; Mupa, M.; Guyo, U.; Dziike, F. Preparation of Rice Hull Activated Carbon for the Removal of Selected Pharmaceutical Waste Compounds in Hospital Effluent. J. Environ. Anal. Toxicol. 2015, 7, 2–9. [Google Scholar]
- Weber, W.J.; Morris, J.C. Kinetics of adsorption on carbon from solutions. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 1963, 89, 31–60. [Google Scholar]
- Asuquo, E.; Martin, A.; Nzerem, P.; Siperstein, F.; Fan, X. Adsorption of Cd(II) and Pb(II) ions from aqueous solutions using mesoporous activated carbon adsorbent: Equilibrium, kinetics and characterisation studies. J. Environ. Chem. Eng. 2017, 5, 679–698. [Google Scholar] [CrossRef] [Green Version]
- Mittal, A.; Malviya, A.; Kaur, D.; Mittal, J.; Kurup, L. Studies on the adsorption kinetics and isotherms for the removal and recovery of Methyl Orange from wastewaters using waste materials. J. Hazard. Mater. 2007, 148, 229–240. [Google Scholar] [CrossRef]
- Huang, Y.; Li, S.; Chen, J.; Zhang, X.; Chen, Y. Adsorption of Pb(II) on mesoporous activated carbons fabricated from water hyacinth using H3PO4activation: Adsorption capacity, kinetic and isotherm studies. Appl. Surf. Sci. 2014, 293, 160–168. [Google Scholar] [CrossRef]
- Qiu, H.; Lv, L.; Pan, B.C.; Zhang, Q.J.; Zhang, W.M.; Zhang, Q.X. Critical review in adsorption kinetic models. J. Zhejiang Univ. A 2009, 10, 716–724. [Google Scholar] [CrossRef]
- Kumar, K.V. Linear and non-linear regression analysis for the sorption kinetics of methylene blue onto activated carbon. J. Hazard. Mater. 2006, 137, 1538–1544. [Google Scholar] [CrossRef]
- Hameed, B.H.; Tan, I.A.W.; Ahmad, A.L. Adsorption isotherm, kinetic modelling and mechanism of 2,4,6-trichlorophenol on coconut husk-based activated carbon. Chem. Eng. J. 2008, 144, 235–244. [Google Scholar] [CrossRef]
- Carabineiro, S.A.C.; Thavorn-Amornsri, T.; Pereira, M.F.R.; Figueiredo, J.L. Adsorption of ciprofloxacin on surface-modified carbon Materials. Water Res. 2011, 45, 4583–4591. [Google Scholar] [CrossRef]
- Petrescu, D.C.; Petrescu-Mag, R.M.; Manciula, D.I.; Nistor, I.A.; Ilieș, V.I. Wastewater Reflections in Consumer Mind: Evidence from Sewage Services Consumer Behaviour. Sustainability 2019, 11, 123. [Google Scholar] [CrossRef]
Sample | SBET (m2∙g−1) | Vmi (cm3∙g−1) | Vme (cm3∙g−1) | Vme-p (cm3∙g−1) | Vma-p (cm3·g−1) |
---|---|---|---|---|---|
K-36-500 | 1556 | 0.88 | 0.22 | 0.22 | 0.25 |
K-60-500 | 2270 | 0.88 | 1.15 | 0.35 | 0.42 |
K-85-500 | 1957 | 1.11 | 0.96 | 0.96 | 0.59 |
Samples | qe (mg·L−1) | tequilibrium (min) |
---|---|---|
K-36-500 | 0.08 | 1500 |
K-60-500 | 0.15 | 1000 |
K-85-500 | 0.13 | 1000 |
Samples | Intraparticle Diffusion | Intraparticle Diffusion | ||||
---|---|---|---|---|---|---|
qe (mg/g) | k1 (g/mg/min) | R2 | qe (mg/g) | k2 (min−1) | R2 | |
K-36-500 | 0.060 | 0.0025 | 0.933 | 0.086 | 0.0750 | 0.996 |
K-60-500 | 0.062 | 0.0035 | 0.857 | 0.154 | 0.1700 | 0.999 |
K-85-500 | 0.061 | 0.0022 | 0.786 | 0.132 | 0.1440 | 0.999 |
Samples | Intraparticle Diffusion | Intraparticle Diffusion | ||||
---|---|---|---|---|---|---|
C1 (mg/g) | kid1 (g/mg/min) | R2 | C2 (mg/g) | kid2 (min−1) | R2 | |
K-36-500 | 0.0893 | 0.06035 | 0.988 | 0.0773 | 0.0044 | 0.981 |
K-60-500 | 0.1551 | 0.13868 | 0.971 | 0.1456 | 0.0133 | 0.943 |
K-85-500 | 0.1332 | 0.11790 | 0.956 | 0.1233 | 0.0103 | 0.933 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macías-García, A.; García-Sanz-Calcedo, J.; Carrasco-Amador, J.P.; Segura-Cruz, R. Adsorption of Paracetamol in Hospital Wastewater Through Activated Carbon Filters. Sustainability 2019, 11, 2672. https://doi.org/10.3390/su11092672
Macías-García A, García-Sanz-Calcedo J, Carrasco-Amador JP, Segura-Cruz R. Adsorption of Paracetamol in Hospital Wastewater Through Activated Carbon Filters. Sustainability. 2019; 11(9):2672. https://doi.org/10.3390/su11092672
Chicago/Turabian StyleMacías-García, Antonio, Justo García-Sanz-Calcedo, Juan Pablo Carrasco-Amador, and Raúl Segura-Cruz. 2019. "Adsorption of Paracetamol in Hospital Wastewater Through Activated Carbon Filters" Sustainability 11, no. 9: 2672. https://doi.org/10.3390/su11092672
APA StyleMacías-García, A., García-Sanz-Calcedo, J., Carrasco-Amador, J. P., & Segura-Cruz, R. (2019). Adsorption of Paracetamol in Hospital Wastewater Through Activated Carbon Filters. Sustainability, 11(9), 2672. https://doi.org/10.3390/su11092672