Simulation of the Effect of Climate Variability on Reclamation Success of Brine-Affected Soil in Semi-Arid Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites and their Climatology
2.2. Soil Characteristics
2.3. Validation of HYDRUS-1D Model
2.4. Application of the Validated HYDRUS-1D Model
3. Results
3.1. Simulation of Solute Distribution within a Brine-Affected Soil under Different Climatic Scenarios
3.2. Simulation of Solute Distribution within a Reclaimed Brine-Affected Soil
4. Discussion
4.1. The Effect of Different Climatic Scenarios on The Success of Salt Leaching
4.2. Applications for Designing a Reclamation Practice for Saline Post-Mining Landscapes
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Annual Exceedance Probability (AEP) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Roma | Mount Isa | Quilpie | |||||||||||||||||||
Duration | 63.20% | 50% | 20% | 10% | 5% | 2% | 1% | 63.20% | 50% | 20% | 10% | 5% | 2% | 1% | 63.20% | 50% | 20% | 10% | 5% | 2% | 1% |
1 min | 2.23 | 2.53 | 3.5 | 4.18 | 4.86 | 5.79 | 6.51 | 1.98 | 2.3 | 3.28 | 3.93 | 4.55 | 5.36 | 5.97 | 1.6 | 1.89 | 2.89 | 3.65 | 4.47 | 5.66 | 6.67 |
2 min | 3.96 | 4.51 | 6.31 | 7.59 | 8.9 | 10.7 | 12.1 | 3.39 | 3.95 | 5.65 | 6.75 | 7.79 | 9.07 | 10 | 2.64 | 3.11 | 4.79 | 6.1 | 7.53 | 9.75 | 11.7 |
3 min | 5.49 | 6.25 | 8.71 | 10.5 | 12.2 | 14.7 | 16.6 | 4.77 | 5.56 | 7.94 | 9.5 | 11 | 12.8 | 14.2 | 3.73 | 4.4 | 6.74 | 8.57 | 10.5 | 13.6 | 16.2 |
4 min | 6.84 | 7.78 | 10.8 | 13 | 15.1 | 18.1 | 20.4 | 6.08 | 7.07 | 10.1 | 12.1 | 14 | 16.3 | 18.1 | 4.75 | 5.6 | 8.57 | 10.9 | 13.3 | 17.1 | 20.3 |
5 min | 8.05 | 9.15 | 12.7 | 15.2 | 17.7 | 21.1 | 23.7 | 7.29 | 8.47 | 12.1 | 14.5 | 16.7 | 19.6 | 21.8 | 5.68 | 6.7 | 10.2 | 12.9 | 15.9 | 20.2 | 23.9 |
10 min | 12.6 | 14.4 | 19.8 | 23.6 | 27.4 | 32.5 | 36.5 | 12.2 | 14.1 | 20.1 | 24.1 | 28 | 33 | 36.8 | 9.21 | 10.9 | 16.6 | 20.9 | 25.5 | 32.2 | 37.8 |
15 min | 15.8 | 18 | 24.8 | 29.5 | 34.3 | 40.7 | 45.8 | 15.7 | 18.2 | 26 | 31.2 | 36.2 | 42.7 | 47.6 | 11.5 | 13.6 | 20.8 | 26.3 | 32.1 | 40.4 | 47.5 |
30 min | 21.8 | 24.7 | 34.2 | 40.9 | 47.6 | 56.8 | 64.1 | 22.4 | 26 | 37.1 | 44.4 | 51.5 | 60.7 | 67.6 | 15.6 | 18.4 | 28.2 | 35.6 | 43.6 | 55.4 | 65.3 |
1 h | 27.9 | 31.7 | 44.1 | 53 | 62 | 74.4 | 84.3 | 28.9 | 33.6 | 48 | 57.5 | 66.6 | 78.4 | 87.1 | 19.6 | 23.1 | 35.3 | 44.7 | 55 | 70.3 | 83.4 |
2 h | 34 | 38.6 | 53.8 | 64.8 | 76.2 | 91.9 | 105 | 34.9 | 40.5 | 57.8 | 69.3 | 80.3 | 94.6 | 105 | 23.9 | 28.1 | 42.6 | 54 | 66.3 | 85 | 101 |
3 h | 37.6 | 42.6 | 59.4 | 71.6 | 84.2 | 102 | 116 | 38.2 | 44.3 | 63.1 | 75.7 | 88 | 104 | 116 | 27 | 31.5 | 47.5 | 60 | 73.6 | 94 | 112 |
6 h | 44 | 49.9 | 69.2 | 83.3 | 97.7 | 118 | 135 | 44.2 | 51 | 72.6 | 87.4 | 102 | 122 | 137 | 33.4 | 38.8 | 57.6 | 72.2 | 88 | 111 | 131 |
12 h | 51.6 | 58.3 | 80.4 | 96.2 | 112 | 135 | 153 | 51.5 | 59.4 | 84.8 | 102 | 120 | 145 | 164 | 41.7 | 48.3 | 70.9 | 88.1 | 107 | 132 | 154 |
24 h | 60.7 | 68.7 | 94.2 | 112 | 130 | 155 | 174 | 61.3 | 71 | 102 | 124 | 146 | 178 | 203 | 51.1 | 59.3 | 87.1 | 108 | 129 | 159 | 182 |
48 h | 71.9 | 81.6 | 112 | 132 | 152 | 179 | 200 | 73.8 | 86.3 | 126 | 153 | 180 | 221 | 254 | 59.5 | 69.7 | 104 | 129 | 154 | 188 | 215 |
72 h | 79.1 | 90.1 | 123 | 145 | 166 | 195 | 217 | 81.6 | 96 | 141 | 172 | 203 | 249 | 286 | 63 | 74.3 | 112 | 140 | 168 | 205 | 234 |
96 h | 84.3 | 96.3 | 132 | 155 | 176 | 206 | 228 | 86.7 | 102 | 151 | 185 | 218 | 268 | 307 | 64.7 | 76.8 | 117 | 146 | 176 | 215 | 246 |
120 h | 88.3 | 101 | 138 | 162 | 183 | 213 | 236 | 89.9 | 106 | 157 | 193 | 227 | 279 | 321 | 65.8 | 78.2 | 119 | 150 | 181 | 221 | 252 |
144 h | 91.4 | 105 | 143 | 167 | 188 | 218 | 240 | 91.7 | 108 | 161 | 197 | 232 | 286 | 329 | 66.6 | 79.1 | 121 | 152 | 185 | 225 | 256 |
168 h | 93.8 | 107 | 147 | 170 | 191 | 221 | 243 | 92.5 | 109 | 162 | 198 | 234 | 289 | 333 | 67.3 | 79.9 | 122 | 154 | 187 | 227 | 257 |
Annual Exceedance Probability (AEP) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Roma | Mount Isa | Quilpie | |||||||||||||||||||
Duration | 63.20% | 50% | 20% | 10% | 5% | 2% | 1% | 63.20% | 50% | 20% | 10% | 5% | 2% | 1% | 63.20% | 50% | 20% | 10% | 5% | 2% | 1% |
1 min | 134 | 152 | 210 | 251 | 292 | 347 | 391 | 119 | 138 | 197 | 236 | 273 | 322 | 358 | 96.3 | 114 | 174 | 219 | 268 | 340 | 400 |
2 min | 119 | 135 | 189 | 228 | 267 | 321 | 364 | 102 | 118 | 169 | 203 | 234 | 272 | 300 | 79.1 | 93.4 | 144 | 183 | 226 | 292 | 351 |
3 min | 110 | 125 | 174 | 209 | 245 | 293 | 332 | 95.5 | 111 | 159 | 190 | 219 | 256 | 283 | 74.5 | 87.9 | 135 | 171 | 211 | 272 | 325 |
4 min | 103 | 117 | 162 | 194 | 227 | 271 | 306 | 91.2 | 106 | 151 | 181 | 209 | 245 | 272 | 71.2 | 84 | 129 | 163 | 200 | 256 | 304 |
5 min | 96.6 | 110 | 152 | 182 | 212 | 253 | 285 | 87.5 | 102 | 145 | 174 | 201 | 236 | 262 | 68.2 | 80.4 | 123 | 155 | 190 | 242 | 287 |
10 min | 75.9 | 86.1 | 119 | 142 | 164 | 195 | 219 | 73.1 | 84.8 | 121 | 145 | 168 | 198 | 221 | 55.3 | 65.2 | 99.5 | 125 | 153 | 193 | 227 |
15 min | 63.3 | 71.8 | 99.2 | 118 | 137 | 163 | 183 | 62.9 | 73 | 104 | 125 | 145 | 171 | 190 | 46.2 | 54.5 | 83.3 | 105 | 128 | 162 | 190 |
30 min | 43.5 | 49.4 | 68.5 | 81.8 | 95.3 | 114 | 128 | 44.7 | 51.9 | 74.2 | 88.9 | 103 | 121 | 135 | 31.1 | 36.8 | 56.4 | 71.3 | 87.3 | 111 | 131 |
1 h | 27.9 | 31.7 | 44.1 | 53 | 62 | 74.4 | 84.3 | 28.9 | 33.6 | 48 | 57.5 | 66.6 | 78.4 | 87.1 | 19.6 | 23.1 | 35.3 | 44.7 | 55 | 70.3 | 83.4 |
2 h | 17 | 19.3 | 26.9 | 32.4 | 38.1 | 46 | 52.4 | 17.5 | 20.3 | 28.9 | 34.6 | 40.2 | 47.3 | 52.7 | 12 | 14 | 21.3 | 27 | 33.2 | 42.5 | 50.6 |
3 h | 12.5 | 14.2 | 19.8 | 23.9 | 28.1 | 33.9 | 38.7 | 12.7 | 14.8 | 21 | 25.2 | 29.3 | 34.7 | 38.7 | 8.99 | 10.5 | 15.8 | 20 | 24.5 | 31.3 | 37.2 |
6 h | 7.34 | 8.31 | 11.5 | 13.9 | 16.3 | 19.7 | 22.4 | 7.37 | 8.51 | 12.1 | 14.6 | 17 | 20.3 | 22.8 | 5.57 | 6.47 | 9.61 | 12 | 14.7 | 18.5 | 21.8 |
12 h | 4.3 | 4.86 | 6.7 | 8.01 | 9.36 | 11.3 | 12.8 | 4.29 | 4.95 | 7.06 | 8.54 | 10 | 12.1 | 13.7 | 3.48 | 4.02 | 5.91 | 7.34 | 8.88 | 11 | 12.8 |
24 h | 2.53 | 2.86 | 3.93 | 4.67 | 5.41 | 6.45 | 7.27 | 2.55 | 2.96 | 4.26 | 5.16 | 6.07 | 7.4 | 8.46 | 2.13 | 2.47 | 3.63 | 4.49 | 5.39 | 6.61 | 7.6 |
48 h | 1.5 | 1.7 | 2.33 | 2.75 | 3.16 | 3.73 | 4.17 | 1.54 | 1.8 | 2.62 | 3.19 | 3.76 | 4.61 | 5.29 | 1.24 | 1.45 | 2.16 | 2.68 | 3.22 | 3.92 | 4.48 |
72 h | 1.1 | 1.25 | 1.71 | 2.02 | 2.3 | 2.71 | 3.01 | 1.13 | 1.33 | 1.96 | 2.39 | 2.82 | 3.46 | 3.97 | 0.875 | 1.03 | 1.56 | 1.94 | 2.33 | 2.85 | 3.25 |
96 h | 0.879 | 1 | 1.37 | 1.61 | 1.83 | 2.14 | 2.37 | 0.903 | 1.07 | 1.58 | 1.93 | 2.27 | 2.79 | 3.2 | 0.674 | 0.8 | 1.22 | 1.52 | 1.83 | 2.24 | 2.56 |
120 h | 0.736 | 0.841 | 1.15 | 1.35 | 1.53 | 1.78 | 1.96 | 0.749 | 0.884 | 1.31 | 1.6 | 1.89 | 2.33 | 2.67 | 0.548 | 0.651 | 0.996 | 1.25 | 1.51 | 1.84 | 2.1 |
144 h | 0.635 | 0.726 | 0.993 | 1.16 | 1.31 | 1.52 | 1.67 | 0.637 | 0.752 | 1.12 | 1.37 | 1.61 | 1.99 | 2.29 | 0.462 | 0.549 | 0.842 | 1.06 | 1.28 | 1.56 | 1.78 |
168 h | 0.558 | 0.639 | 0.872 | 1.01 | 1.14 | 1.32 | 1.45 | 0.551 | 0.649 | 0.962 | 1.18 | 1.39 | 1.72 | 1.98 | 0.401 | 0.475 | 0.728 | 0.915 | 1.11 | 1.35 | 1.53 |
Soil Depth | Statistical Analyses (n = 9170) | Rain Event (10.9 mm) |
---|---|---|
3.5 cm | NSE | 0.94 |
d | 0.98 | |
RMSE (kPa) | 0.35 | |
12 cm | NSE | 0.96 |
d | 0.99 | |
RMSE (kPa) | 0.21 | |
25 cm | NSE | 0.95 |
d | 0.98 | |
RMSE (kPa) | 0.17 |
Statistical Analyses (n = 3) | EC (dS m−1) | SAR (mmol(c) L−1)0.5 | Major Cations (mmol L−1) | |||
---|---|---|---|---|---|---|
Ca2+ | Mg2+ | Na+ | K+ | |||
RMSE | 0.76 | 2.00 | 9.9 | 0.37 | 7.91 | 0.07 |
MAE | 0.60 | 1.41 | 0.74 | 0.37 | 6.17 | 0.07 |
RE | 4.28 | 6.48 | 8.80 | 2.69 | 5.06 | 5.12 |
Plant Species | Year | |
---|---|---|
2012 | 2013 | |
Seedling Number (number/m2) | ||
Atriplex spp. | 0.7 ± 0.13 | 17.74 ± 1.06 *** |
Frankenia serpyllifolia | 0.00 ± 0.00 | 1.06 ± 0.002 |
Osteocarpum acroptrerum | 0.00 ± 0.00 | 7.32 ± 0.94 |
Sclerolaena longicuspis | 0.29 ± 0.08 | 5.57 ± 0.39 *** |
Tecticornia pergranulata | 0.00 ± 0.00 | 1.32 ± 0.31 |
References
- Bot, A.J.; Nachtergaele, F.O.; Young, A. Land Resource Potential and Constratnts at Regional and Country Levels; Food & Agriculture Organization: Rome, Italy, 2000; p. 114. [Google Scholar]
- Amini, S.; Ghadiri, H.; Chen, C.; Marschner, P. Salt-affected soils, reclamation, carbon dynamics, and biochar: A review. J. Soils Sediments 2016, 16, 939–953. [Google Scholar] [CrossRef]
- Forkutsa, I.; Sommer, R.; Shirokova, Y.I.; Lamers, J.P.A.; Kienzler, K.; Tischbein, B.; Martius, C.; Vlek, P.L.G. Modeling irrigated cotton with shallow groundwater in the Aral Sea Basin of Uzbekistan: II. Soil salinity dynamics. Irrig. Sci. 2009, 27, 319–330. [Google Scholar] [CrossRef]
- Halwatura, D.; Lechner, A.M.; Arnold, S. Drought severity-duration-frequency curves: A foundation for risk assessment and planning tol for ecosystem establishment in post-mining landscapes. Hydrol. Earth Syst. Sci. 2015, 19, 1069–1091. [Google Scholar] [CrossRef] [Green Version]
- Commonwealth of Australia. Mine Closure and Completion. Leading Practice Sustainable Development Program for Mining Industry; Department of Industry Tourism and Resources: Canberra, Australia, 2006.
- Debez, A.; Huchzermeyer, B.; Abdelly, C.; Koyro, H.W. Current challenges and future opportunities for a sustainable utilization of halophytes. In Sabkha Ecosystems; Öztürk, M., Böer, B., Barth, H.J., Clüsener-Godt, M., Khan, M.A., Breckle, S.W., Eds.; Springer: Berlin, Germany, 2011; Volume 46, pp. 59–77. [Google Scholar]
- Shaygan, M.; Baumgartl, T.; Arnold, S. Germination of Atriplex halimus seeds under salinity and water stress. Ecol. Eng. 2017, 102, 636–640. [Google Scholar] [CrossRef]
- Qadir, M.; Ghafoor, A.; Murtaza, G. Amelioration strategies for saline soils: A review. Land Degrad. Dev. 2000, 11, 501–521. [Google Scholar] [CrossRef]
- Qadir, M.; Qureshi, R.H.; Ahmad, N. Horizonal flushing: A promising ameliorative technology for hard saline-sodic and sodic soils. Soil Tillage Res. 1998, 45, 119–131. [Google Scholar] [CrossRef]
- Qadir, M.; Steffens, D.; Yan, F.; Schubert, S. Sodium removal from a calcareous saline–sodic soil through leaching and plant uptake during phytoremediation. Land Degrad. Dev. 2003, 14, 301–307. [Google Scholar] [CrossRef]
- Rengasamy, P.; Olsson, K.A. Sodicity and soil structure. Soil Res. 1991, 29, 935–952. [Google Scholar] [CrossRef]
- Sumner, M. Sodic soils-New perspectives. Soil Res. 1993, 31, 683–750. [Google Scholar] [CrossRef]
- Shaygan, M.; Reading, L.P.; Baumgartl, T. Effect of physical amendments on salt leaching characteristics for reclamation. Geoderma 2017, 292, 96–110. [Google Scholar] [CrossRef]
- Tanji, K.K. Salinity in the soil environment. In Salinity: Environment-Plants-Molecules; Lauchli, A., Luttge, U., Eds.; Kluwer Academic Publishers: London, UK; Boston, MA, USA; Dordrecht, The Netherlands, 2002. [Google Scholar]
- Baumgartl, T.; Richards, B. Evaporation and salt transport under variable conditions. In Proceedings of the Life of Mine Conference, Maximising Rehabilitation Outcomes, Brisbane, Australia, 10–12 July 2012; pp. 179–186. [Google Scholar]
- Ahuja, L. Modeling soluble chemical transfer to runoff with rainfall impact as a diffusion process. Soil Sci. Soc. Am. J. 1990, 54, 312–321. [Google Scholar] [CrossRef]
- Pariente, S. Soluble salts dynamics in the soil under different climatic conditions. Catena 2001, 43, 307–321. [Google Scholar] [CrossRef]
- Reynolds, W.D.; Drury, C.F.; Parkin, G.W.; Lauzon, J.D.; Saso, J.K.; Zhang, T.; Liu, K.; Welacky, T.W.; Yang, X.; Tan, C.S.; et al. Solute dynamics and the Ontario nitrogen index: I. Chloride leaching. Can. J. Soil Sci. 2016, 96, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Rengasamy, P. World salinization with emphasis on Australia. J. Exp. Bot. 2006, 57, 1017–1023. [Google Scholar] [CrossRef] [Green Version]
- Szabolcs, I. Salt-Affected Soils; CRC Press: Boca Raton, FL, USA, 1989. [Google Scholar]
- De Vries, J. Solute Transport and Water Flow in an Unsaturated, Heterogeneous Profile with Root Water Uptake; Wageningen University: Wageningen, The Netherlands, 2016. [Google Scholar]
- Lavee, H.; Imeson, A.; Pariente, S.; Benyamini, Y. The response of soils to simulated rainfall along a climatological gradient in an arid and semi-arid region. Catena 1991, 19, 19–37. [Google Scholar]
- Zwikel, S.; Lavee, H.; Sarah, P. Temporal evolution of salts in Mediterranean soils transect under different climatic conditions. Catena 2007, 70, 282–295. [Google Scholar] [CrossRef]
- He, B.; Cai, Y.; Ran, W.; Jiang, H. Spatial and seasonal variations of soil salinity following vegetation restoration in coastal saline land in eastern China. Catena 2014, 118, 147–153. [Google Scholar] [CrossRef]
- Macdonald, B.; Melville, M.D.; White, I. The distribution of soluble cations within chenopod-patterned ground, arid western New South Wales, Australia. Catena 1999, 37, 89–105. [Google Scholar] [CrossRef]
- Mahmoodabadi, M.; Yazdanpanah, N.; Sinobas, L.R.; Pazira, E.; Neshat, A. Reclamation of calcareous saline sodic soil with different amendments (I): Redistribution of soluble cations within the soil profile. Agric. Water Manag. 2013, 120, 30–38. [Google Scholar] [CrossRef]
- Rahman, H.A.A.; Dahab, M.H.; Mustafa, M.A. Impact of soil amendments on intermittent evaporation, moisture distribution and salt residtribution in saline-sodic clay soil columns. Soil Sci. 1996, 161, 793–802. [Google Scholar] [CrossRef]
- Tejada, M.; Garcia, C.; Gonzalez, J.L.; Hernandez, M.T. Use of organic amendment as a strategy for saline soil remediation: Influence on the physical, chemical and biological properties. Soil Biol. Biochem. 2006, 38, 1413–1421. [Google Scholar] [CrossRef]
- Zeng, W.; Xu, C.; Wu, J.; Huang, J. Soil salt leaching under different irrigation regimes: HYDRUS-1D modelling and analysis. J. Arid Land 2014, 6, 44–58. [Google Scholar] [CrossRef] [Green Version]
- Bureau of Meteorology. Climate Data Online. Available online: http://reg.bom.gov.au/climate (accessed on 6 January 2013).
- Green, J.; Xuereb, K.; Johnson, F.; Moore, G.; The, C. The revised Intensity-Frequency-Duration (IFD) design rainfall estimates for Australia–An overview. In Proceedings of the 34th Hydrology and Water Resources Symposium, Sydney, Australia, 19–22 November 2012; pp. 1–8. [Google Scholar]
- Bureau of Meteorology. Rainfall IFD Data System. Available online: http://www.bom.gov.au/water/designRainfalls/revised-ifd/?coordinate_type=dd&latitude=26.55&longitude=148.77&sdmin=true&sdhr=true&sdday=true&user_label=Roma+&year=2016 (accessed on 31 October 2018).
- Queensland Department of Environment and Resource Managment. Salinity Management Handbook, 2nd ed.; Department of Environment and Resource Management: Queensland Brisbane, Australia, 2011.
- Queensland Government. Common Soil Types in Queensland. Available online: https://www.qld.gov.au/environment/land/management/soil/soil-testing/types (accessed on 16 December 2019).
- Shaygan, M.; Mulligan, D.; Baumgartl, T. The potential of three halophytes (Tecticornia pergranulata, Sclerolaena longicuspis and Frankenia serpyllifolia) for the rehabilitation of brine-affected soils. Land Degrad. Dev. 2018, 29, 2002–2014. [Google Scholar] [CrossRef]
- Klute, A.; Dirksen, C. Hydraulic conductivity and diffusivity: Laboratory methods. In Methods of Soil Analysis-Physical and Mineralogical Methods; Klute, A., Ed.; American Society of Agronomy: Madison, WI, USA, 1982; Volume 2, pp. 687–734. [Google Scholar]
- Shaygan, M. Evaluating the Leaching of Salt Affected Soils for the Purpose of Reclamation and Revegetation; The University of Queensland, Sustainable Minerals Institute: Brisbane, Australia, 2016. [Google Scholar]
- van Genuchten, M.T.; Leij, F.J.; Yates, S.R. The RETC Code for Quantifying the Hydraulic Functions of Unsaturated Soils, Version 1.0; EPA report 600/2-91/065; US Salinity Laboratory, USDA-ARS: Riverside, CA, USA, 1991.
- Rayment, G.E.; Lyons, D.J. Soil Chemical Methods: Australasia; CSIRO: Collingwood, Victoria, Australia, 2011; Volume 3.
- Šimůnek, J.; Šejna, M.; Saito, H.; Sakai, M.; van Genuchten, M.T. The Hydrus-1D Software Package for Simulating the Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media; Version 4.16; Department of Environmental Sciences, University of California: Riverside, CA, USA, 2013; p. 340. [Google Scholar]
- Suarez, D.L.; Šimůnek, J. UNSATCHEM: Unsaturated water and solute transport model with equilibrium and kinetic chemistry. Soil Sci. Soc. Am. J. 1997, 61, 1633–1646. [Google Scholar] [CrossRef]
- Fell, C.J.D.; Hutchison, H.P. Diffusion coefficients for sodium and potassium chlorides in water at elevated temperatures. J. Chem. Eng. Data 1971, 16, 427–429. [Google Scholar] [CrossRef]
- Shaygan, M.; Baumgartl, T.; Arnold, S.; Reading, L.P. The effect of soil physical amendments on reclamation of a saline-sodic soil: Simulation of salt leaching using HYDRUS-1D. Soil Res. 2018, 56, 829–845. [Google Scholar] [CrossRef]
- White, G.; Zelazny, L.; Sparks, D. Charge properties of soil colloids. In Soil Physical Chemistry; Sparks, D., Ed.; CRC Press: Boca Raton, FL, USA, 1986; pp. 39–81. [Google Scholar]
- Marshall, T.J.; Holmes, J.W.; Rose, C.W. Soil Physics; Cambridge University Press: New York, NY, USA, 1996. [Google Scholar]
- Simunek, J.; Van Genuchten, M.T.; Sejna, M. Recent developments and applications of HYDRUS computer software packages. Vadose Zone J. 2016, 6, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Bureau of Meteorology. Rainfall IFD Data System. Available online: http://www.bom.gov.au/water/designRainfalls/revised-ifd/?coordinate_type=dms&latdeg=26&latmin=36&latsec=31&londeg=144&lonmin=15&lonsec=26&sdmin=true&sdhr=true&sdday=true&user_label=Quilpie+Airport (accessed on 12 May 2014).
- Fletcher, A. Assessment of OFB Impacts and Rehabilitation Options; Centre for Mined Land Rehabilitation, University of Queensland Brisbane: Brisbane, Australia, 2011; pp. 1–39. [Google Scholar]
- Van Genuchten, M.T. A Closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Keiffer, C.H.; Ungar, I.A. Germination and establishment of halophytes on brine-affected soils. J. Appl. Ecol. 2002, 39, 402–415. [Google Scholar] [CrossRef]
- Shaygan, M.; Reading, L.P.; Arnold, S.; Baumgartl, T. Modeling the effect of soil physical amendments on reclamation and revegetation success of a saline-sodic soil in a semi-arid environment. Arid Land Res. Manag. 2018, 32, 379–406. [Google Scholar] [CrossRef]
- Shimojimaa, E.; Yoshioka, R.; Tamagawa, I. Salinization owing to evaporation from bare-soil surfaces and its influences on the evaporation. J. Hydrol. 1996, 178, 109–136. [Google Scholar] [CrossRef]
- Belden, S.E.; Schuman, G.E.; Depuit, E.J. Salinity and miosture responses in wood residue amended bentonite mine spoil1. Soil Sci. 1990, 150, 874–882. [Google Scholar] [CrossRef]
- Qadir, M.; Qureshi, R.H.; Ahmad, N. Amelioration of calcareous saline-sodic soils through phytoremediation and chemical strategies. Soil Use Manag. 2002, 18, 381–385. [Google Scholar] [CrossRef]
- Ellington, A. Effects of deep ripping on cropping soils and crop production. In Proceedings of the 4th Australian Agronomy Conference, Melbourne, Australia, 24–27 August 1987; pp. 118–139. [Google Scholar]
- Rhoades, J.; Corwin, D. Soil electrical conductivity: Effects of soil properties and application to soil salinity appraisal. Commun. Soil Sci. Plant Anal. 1990, 21, 837–860. [Google Scholar] [CrossRef]
- Barzegar, A.R.; Yousefi, A.; Daryashenas, A. The effect of addition of different amounts and types of organic materials on soil physical properties and yield of wheat. Plant Soil 2002, 247, 295–301. [Google Scholar] [CrossRef]
Site/Weather Station Number | Annual Rainfall (mm) | Number of Days with Rain ≥ 1 mm | Annual Potential Evaporation † (mm) | Minimum Temperature (°C) | Maximum Temperature (°C) |
---|---|---|---|---|---|
Roma (043091) | 579.2 | 49.5 | 1860.8 | 12.6 | 28 |
Mount Isa (029127) | 464.3 | 36.7 | 3106.9 | 17.3 | 31.9 |
Quilpie (045015) | 352.5 | 32.4 | 3055.6 | 15.4 | 29.2 |
Parameter | Reclaimed Soil BD 1.2 g cm−3 | Natural Soil BD 1.57 g cm−3 |
---|---|---|
Exchangeable cation concentration, cmolc kg−1 | ||
Ca2+ | 6.64 | 6.64 |
Mg2+ | 6.37 | 6.37 |
Na+ | 16.94 | 16.94 |
K+ | 0.396 | 0.396 |
Cation exchange capacity, cmolc kg−1 | 30.34 | 30.34 |
Initial soil solution concentrations, mmol L−1 | ||
Ca2+ | 14.96 | 14.96 |
Mg2+ | 6.67 | 6.67 |
Na+ | 63.29 | 63.29 |
K+ | 0.33 | 0.33 |
SO42− | 32.76 | 32.76 |
Cl− | 63.69 | 63.69 |
Precipitated gypsum, meq kg−1 | 66 | 66 |
Solution transport and reaction properties | ||
Bulk density, g cm−3 | 1.2 | 1.57 |
Diffusion coefficient, cm2 day−1 | 1.4 | 1.4 |
Dispersivity, cm | 1 | 1 |
Exchange coefficient KCa/Na | 2.43 | 2.43 |
Exchange coefficient KCa/Mg | 0.40 | 0.40 |
Exchange coefficient KCa/K | 1.08 | 1.08 |
Hydraulic properties | ||
Saturated hydraulic conductivity (Ks), cm day−1 | 14.4 | 1.218 |
Residual volumetric water content (θr) | 0 | 0 |
Saturated volumetric water content (θs) | 0.562 | 0.444 |
Inverse of air entry suction (α), (cm−1) | 0.035 | 0.006 |
Fitting parameter (n) | 1.164 | 1.11 |
Pore connectivity parameter (Ɩ) | 0.5 | 0.5 |
Discretization | ||
Grid spacing, cm | 0.11 | 0.11 |
Initial time step, min | 1 × 10−4 | 1 × 10−4 |
Min. time step, min | 1 × 10−6 | 1 × 10−6 |
Max. time step, min | 365 | 365 |
Site | Na+ (mmol L−1) | Mg2+ (mmol L−1) | K+ (mmol L−1) | Ca2+ (mmol L−1) | EC (dS m−1) | SAR (mmol(c) L−1)0.5 |
---|---|---|---|---|---|---|
Roma | 95.93% ⸸ | 99.84% ⸸ | 92.99% ⸸ | 99.85% ⸸ | 96.00% ⸸ | 5.66% † |
Mount Isa | 92.99% ⸸ | 99.35% ⸸ | 87.76% ⸸ | 99.12% ⸸ | 93.31% ⸸ | 18.12% ⸸ |
Quilpie | 56.51% ⸸ | 54.11% ⸸ | 63.55% † | 38.01% ⸸ | 58.75% ⸸ | 39.65% ⸸ |
Site | Na+ (mmol L−1) | Mg2+ (mmol L−1) | K+ (mmol L−1) | Ca2+ (mmol L−1) | EC (dS m−1) | SAR (mmol(c) L−1)0.5 |
---|---|---|---|---|---|---|
Quilpie | 96.09% ⸸ | 99.82% ⸸ | 93.11% ⸸ | 99.79% ⸸ | 96.14% ⸸ | 12% ⸸ |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaygan, M.; Baumgartl, T. Simulation of the Effect of Climate Variability on Reclamation Success of Brine-Affected Soil in Semi-Arid Environments. Sustainability 2020, 12, 371. https://doi.org/10.3390/su12010371
Shaygan M, Baumgartl T. Simulation of the Effect of Climate Variability on Reclamation Success of Brine-Affected Soil in Semi-Arid Environments. Sustainability. 2020; 12(1):371. https://doi.org/10.3390/su12010371
Chicago/Turabian StyleShaygan, Mandana, and Thomas Baumgartl. 2020. "Simulation of the Effect of Climate Variability on Reclamation Success of Brine-Affected Soil in Semi-Arid Environments" Sustainability 12, no. 1: 371. https://doi.org/10.3390/su12010371
APA StyleShaygan, M., & Baumgartl, T. (2020). Simulation of the Effect of Climate Variability on Reclamation Success of Brine-Affected Soil in Semi-Arid Environments. Sustainability, 12(1), 371. https://doi.org/10.3390/su12010371