Effects of Saline and Deficit Irrigation on Soil-Plant Water Status and Potato Crop Yield under the Semiarid Climate of Tunisia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description, Experimental Design and Irrigation Management
2.2. Soil Water Status, Soil Matric Potential and Electrical Conductivity
2.3. Root Length and Crop Yield and Water Use Efficiency
2.4. Water Status Using Thermal Indicators
2.5. Statistical Analysis
3. Results
3.1. Agro-Climatic Characterization of the Study Area
3.2. Physical Characterization of Soil and Root System
3.3. Soil and Crop Water Status Monitoring to Define Thresholds for Irrigation Scheduling
3.3.1. Soil Water Status and Soil Electrical Conductivity
3.3.2. Analysis of Thermal Data and Patterns of Crop Water Status
3.4. Crop Yield Response to Irrigation Management and Water Quality
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bouksila, F. Sustainability of irrigated agriculture under salinity pressure—A study in semiarid Tunisia. Ph.D. Thesis, Lund University, Lund, Sweden, 2011. [Google Scholar]
- IPCC. Climate Change. Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team; Pachauri, R.K., Reisinger, A., Eds.; IPCC: Geneva, Switzerland, 2007; p. 104. [Google Scholar]
- Provenzano, G.; Rodriguez-Sinobas, L.; Roldán-Cañas, J. Irrigated agriculture: Water resources Managment for a sustainable environment. Biosyst. Eng. 2014, 128, 1–3. [Google Scholar] [CrossRef]
- Rodriguez-Sinobas, L.; Provenzano, G.; Roldán-Cañas, J. Special issue: Water Management strategies in irrigated areas. Agric. Water Manag. 2016, 170, 1–4. [Google Scholar] [CrossRef]
- Chehaibi, S.; Hamdi, W.; Abroug, K. Effects of planting depth on agronomic performance of two potato varieties grown in the Sahel region of Tunisia. J. Dev. Agric. Econ. 2013, 5, 272–276. [Google Scholar] [CrossRef]
- Mauromicale, G.; Ierna, A.; Licandro, P. Harvest time and yield of globe artichoke in relation to the production environment of plantlets. Acta Hortic. 2003, 681, 117–126. [Google Scholar] [CrossRef]
- Ierna, A.; Mauromicale, G. Tuber yield and irrigation water productivity in early potatoes as affected by irrigation regime. Agric. Water Manag. 2012, 155, 276–284. [Google Scholar] [CrossRef]
- Shock, C.C.; Feibert, E.B.G.; Saunders, L.D. Potato yield and quality response to deficit irrigation. Hortic. Sci. 1998, 33, 655–659. [Google Scholar]
- Alagna, V.; Iovino, M.; Bagarello, V.; Mataix-Solera, J.; Lichner, L. Alternative analysis of transient infiltration experiment to estimate soil water repellency. Hydrol. Proc. 2018, 33, 661–674. [Google Scholar] [CrossRef]
- Ghazouani, H.; Rallo, G.; Mguidiche, A.; Latrech, B.; Douh, B.; Boujelben, A.; Provenzano, G. Assessing Hydrus-2D model to investigate the effects of different on-farm irrigation strategies on potato crop under subsurface drip irrigation. Water 2019, 11, 540. [Google Scholar] [CrossRef]
- Mguidiche, A.; Provenzano, G.; Douh, B.; Khila, S.; Rallo, G.; Boujelben, A. Assessing Hydrus-2D to simulate soil water content (SWC) and salt accumulation under an SDI system: Application to a potato crop in a semi-arid area of central Tunisia. Irrig. Drain. 2015, 64, 263–274. [Google Scholar] [CrossRef]
- Chamba, D.; Zubelzu, S.; Juana, L. Energy, cost and uniformity in the design of drip irrigation systems. Biosyst. Eng. 2019, 178, 200–218. [Google Scholar] [CrossRef]
- Provenzano, G.; Di Dio, P.; Palau Salvador, G. New computational fluid dynamic procedure to estimate friction and local losses in coextruded drip laterals. J. Irrig. Drain. Eng. 2007, 133, 520–527. [Google Scholar] [CrossRef]
- Provenzano, G.; Alagna, V.; Autovino, D.; Juarez, J.M.; Rallo, G. Analysis of geometrical relationships and friction losses in small-diameter lay-flat polyethylene pipes. J. Irrig. Drain. Eng. 2016, 142, 04015041. [Google Scholar] [CrossRef]
- Rallo, G.; Agnese, C.; Minacapilli, M.; Provenzano, G. Comparison of SWAP and FAO agro-hydrological models to schedule irrigation of wine grape. J. Irrig. Drain. Eng. 2012, 138, 581–591. [Google Scholar] [CrossRef]
- Rallo, G.; Provenzano, G. Modelling eco-physiological response of table olive trees (Olea europaea L.) to soil water deficit conditions. Agric. Water Manag. 2013, 120, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Idso, S.B.; Reginato, R.J.; Farah, S.M. Soil and atmosphere induced plant water stress as inferred from foliage temperatures. Water Res. Res. 1982, 18, 11–43. [Google Scholar] [CrossRef]
- Jackson, R.D. Canopy temperature and crop water stress. In Advances in Irrigation; Hillel, D.I., Ed.; Academic Press: Cambridge, MA, USA, 1982; Volume 1, pp. 43–85. [Google Scholar]
- Ghazouani, H.; Capodici, F.; Ciraolo, G.; Maltese, A.; Rallo, G.; Provenzano, G. Potential of thermal images and simulation models to assess water and salt stress: Application to potato crop in central Tunisia. Chem. Eng. Trans. 2017, 58, 709–714. [Google Scholar]
- Idso, S.B. Non-water-stressed baselines: A key to measuring and interpreting plant water stress. Agric. Meteorol. 1982, 27, 59–70. [Google Scholar] [CrossRef]
- Maher, M. Le climat agricole au Sahel Tunisien et les changements climatiques. Master’s Thesis, Mémoire, Université du Québec à Montréal, Montreal, QC, Canada, 2009. (In French). [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Ghazouani, H.; Autovino, D.; Rallo, G.; Douh, B.; Provenzano, G. Using Hydrus-2D model to assess the optimal drip lateral depth for Eggplant crop in a sandy loam soil of central Tunisia. Ital. J. Agrometeorol. 2016, 1, 47–57. [Google Scholar]
- Negm, A.; Capodici, F.; Ciraolo, G.; Maltese, A.; Provenzano, G.; Rallo, G. Assessing the performance of thermal inertia and Hydrus models to estimate surface soil water content. Appl. Sci. 2017, 7, 975. [Google Scholar] [CrossRef]
- Autovino, D.; Rallo, G.; Provenzano, G. Predicting soil and plant water status dynamic in olive orchards under different systems with Hydrus-2D: Model performance and scenario analysis. Agric. Water Manag. 2018, 203, 225–235. [Google Scholar] [CrossRef]
- Douh, B. Etude Théorique et Expérimentale de L’irrigation Goutte à Goutte Souterraine Sur une Culture de Mais (Zea mays L.). Ph.D. Thesis, Higher Agronomic Institute of Chott Meriem, Sousse, Tunisia, 2012. [Google Scholar]
- Provenzano, G.; Rallo, G.; Ghazouani, H. Assessing Field and Laboratory Calibration Protocols for the Diviner 2000 Probe in a Range of Soils with Different Textures. J. Irrig. Drain. Eng. 2015, 142. [Google Scholar] [CrossRef]
- U.S. Salinity Laboratory Staff. Diagnosis and Improvement of Saline and Alkali Soils; USDA, Handbook 60; U.S. Government Printing Office: Washington, DC, USA, 1954.
- Idso, S.B.; Jackson, R.D.; Pinter, P.J.; Reginato, R.J.; Hatfield, J.L. Normalizing the stress-degree-day parameter for environmental variability. Agric. Meteorol. 1981, 24, 45–55. [Google Scholar] [CrossRef]
- Van Genuchten, M.T. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef]
- Seki, K. SWRC fit—A nonlinear fitting program with a water retention curve for soils having unimodal and bimodal pore structure. Hydrol. Earth Syst. Sci. Discuss. 2007, 4, 407–437. [Google Scholar] [CrossRef]
- Maas, E.V.; Hoffman, G.J. Crop salt tolerance-current assessment. J. Irrig. Drain. Div. 1977, 103, 115–134. [Google Scholar]
- Rallo, G.; González-Altozano, P.; Manzano-Juárez, J.; Provenzano, G. Using field measurements and FAO-56 model to assess the eco-physiological response of citrus orchards under regulated deficit irrigation. Agric. Water Manag. 2017, 180, 136–147. [Google Scholar] [CrossRef]
- Martínez-Gimeno, M.A.; Bonet, L.; Provenzano, G.; Badal, E.; Intrigliolo, D.S.; Ballester, C. Assessment of yield and water productivity of clementine trees under surface and subsurface drip irrigation. Agric. Water Manag. 2018, 206, 209–216. [Google Scholar] [CrossRef]
- Boone, F.R.; Bouma, J.; de Smet, L.A.H. A case study on the effect of soil compaction on potato growth in a loamy sand soil. I. Physical measurements and rooting patterns. Neth. J. Agric. Sci. 1978, 26, 405–420. [Google Scholar]
- Patel, N.; Rajput, T.B.S. Effect of drip tape placement depth and irrigation level on yield of potato. Agric. Water Manag. 2007, 88, 209–223. [Google Scholar] [CrossRef]
- Iqbal, M.M.; Shah, S.M.; Mohammad, W.; Nawaz, H. Field response of potato subjected to water stress at different growth stages. In Crop Yield Response to Deficit Irrigation; Kirda, C., Moutonnet, P., Hera, C., Nielsen, D.R., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Schoups, G.; Hopmans, J.W.; Young, C.A.; Vrugt, J.A.; Wallender, W.W.; Tanji, K.K.; Panday, S. Sustainability of irrigated agriculturein the San Joaquin Valley, California. Proc. Natl. Acad. Sci. USA 2005, 102, 15352–15356. [Google Scholar] [CrossRef]
- Heuer, B.; Nadler, A. Growth and development of potatoes under salinity and water deficit. Austr. J. Agric. Res. 1995, 46, 1477–1486. [Google Scholar] [CrossRef]
- Smedema, L.K.; Rycroft, D.W. Land Drainage: Planning and Design of Agricultural Drainage Systems; Batsford Academic and Educational Ltd.: London, UK, 1983; p. 384. [Google Scholar]
- Erdem, T.; Orta, H.; Erdem, Y.; Okursoy, H. Crop water stress index for potato under furrow and drip irrigation systems. Potato Res. 2005, 48, 49–58. [Google Scholar] [CrossRef]
- Wang, F.-X.; Kang, Y.; Liu, S.-P.; Hou, X.-Y. Effects of soil matric potential on potato growth under drip irrigation in the North China Plain. Agric. Water Manag. 2007, 88, 34–48. [Google Scholar] [CrossRef]
- El Mokh, F.; Nagaz, K.; Masmoudi, M.M.; Mechlia, N.B. Effects of surface and subsurface drip irrigation regimes with saline water on yield and water use efficiency of potato in arid conditions of Tunisia. J. Agric. Environ. Int. Dev. 2014, 108, 227–246. [Google Scholar]
Depth | Cl | Si | Sa | ρb | Ks | θs | θr | α | n |
---|---|---|---|---|---|---|---|---|---|
[cm] | [%] | [%] | [%] | [g cm−3] | [cm h−1] | [cm3cm−3] | [cm3cm−3] | [-] | [-] |
0–20 | 17.3 | 14.6 | 68.1 | 1.27 | 11.00 | 0.41 | 0.08 | 0.01 | 1.83 |
20–40 | 17.6 | 15.1 | 67.3 | 1.43 | 6.40 | 0.37 | 0.07 | 0.01 | 1.49 |
40–60 | 17.9 | 14.3 | 66.9 | 1.47 | 3.80 | 0.40 | 0.08 | 0.01 | 1.69 |
0–60 | 17.6 | 14.7 | 67.7 | 1.39 | 7.06 | 0.39 | 0.08 | 0.01 | 1.59 |
P | I | Yield | IWUE | TWUE | ||||
---|---|---|---|---|---|---|---|---|
Treatment | [mm] | [mm] | [t/ha] | Kg/m3 | Kg/m3 | |||
µ | σ | µ | σ | µ | σ | |||
2014 | ||||||||
T1 | 108.6 | 124.4 | 39.1 a | 8.3 | 31.5 a,b | 6.7 | 16.8 a | 3.6 |
T2 | ″ | 61.1 | 24.9 b | 10.7 | 40.7 a | 17.4 | 14.7 a,b | 6.3 |
T3 | ″ | 112.2 | 24.1 b | 9.4 | 21.5 b,c | 8.4 | 10.9 a,b | 4.3 |
T4 | ″ | 67.1 | 19.5 b | 13.3 | 29.1 b,c | 20.0 | 11.1 a,b | 7.7 |
2015 | ||||||||
T1 | 73.6 | 181.9 | 39.0 a | 8.3 | 21.4 b,c | 5.2 | 15.3 a,b | 3.7 |
T2 | ″ | 94.5 | 25.8 b | 3.2 | 27.3 b,c | 3.4 | 15.3 a,b | 1.9 |
T3 | ″ | 165.1 | 26.3 b | 9.4 | 15.9 c | 2.5 | 11.0 a,b | 1.7 |
T4 | ″ | 83.1 | 16.3 b | 2.4 | 19.6 b,c | 2.9 | 10.4 b | 1.5 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghazouani, H.; Rallo, G.; Mguidiche, A.; Latrech, B.; Douh, B.; Boujelben, A.; Provenzano, G. Effects of Saline and Deficit Irrigation on Soil-Plant Water Status and Potato Crop Yield under the Semiarid Climate of Tunisia. Sustainability 2019, 11, 2706. https://doi.org/10.3390/su11092706
Ghazouani H, Rallo G, Mguidiche A, Latrech B, Douh B, Boujelben A, Provenzano G. Effects of Saline and Deficit Irrigation on Soil-Plant Water Status and Potato Crop Yield under the Semiarid Climate of Tunisia. Sustainability. 2019; 11(9):2706. https://doi.org/10.3390/su11092706
Chicago/Turabian StyleGhazouani, Hiba, Giovanni Rallo, Amel Mguidiche, Basma Latrech, Boutheina Douh, Abdelhamid Boujelben, and Giuseppe Provenzano. 2019. "Effects of Saline and Deficit Irrigation on Soil-Plant Water Status and Potato Crop Yield under the Semiarid Climate of Tunisia" Sustainability 11, no. 9: 2706. https://doi.org/10.3390/su11092706
APA StyleGhazouani, H., Rallo, G., Mguidiche, A., Latrech, B., Douh, B., Boujelben, A., & Provenzano, G. (2019). Effects of Saline and Deficit Irrigation on Soil-Plant Water Status and Potato Crop Yield under the Semiarid Climate of Tunisia. Sustainability, 11(9), 2706. https://doi.org/10.3390/su11092706