Watershed-Based Evaluation of Automatic Sensor Data: Water Quality and Hydroclimatic Relationships
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
- 352 × 10 (day × water quality parameter) data matrix of water quality measured with the automatic sensor
- 352 × 12 × 3 (day × watershed × hydroclimatic variable) data matrix of discharge, air temperature, and precipitation divided for each specific watershed
- 11 × 2 (day × nutrient) matrix of available data on TN and TP during the operation of the automatic sensor.
2.3. Methods
2.3.1. Data Clustering and Self-Organizing Map (SOM)
2.3.2. Non-Linear Canonical Correlation Analysis (NLCCA)
2.3.3. Linear Regressions
3. Results and Discussion
3.1. SOM Application and Data Clustering
3.2. NLCCA Application
3.3. Linear Regressions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- UN. General Assembly Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Council, E. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Off. J. L 2000, 327, 1–73. [Google Scholar]
- Destouni, G.; Fischer, I.; Prieto, C. Water quality and ecosystem management: Data-driven reality check of effects in streams and lakes. Water Resour. Res. 2017, 53, 6395–6406. [Google Scholar] [CrossRef]
- Carvalho, L.; Mackay, E.B.; Cardoso, A.C.; Baattrup-Pedersen, A.; Birk, S.; Blackstock, K.L.; Borics, G.; Borja, A.; Feld, C.K.; Ferreira, M.T.; et al. Protecting and restoring Europe’s waters: An analysis of the future development needs of the Water Framework Directive. Sci. Total Environ. 2019, 658, 1228–1238. [Google Scholar] [CrossRef]
- Tsai, C.W.; Lai, C.F.; Chiang, M.C.; Yang, L.T. Data Mining for Internet of Things: A Survey. IEEE Commun. Surv. Tutor. 2014, 16, 77–97. [Google Scholar] [CrossRef]
- Darracq, A.; Greffe, F.; Hannerz, F.; Destouni, G.; Cvetkovic, V. Nutrient transport scenarios in a changing Stockholm and Mälaren valley region, Sweden. Water Sci. Technol. 2005, 51, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Härdle, W.K.; Simar, L. Applied Multivariate Statistical Analysis; Springer: Berlin/Heidelberg, Germany, 2015; ISBN 978-3-662-45171-7. [Google Scholar]
- Vesanto, J.; Sulkava, M. Distance Matrix Based Clustering of the Self-Organizing Map. In Proceedings of the ICANN, Madrid, Spain, 28–30 August 2002. [Google Scholar]
- SMHI Fakta om Mälaren|SMHI. Available online: https://www.smhi.se/kunskapsbanken/hydrologi/fakta-om-malaren-1.5089 (accessed on 14 March 2019).
- Sveriges Meteorologiska Och Hydrologiska Institut (SMHI) Delavrinningsområden SVAR_2016_3. 2016. Available online: https://www.smhi.se/data/hydrologi/sjoar-och-vattendrag/ladda-ner-data-fran-svenskt-vattenarkiv-1.20127 (accessed on October 2018).
- Statistiska Centralbyrån SCB: Befolkning Vektor. 2018. Available online: https://www.zeus.slu.se (accessed on March 2019).
- Ledesma, J.L.J. Dynamics of Color and Organic Carbon within the Mälaren Catchment. Available online: https://stud.epsilon.slu.se/2659/ (accessed on 18 April 2018).
- Sveriges Meteorologiska Och Hydrologiska Institut (SMHI) SMHI Data. 2018. Available online: https://www.smhi.se/data (accessed on October 2018).
- Sveriges Meteorologiska Och Hydrologiska Institut (SMHI) Modelldata Per Område. 2018. Available online: https://vattenwebb.smhi.se/modelarea/ (accessed on October 2018).
- Hayashi, M. Temperature-Electrical Conductivity Relation of Water for Environmental Monitoring and Geophysical Data Inversion. Environ. Monit. Assess. 2004, 96, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Atekwana, E.A.; Atekwana, E.A.; Rowe, R.S.; Werkema, D.D.; Legall, F.D. The relationship of total dissolved solids measurements to bulk electrical conductivity in an aquifer contaminated with hydrocarbon. J. Appl. Geophys. 2004, 56, 281–294. [Google Scholar] [CrossRef]
- Lindström, G.; Pers, C.; Rosberg, J.; Strömqvist, J.; Arheimer, B. Development and testing of the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial scales. Hydrol. Res. 2010, 41, 295–319. [Google Scholar] [CrossRef]
- Kohonen, T. Self-Organizing Maps; Springer: Berlin, Germany, 2001; ISBN 978-3-642-56927-2. [Google Scholar]
- Kalteh, A.M.; Hjorth, P.; Berndtsson, R. Review of the self-organizing map (SOM) approach in water resources: Analysis, modelling and application. Environ. Model. Softw. 2008, 23, 835–845. [Google Scholar] [CrossRef]
- Lu, R.-S.; Lo, S.-L. Diagnosing reservoir water quality using self-organizing maps and fuzzy theory. Water Res. 2002, 36, 2265–2274. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Kawamura, A.; Tong, T.N.; Nakagawa, N.; Amaguchi, H.; Gilbuena, R. Clustering spatio–seasonal hydrogeochemical data using self-organizing maps for groundwater quality assessment in the Red River Delta, Vietnam. J. Hydrol. 2015, 522, 661–673. [Google Scholar] [CrossRef]
- Kohonen, T. Essentials of the self-organizing map. Neural Netw. 2013, 37, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Behar, S. Testing the Waters: Chemical and Physical Vital Signs of a River; River Watch Network; United States: New York, NY, USA, 1997; ISBN 978-0-7872-3492-8. [Google Scholar]
- Hsieh, W.W. Nonlinear canonical correlation analysis by neural networks. Neural Netw. 2000, 13, 1095–1105. [Google Scholar] [CrossRef]
- NeuMATS Neuralnets for Multivariate and Time Series Analysis (NeuMATSA). Available online: http://www.ocgy.ubc.ca/projects/clim.pred/download.html (accessed on October 2019).
- Cannon, A.J.; Hsieh, W.W. Robust nonlinear canonical correlation analysis: Application to seasonal climate forecasting. Nonlinear Process. Geophys. 2008, 15, 221–232. [Google Scholar] [CrossRef] [Green Version]
- McKillup, S.; Dyar, M.D. Geostatistics Explained: An Introductory Guide for Earth Scientists; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2010; ISBN 978-0-521-76322-6. [Google Scholar]
- Harris, R.; Jarvis, C. Statistics in Geography and Environmental Science; Pearson Education Limited: Harlow, Essex, UK; New York, NY, USA, 2011; ISBN 978-0-13-178933-3. [Google Scholar]
- Li, L.; He, Z.; Li, Z.; Zhang, S.; Li, S.; Wan, Y.; Stoffella, P.J. Spatial and temporal variation of nitrogen concentration and speciation in runoff and storm water in the Indian River watershed, South Florida. Environ. Sci. Pollut. Res. 2016, 23, 19561–19569. [Google Scholar] [CrossRef]
- Lintern, A.; Webb, J.A.; Ryu, D.; Liu, S.; Bende-Michl, U.; Waters, D.; Leahy, P.; Wilson, P.; Western, A.W. Key factors influencing differences in stream water quality across space. Wiley Interdiscip. Rev. Water 2018, 5, e1260. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.; Dash, P.; Sankar, M.S.; Silwal, S.; Lu, Y.; Shang, P.; Moorhead, R.J. Hydrological and Biogeochemical Controls of Seasonality in Dissolved Organic Matter Delivery to a Blackwater Estuary. Estuar. Coasts 2019, 42, 439–454. [Google Scholar] [CrossRef]
- Monteiro, M.; Costa, M. A Time Series Model Comparison for Monitoring and Forecasting Water Quality Variables. Hydrology 2018, 5, 37. [Google Scholar] [CrossRef] [Green Version]
- Johnson, T.; Butcher, J.; Deb, D.; Faizullabhoy, M.; Hummel, P.; Kittle, J.; McGinnis, S.; Mearns, L.O.; Nover, D.; Parker, A.; et al. Modeling Streamflow and Water Quality Sensitivity to Climate Change and Urban Development in 20 U.S. Watersheds. JAWRA J. Am. Water Resour. Assoc. 2015, 51, 1321–1341. [Google Scholar] [CrossRef]
- Hanslík, E.; Marešová, D.; Juranová, E.; Vlnas, R. Dependence of Selected Water Quality Parameters on Flow Rates at River Sites in the Czech Republic. Water Environ. Syst. 2016, 4, 127–140. [Google Scholar]
- Paerl, H.W.; Fulton, R.S.; Moisander, P.H.; Dyble, J. Harmful freshwater algal blooms, with an emphasis on cyanobacteria. Sci. World J. 2001, 1, 76–113. [Google Scholar] [CrossRef] [PubMed]
- Castillo, C.R.; Sarmento, H.; Álvarez-Salgado, X.A.; Gasol, J.M.; Marraséa, C. Production of chromophoric dissolved organic matter by marine phytoplankton. Limnol. Oceanogr. 2010, 55, 446–454. [Google Scholar] [CrossRef] [Green Version]
- Mao, X.-F.; Wang, C.; Wei, X.; Chen, Q.; Liu, G. The Distribution of Chlorophyll-a and Its’ Correlation with Related Indicators in the Ulansuhai Lake, China. J. Environ. Account. Manag. 2014, 2, 123–131. [Google Scholar] [CrossRef]
- Bond, N.R.; Kennard, M.J. Prediction of Hydrologic Characteristics for Ungauged Catchments to Support Hydroecological Modeling. Water Resour. Res. 2017, 53, 8781–8794. [Google Scholar] [CrossRef]
- Destouni, G.; Jarsjö, J. Zones of untreatable water pollution call for better appreciation of mitigation limits and opportunities. Wiley Interdiscip. Rev. Water 2018, 5, e1312. [Google Scholar] [CrossRef] [Green Version]
Area a (km2) | Ta b (C°) | P b (mm/year) | Q c (m3/s) | Total Population d/a (persons) | Population Density d/a (persons/km2) | |
---|---|---|---|---|---|---|
Total sum or average | 17,189 | 6.5 | 608 | 68.0 | 890,316 | 52 |
Arbogaån | 3490 | 6.2 | 730 | 21.6 | 54,933 | 16 |
Eskilstunaån | 4179 | 7.1 | 584 | 9.2 | 293,099 | 70 |
Fyrisån | 2003 | 6.6 | 620 | 6.0 | 195,440 | 98 |
Hedstrommen | 1048 | 6.2 | 694 | 5.2 | 7987 | 8 |
Kolbäcksån | 3170 | 5.6 | 657 | 14.3 | 79,532 | 25 |
Köpingsån | 377 | 6.8 | 584 | 1.3 | 21,204 | 56 |
Märstaån | 79 | 7.0 | 584 | 0.4 | 31,913 | 406 |
Orsundaån | 735 | 6.7 | 584 | 2.2 | 13,860 | 19 |
Oxundaån | 272 | 7.3 | 584 | 1.0 | 112,732 | 415 |
Råckstaån | 262 | 7.0 | 548 | 0.5 | 5133 | 20 |
Sagaån | 856 | 6.6 | 548 | 3.8 | 27,502 | 32 |
Svartån | 720 | 6.5 | 584 | 2.4 | 46,981 | 65 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cantoni, J.; Kalantari, Z.; Destouni, G. Watershed-Based Evaluation of Automatic Sensor Data: Water Quality and Hydroclimatic Relationships. Sustainability 2020, 12, 396. https://doi.org/10.3390/su12010396
Cantoni J, Kalantari Z, Destouni G. Watershed-Based Evaluation of Automatic Sensor Data: Water Quality and Hydroclimatic Relationships. Sustainability. 2020; 12(1):396. https://doi.org/10.3390/su12010396
Chicago/Turabian StyleCantoni, Jacopo, Zahra Kalantari, and Georgia Destouni. 2020. "Watershed-Based Evaluation of Automatic Sensor Data: Water Quality and Hydroclimatic Relationships" Sustainability 12, no. 1: 396. https://doi.org/10.3390/su12010396
APA StyleCantoni, J., Kalantari, Z., & Destouni, G. (2020). Watershed-Based Evaluation of Automatic Sensor Data: Water Quality and Hydroclimatic Relationships. Sustainability, 12(1), 396. https://doi.org/10.3390/su12010396