Sustainable Policy Evaluation of Vehicle Exhaust Control—Empirical Data from China’s Air Pollution Control
Abstract
:1. Introduction
2. Literature Review
- We distinguish the flow and stock pollution of vehicles and further study the effect of emission reduction using the actual emission data of 31 provinces and municipalities in China.
- We analyze the effect of emission reduction of mixed policy-fuel price, fuel tax, emission standards, fuel standards, and restrictions, to improve these mixed policies and to further provide feasibility advice for the control of automobile exhaust.
- We estimate the economic effects of emission reduction policies using actual data of automobile exhaust and calculate the stock pollution in the different dissipation rates.
3. Empirical Fact and Optimal Control Mechanism of Automobile Exhaust
3.1. Empirical Fact
3.2. Optimal Control Mechanism of Vehicle Exhaust
4. Model and Data
4.1. Model Construction
- Net fuel price and fuel tax. Because the actual fuel price includes fuel taxes, we divide it into net fuel prices and fuel taxes.
- Emission standards. The emission standards for motor vehicles are based on the emission limits and measurement methods for light vehicles. In the index, the substitution variable of the emission standards is the emission standards limit in 2000 minus the emission standards limit in practice in that year ().
- Fuel standards. The computing method of fuel standards is the same as emission standards. ().
- Restriction. Virtual variables are used instead (Restricted city is 1, unrestricted city is 0).
4.2. Data
5. Estimation and Results
5.1. Baseline Regression Results
5.2. Endogenous Discussion
5.3. Robustness Test
5.4. Heterogeneity Analysis
6. Further Analysis of Exhaust Control Policies
6.1. Accumulation and Influence of Exhaust under Different Policies
6.2. Economic Benefits of Automobile Exhaust Reduction
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hart, J.; Rimm, E.; Rexrode, K.; Laden, F. Changes in traffic exposure and the risk of incident myocardial infarction and All-cause mortality. Epidemiology 2013, 24, 735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, K.A.; Siscovick, D.S.; Sheppard, L.; Shepherd, K.; Sullivan, J.H.; Anderson, G.L.; Kaufman, J.D. Long-term exposure to Air pollution and incidence of cardiovascular events in women. N. Engl. J. Med. 2007, 356, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Modig, L.; Torén, K.; Janson, C.; Jarvholm, B.; Forsberg, B. Vehicle exhaust outside the home and onset of asthma among adults. Eur. Respir. 2009, 33, 1261–1267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilhelm, M.; Ghosh, J.K.; Su, J.; Cockburn, M.; Jerrett, M.; Ritz, B. Traffic-related air toxics and preterm birth: A population-based case–control study in Los Angeles County, California. Environ. Health 2011, 10, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnett, A.G.; Knibbs, L.D. Higher Fuel Prices are Associated with Lower Air Pollution Levels. Environ. Int. 2014, 66, 88–91. [Google Scholar] [CrossRef] [Green Version]
- Smith, K.R.; Jerrett, M.; Anderson, H.R.; Burnett, R.T.; Stone, V.; Derwent, R.; Pope, C.A. Public health benefits of strategies to reduce greenhouse-gas emissions: Health implications of short-lived greenhouse pollutants. Lancet 2009, 374, 2091–2103. [Google Scholar] [CrossRef] [Green Version]
- Small, K.A.; Kazimi, C. On the costs of air pollution from motor vehicles. Transp. Econ. Policy 1995, 29, 7–32. [Google Scholar]
- Archibald, R.; Gillingham, R. An analysis of the short run consumer demand for gasoline using household survey data. Rev. Econ. Stat. 1980, 62, 622–628. [Google Scholar] [CrossRef]
- Walls, M.; Krupnick, A.; Hood, C. Estimating Demand for Vehicle Miles Traveled Using Household Survey Data: Results from the Nationwide Personal Transportation Survey; Resources for the Future Discussion Paper ENR 93-25; Energy and Natural Resources Division: Washington, DC, USA, 1993. [Google Scholar]
- Drollas, L.P. The demand for gasoline. Energy Econ. 1984, 6, 71–82. [Google Scholar] [CrossRef]
- Dahl, C.; Sterner, T. Analyzing gasoline demand elasticities: A survey. Energy Econ. 1991, 13, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Dahl, C.; Sterner, T. A survey of econometric gasoline demand elasticities. Int. J. Energy Syst. 1991, 11, 53–76. [Google Scholar]
- Johansson, O.; Schipper, L. Measuring long run automobile fuel demand: Separate estimations of vehicle stock, mean fuel intensity, and mean annual driving distance. Transp. Econ. Policy 1997, 31, 277–292. [Google Scholar]
- Sipes, K.N.; Mendelsohn, R. The effectiveness of gasoline taxation to manage air pollution. Ecol. Econ. 2001, 36, 299–309. [Google Scholar] [CrossRef]
- Penghui, X.; Ruobing, L. Effects of oil price changes on air pollution: The transmission pathway from car use. China Ind. Econ. 2015, 5, 100–114. [Google Scholar]
- Jun, P.; Ji, Z.; Sha, F. Applied to CGE model analyzes the economic impact of fuel tax in China. Expl. Econ. Probl. 2008, 11, 69–73. [Google Scholar]
- Zhihui, Y. Determination of fuel tax rate—Based on CGE analysis. Stat. Study 2009, 5, 86–93. [Google Scholar]
- Wei, Q.; Hengjun, H.; Siwen, W. Evaluation of air quality effect of automobile driving restriction policy -- a typical data integration analysis in Lanzhou. Stat. Inform. Forum 2015, 30, 74–81. [Google Scholar]
- Eskeland, G.S.; Feyzioğlu, T.N. Is Demand for Polluting Goods Manageable? An Econometric Study of Car Owership and Use in Mexico. J. Dev. Econ. 1997, 53, 423–455. [Google Scholar]
- Eskeland, G.S.; Feyzioglu, T. Rationing can backfire: The “day without a car” in Mexico City. World Bank Econ. Rev. 1997, 11, 383–408. [Google Scholar] [CrossRef]
- Davis, L.W. The effect of driving restrictions on air quality in Mexico City. J. Polit. Econ. 2008, 116, 38–81. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.; Zhang, W.; Umanskaya, V.I. The Effects of Driving Restrictions on Air Quality: São Paulo, Bogotá, Beijing, and Tianjin. In Proceedings of the Agricultural and Applied Economics Association Annual Meeting, Pittsburgh, PA, USA, 24–26 July 2011. [Google Scholar]
- Cartalis, C.; Deligiorgi, D. Measurement needs in support of emissions management practices and policy planning: The case for Athens, Greece. Paper OT9-I. In Proceedings of the Regional Photochemical Measurement and Modeling Studies Conference of the Air & Waste Management Association, San Diego, CA, USA, 8–12 November 1993; pp. 7–12. [Google Scholar]
- Wu, Y.; Wang, R.; Zhou, Y.; Lin, B.; Fu, L.; He, K.; Hao, J. On Road Vehicle Emission Control in Beijing: Past, Present, and Future. Environ. Sci. Technol. 2011, 45, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; He, G. Effects of the Post-Olympics Driving Restrictions on Air Quality in Beijing. Sustainability 2016, 8, 902. [Google Scholar] [CrossRef] [Green Version]
- Jing, C.; Xin, W.; Xiaohan, Z. Has the policy improved Beijing’s air quality? Economics 2014, 13, 1091–1126. [Google Scholar]
- Rhys-Tyler, G.A.; Bell, M.C. Toward reconciling instantaneous roadside measurements of light duty vehicle exhaust emissions with type approval driving cycles. Environ. Sci. Technol. 2012, 19, 10532–10538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suhui, R.; Ke, W. Study on measures and effects of emission reduction in China’s automobile emission standardss. Ind. Technol. Innov. 2016, 2, 171–175. [Google Scholar]
- Alpha, C. Chiang, Optimization foundation; Renmin University of China Press: Beijing, China, 2016. [Google Scholar]
- Henders, J.V. Effects of Air Quality Regulation. Am. Econ. Rev. 1996, 86, 789–813. [Google Scholar]
- Hongyou, L.; Qiming, L.; Xinxin, X.; Nana, Y. Can environmental taxes reduce pollution and increase it? Based on the change of China’s pollution fee collection standard. China Popul. Resour. Environ. 2019, 29, 130–137. [Google Scholar]
- Kunxin, S. Study on haze control effect of automobile emission standards—Analysis based on breakpoint regression designs. Soft Sci. 2017, 11, 93–97. [Google Scholar]
Variable | Unit | Mean | Std. Dev. | Min | Max | ||||
---|---|---|---|---|---|---|---|---|---|
Gasoline | Diesel | Gasoline | Diesel | Gasoline | Diesel | Gasoline | Diesel | ||
CO | Million tons | 4.325 | 2.532 | 0.713 | 0.719 | 2.376 | 0.436 | 5.807 | 4.095 |
HC | Million tons | 2.085 | 1.078 | 0.688 | 0.697 | 0.332 | −0.78 | 3.400 | 2.470 |
NOX | Million tons | 1.447 | 2.341 | 0.779 | 0.776 | 0.624 | 0.312 | 2.805 | 3.696 |
Net fuel price | Yuan/Liter | 1.439 | 1.525 | 0.217 | 0.147 | 0.975 | 1.330 | 1.668 | 1.701 |
Fuel tax | Yuan/Liter | 0.171 | −0.05 | 0.195 | 0.188 | 0 | −0.22 | 0.149 | 0.182 |
Emission standards | mg/km | 1.054 | −0.79 | 0.399 | 0.186 | 0 | −1.02 | 1.212 | −0.51 |
Fuel standards | - | 6.820 | 8.430 | 0.059 | 0.162 | 6.745 | 8.006 | 6.898 | 8.515 |
Restrictions | - | 0.343 | 0.343 | 0.867 | 0.867 | 0 | 0 | 8 | 8 |
Number of vehicles | Thousands of cars | 5.581 | 3.760 | 0.939 | 0.873 | 2.783 | 1.247 | 7.461 | 5.243 |
Fuel consumption | Liter | −0.13 | −2.23 | 0.169 | 0.112 | −0.42 | −2.45 | 0.139 | −2.13 |
Vehicle and vessel tax (CO) | - | 6.507 | 6.479 | 0.750 | 0.636 | 4.454 | 4.629 | 7.902 | 7.644 |
Vehicle and vessel tax (HC) | - | 8.747 | 7.933 | 0.779 | 0.660 | 6.604 | 5.997 | 10.29 | 9.243 |
Vehicle and vessel tax (NOX) | - | 9.385 | 6.671 | 0.814 | 0.603 | 7.485 | 5.183 | 11.49 | 8.310 |
GDP per capita | Ten thousand Yuan | 10.67 | −0.79 | 0.451 | 0.186 | 9.490 | −1.02 | 11.76 | −0.51 |
CO | HC | NOX | |||||
---|---|---|---|---|---|---|---|
(1) FE | (2) OLS | (3) FE | (4) OLS | (5) FE | (6) OLS | ||
Gasoline | Diesel | Gasoline | Diesel | Gasoline | Diesel | ||
Net fuel price | −0.453 *** (0.0389) | −0.339 *** (0.0637) | −0.461 *** (0.0393) | −0.343 *** (0.0637) | −0.459 *** (0.0388) | −0.352 *** (0.0635) | |
Core explanatory variable | Fuel tax | −0.547 *** (0.0584) | −0.0463 (0.0383) | −0.570 *** (0.0580) | −0.0500 (0.0383) | −0.576 *** (0.0568) | −0.0535 (0.0383) |
Emission standards | −0.0552 ** (0.0181) | −0.272 *** (0.0692) | −0.0522 ** (0.0183) | −0.275 *** (0.0692) | −0.0495 ** (0.0183) | −0.281 *** (0.0693) | |
Fuel standards | −0.818 *** (0.230) | −0.188 *** (0.0433) | −0.821 *** (0.233) | −0188 *** (0.0434) | −0.850 *** (0.230) | −0.190 *** (0.0436) | |
Restrictions | 0.00280 (0.00416) | 0.00104 (0.00202) | 0.00338 (0.00420) | 0.000925 (0.00202) | 0.00355 (0.00416) | 0.000955 (0.00204) | |
Vehicle and vessel tax | −0.952 *** (0.0155) | −0.991 *** (0.00481) | −0.967 *** (0.0146) | −0.992 *** (0.00471) | −0.952 *** (0.0170) | −0.995 *** (0.00418) | |
Control variable | Number of vehicles | 1.028 *** (0.0273) | 0998 *** (0.00238) | 1.044 *** (0.0266) | 0998 *** (0.00248) | 1.022 *** (0.0295) | 0999 *** (0.00221) |
Fuel consumption | −1.527 *** (0.159) | 2.787 *** (0.233) | −1.554 *** (0.161) | 2.803 *** (0.233) | −1.559 *** (0.158) | 2.841 *** (0.232) | |
GDP per capita | 0.0757 (0.0420) | 0.00175 (0.00420) | 0.0773 (0.0425) | 0.00149 (0.00427) | 0.0701 (0.0424) | 0.00185 (0.00437) | |
Constant term | _cons | 10.15 *** (1.748) | 13.29 *** (0.914) | 10.10 *** (1.774) | 13.33 *** (0.915) | 10.33 *** (1.751) | 13.47 *** (0.912) |
Number of obs | 248 | 248 | 248 | 248 | 248 | 248 | |
R-Squared | 0.955 | 0.999 | 0.959 | 0.999 | 0.954 | 0.999 |
CO | HC | NOX | ||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
Gasoline | Diesel | Gasoline | Diesel | Gasoline | Diesel | |
Net fuel price | −0.941 *** (0.0530) | −0.447 *** (0.0735) | −0.949 *** (0.0518) | −0.453 *** (0.0737) | −0.948 *** (0.0522) | −0.459 *** (0.0732) |
Fuel tax | −1.204 *** (0.0814) | −0.0650 (0.0441) | −1.221 *** (0.0760) | −0.0687 (0.0440) | −1.225 *** (0.0761) | −0.0708 (0.0441) |
Emission standards | −0.243 *** (0.0235) | −0.408 *** (0.0804) | −0.243 *** (0.0235) | −0.412 *** (0.0807) | −0.240 *** (0.0247) | −0.416 *** (0.0807) |
Fuel standard | −3.457 *** (0.3345) | −0.252 *** (0.0463) | −3.485 *** (0.3324) | −0.253 *** (0.0465) | −3.495 *** (0.3372) | −0.254 *** (0.0466) |
Restrictions | 0.00314 (0.00579) | −0.00015 (0.00221) | 0.00285 (0.00579) | −0.00028 (0.00221) | 0.00360 (0.00561) | −0.00024 (0.00219) |
Control variables | YES | YES | YES | YES | YES | YES |
Davidson-MacKinnon test | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Under identification test | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Weak identification test | 80.864 | 1260.404 | 81.400 | 1233.148 | 82.479 | 1237.169 |
Sargan statistic | 0.5624 | 0.7311 | 0.5737 | 0.6731 | 0.8663 | 0.5713 |
Number of obs | 248 | 248 | 248 | 248 | 248 | 248 |
Gasoline | CO | HC | NOX | |||
---|---|---|---|---|---|---|
(1) FE(G)/ OLS (D) | (2) IV-GMM | (3) FE(G)/ OLS (D) | (4) IV-GMM | (5) FE(G)/ OLS (D) | (6) IV-GMM | |
Fuel price | −1.032 *** (0.0225) | −1.151 *** (0.0377) | −1.034 *** (0.0204) | −1.170 *** (0.0307) | −1.035 *** (0.0199) | −1.186 *** (0.0347) |
Fuel tax/Fuel price | −0.478 *** (0.0153) | −0.539 *** (0.0326) | −0.480 *** (0.0142) | −0.552 *** (0.0281) | −0.481 *** (0.0139) | −0.564 *** (0.0296) |
Emission standards (dummy variable) | −0.109 *** (0.00499) | −0.130 *** (0.0083) | −0.109 *** (0.00498) | −0.129 *** (0.0081) | −0.108 *** (0.00506) | −0.130 *** (0.0098) |
Fuel standard (dummy variable) | −0.0991 *** (0.00518) | −0.123 *** (0.0068) | −0.0993 *** (0.00509) | −0.125 *** (0.0071) | −0.0999 *** (0.00504) | −0.132 *** (0.0109) |
Restrictions | 0.000753 (0.00191) | 0.00325 ** (0.00144) | 0.000751 (0.00191) | 0.00303 ** (0.00136) | 0.000807 (0.00190) | 0.00350 * (0.00190) |
Control variables | YES | YES | YES | YES | YES | YES |
Davidson-MacKinnon test | 0.0000 | 0.0000 | 0.0000 | |||
Under identification test | 0.0000 | 0.0000 | 0.0000 | |||
Weak identification test | 146.055 | 153.839 | 157.993 | |||
Sargan statistic | 0.8126 | 0.7680 | 0.8099 | |||
Number of obs | 248 | 248 | 248 | 248 | 248 | 248 |
Diesel | ||||||
Fuel price | −0.826 *** (0.0719) | −1.280 *** (0.0790) | −0.833 *** (0.0715) | −1.277 *** (0.0782) | −0.842 *** (0.0713) | −1.284 *** (0.0773) |
Fuel tax/ Fuel price | 0.201 *** (0.0151) | 0.142 *** (0.0180) | 0.200 *** (0.0151) | 0.141 *** (0.0179) | 0.199 *** (0.0151) | 0.141 *** (0.0180) |
Emission standards (dummy variable) | −0.185 *** (0.0138) | −0.249 *** (0.0144) | −0.186 *** (0.0137) | −0.249 *** (0.0143) | −0.187 *** (0.0137) | −0.250 *** (0.0142) |
Fuel standard (dummy variable) | −0.195 *** (0.0126) | −0.239 *** (0.0138) | −0.196 *** (0.0126) | −0.239 *** (0.0138) | −0.197 *** (0.0126) | −0.239 *** (0.0137) |
Restrictions | 0.00106 (0.00149) | 0.00139 (0.00121) | 0.00100 (0.00149) | 0.00141 (0.00121) | 0.00104 (0.00150) | 0.00148 (0.00122) |
Control variables | YES | YES | YES | YES | YES | YES |
Davidson−MacKinnon test | 0.0000 | 0.0000 | 0.0000 | |||
Under identification test | 0.0000 | 0.0000 | 0.0000 | |||
Weak identification test | 379.205 | 387.538 | 391.373 | |||
Sargan statistic | 0.5630 | 0.6098 | 0.5424 | |||
Number of obs | 248 | 248 | 248 | 248 | 248 | 248 |
CO | Eastern Region | Central Region | Western Region | |||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
Gasoline | Diesel | Gasoline | Diesel | Gasoline | Diesel | |
Net fuel price | −0.941 *** (0.0530) | −0.275 ** (0.0969) | −0.178 ** (0.0560) | −0.112 (0.134) | −0.532 *** (0.0591) | −0.311 ** (0.110) |
Fuel tax | −1.204 *** (0.0814) | −0.0758 (0.0574) | −0.206 * (0.0964) | 0.00178 (0.0734) | −0.634 *** (0.0925) | −0.0328 (0.0653) |
Emission standards | −0.243 *** (0.0235) | −0.204 (0.104) | 0.0371 (0.0272) | −0.189 (0.135) | −0.0603 * (0.0291) | −0.258 * (0.116) |
Fuel standard | −3.457 *** (0.3345) | −0.201 ** (0.0645) | 0.741 * (0.322) | −0.184 * (0.0796) | −1.024 ** (0.368) | −0.181 * (0.0723) |
Restrictions | 0.00314 (0.00579) | 0.00119 (0.00269) | 0.0270 (0.142) | −0.00657 (0.0132) | 0.00236 (0.0112) | 0.00262 (0.00829) |
Control variables | YES | YES | YES | YES | YES | YES |
Number of obs | 88 | 88 | 64 | 64 | 96 | 96 |
R-Squared | 0.955 | 0.983 | 0.947 | 0.988 | 0.997 | 0.998 |
Restricted Area | CO | HC | NOX | |||
---|---|---|---|---|---|---|
(1) Gasoline | (2) Diesel | (3) Gasoline | (4) Diesel | (5) Gasoline | (6) Diesel | |
Net fuel price | −0.393 *** (0.0769) | −0.0745 (0.0870) | −0.516 *** (0.0511) | −0.100 (0.0898) | −0.402 *** (0.0505) | −0.191 * (0.0877) |
Fuel tax | −0.488 *** (0.0784) | −0.0336 (0.0486) | −0.609 *** (0.0789) | −0.0461 (0.0503) | −0.545 *** (0.0726) | −0.0913 (0.0514) |
Emission standards | −0.0660 ** (0.0241) | −0.128 (0.0888) | −0.0567 * (0.0254) | −0.155 (0.0916) | −0.0563 * (0.0232) | −0.209 * (0.0917) |
Fuel standard | −0.690 * (0.306) | −0.158 ** (0.0543) | −0.966 ** (0.320) | −0.160 ** (0.0564) | −0.834 ** (0.293) | −0.168 ** (0.0568) |
Restrictions | 0.00504 (0.00452) | 0.00672 * (0.00271) | 0.00061 (0.00354) | 0.00693 * (0.00290) | 0.00438 (0.00434) | 0.00654 * (0.00293) |
Control variables | YES | YES | YES | YES | YES | YES |
Number of obs | 120 | 120 | 120 | 120 | 120 | 120 |
R-Squared | 0.960 | 0.989 | 0.996 | 0.989 | 0.949 | 0.971 |
Non-restricted Areas | ||||||
Net fuel price | −0.520 *** (0.0501) | −0.333 *** (0.0908) | −0.520 *** (0.0502) | −0.340 *** (0.0906) | −0.523 *** (0.0499) | −0.348 *** (0.0904) |
Fuel tax | −0.611 *** (0.0776) | −0.0414 (0.0547) | −0.614 *** (0.0770) | −0.0485 (0.0543) | −0.618 *** (0.0770) | −0.0517 (0.0543) |
Emission standards | −0.0573 * (0.0246) | −0.270 ** (0.0979) | −0.0566 * (0.0248) | −0.274 ** (0.0981) | −0.0570 * (0.0248) | −0.280 ** (0.0981) |
Fuel standard | −0.977 ** (0.311) | −0.188 ** (0.0613) | −0.975 ** (0.312) | −0.188 ** (0.0616) | −0.986 ** (0.312) | −0.190 ** (0.0617) |
Control variables | YES | YES | YES | YES | YES | YES |
Number of obs | 128 | 128 | 128 | 128 | 128 | 128 |
R-Squared | 0.998 | 0.999 | 0.998 | 0.999 | 0.998 | 0.999 |
Year | Reduction Rate | |||||||
---|---|---|---|---|---|---|---|---|
Fuel tax (price) | 2011 | 2918 | 4% | 4263 | 2836 | 1649 | 704 | 0 |
2014 | 2774 | 9% | 7678 | 3913 | 1851 | 696 | 0 | |
2017 | 2631 | 13% | 9146 | 3977 | 1774 | 661 | 0 | |
Emission (fuel) standards | 2011 | 2914 | 4% | 2411 | 1808 | 1205 | 603 | 0 |
2014 | 2727 | 10% | 4093 | 2708 | 1564 | 662 | 0 | |
2017 | 2511 | 17% | 6206 | 3010 | 1354 | 489 | 0 | |
Restrictions | 2011 | 1625 | 50% | 2264 | 1517 | 891 | 385 | 0 |
2014 | 2212 | 27% | 5121 | 2757 | 1373 | 539 | 0 | |
2017 | 2557 | 16% | 7519 | 3559 | 1669 | 636 | 0 | |
Restrictions and license plate | 2011 | 1507 | 50% | 2170 | 1446 | 844 | 362 | 0 |
2014 | 1507 | 50% | 4052 | 2084 | 994 | 377 | 0 | |
2017 | 1507 | 50% | 5016 | 2222 | 1004 | 377 | 0 |
No Reduce Emissions | Reduce Emissions by 5% per Year | Reduce Emissions by 10% per Year | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | Loss | Loss | Cost | Benefits | Loss | Cost | Benefits | ||||||
2010 | 40.2 | 36.2 | 11.4 | 38.2 | 34.4 | 10.9 | 1.56 | −1.0 | 36.2 | 32.6 | 10.3 | 3.1 | −2.0 |
2011 | 36.7 | 65.6 | 20.7 | 34.9 | 62.3 | 19.7 | 1.43 | −0.4 | 33.0 | 59.1 | 18.6 | 2.9 | −0.8 |
2012 | 37.5 | 92.8 | 29.3 | 35.6 | 88.1 | 27.8 | 1.46 | 0.0 | 33.7 | 83.5 | 26.4 | 2.9 | 0.0 |
2013 | 38.0 | 117.6 | 37.1 | 36.1 | 111.8 | 35.3 | 1.48 | 0.4 | 34.2 | 105.9 | 33.4 | 3.0 | 0.8 |
2014 | 38.1 | 140.2 | 44.2 | 36.2 | 133.2 | 42.0 | 1.48 | 0.7 | 34.3 | 126.2 | 39.8 | 3.0 | 1.5 |
2015 | 38.4 | 160.7 | 50.7 | 36.5 | 152.7 | 48.2 | 1.49 | 1.0 | 34.6 | 144.7 | 45.7 | 3.0 | 2.1 |
2016 | 38.2 | 179.0 | 56.5 | 36.3 | 170.1 | 53.7 | 1.48 | 1.3 | 34.4 | 161.1 | 50.8 | 3.0 | 2.7 |
2017 | 37.2 | 194.6 | 61.4 | 35.3 | 184.8 | 58.3 | 1.44 | 1.6 | 33.4 | 175.1 | 55.3 | 3.0 | 3.3 |
Reduce Emissions by 5% | R = 0.01 | R = 0.02 | R = 0.04 | R = 0.06 | R = 0.08 | R = 0.1 |
δ = 0.05 | 6.12 | 5.37 | 4.12 | 2.71 | 1.44 | 0.46 |
δ = 0.10 | 3.47 | 2.97 | 2.14 | 1.21 | 0.38 | −0.25 |
δ = 0.15 | 1.23 | 0.94 | 0.46 | −0.07 | −0.53 | −0.87 |
δ = 0.20 | −0.66 | −0.78 | −0.97 | −1.17 | −1.32 | −1.41 |
Reduce emissions by 10% | R = 0.01 | R = 0.02 | R = 0.04 | R = 0.06 | R = 0.08 | R = 0.1 |
δ = 0.05 | 12.25 | 10.75 | 8.24 | 5.42 | 2.88 | 0.93 |
δ = 0.10 | 6.94 | 5.94 | 4.28 | 2.42 | 0.76 | −0.50 |
δ = 0.15 | 2.46 | 1.88 | 0.92 | −0.14 | −1.07 | −1.74 |
δ = 0.20 | −1.31 | −1.55 | −1.93 | −2.33 | −2.65 | −2.83 |
Reduce emissions by20% | R = 0.01 | R = 0.02 | R = 0.04 | R = 0.06 | R = 0.08 | R = 0.1 |
δ = 0.05 | 24.49 | 21.49 | 16.48 | 10.84 | 5.76 | 1.85 |
δ = 0.10 | 13.87 | 11.88 | 8.56 | 4.84 | 1.52 | −0.99 |
δ = 0.15 | 4.93 | 3.76 | 1.84 | −0.28 | −2.13 | −3.48 |
δ = 0.20 | −2.62 | −3.10 | −3.87 | −4.67 | −5.30 | −5.66 |
Reduce emissions by30% | R = 0.01 | R = 0.02 | R = 0.04 | R = 0.06 | R = 0.08 | R = 0.1 |
δ = 0.05 | 36.74 | 32.24 | 24.72 | 16.26 | 8.64 | 2.78 |
δ = 0.10 | 20.81 | 17.82 | 12.83 | 7.26 | 2.28 | −1.49 |
δ = 0.15 | 7.39 | 5.65 | 2.76 | −0.42 | −3.20 | −5.22 |
δ = 0.20 | −3.94 | −4.65 | −5.80 | −7.00 | −7.94 | −8.49 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Wang, Q.; Qin, W.; Guo, L. Sustainable Policy Evaluation of Vehicle Exhaust Control—Empirical Data from China’s Air Pollution Control. Sustainability 2020, 12, 125. https://doi.org/10.3390/su12010125
Zhang X, Wang Q, Qin W, Guo L. Sustainable Policy Evaluation of Vehicle Exhaust Control—Empirical Data from China’s Air Pollution Control. Sustainability. 2020; 12(1):125. https://doi.org/10.3390/su12010125
Chicago/Turabian StyleZhang, Xian, Qinglong Wang, Weina Qin, and Limei Guo. 2020. "Sustainable Policy Evaluation of Vehicle Exhaust Control—Empirical Data from China’s Air Pollution Control" Sustainability 12, no. 1: 125. https://doi.org/10.3390/su12010125
APA StyleZhang, X., Wang, Q., Qin, W., & Guo, L. (2020). Sustainable Policy Evaluation of Vehicle Exhaust Control—Empirical Data from China’s Air Pollution Control. Sustainability, 12(1), 125. https://doi.org/10.3390/su12010125