Vernacular Farm Buildings and Rural Landscape: A Geospatial Approach for Their Integrated Management
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Traditional Rural Buildings Geodatabase
2.3. Geospatial Analysis
2.3.1. Rural Buildings: Distribution and Density
2.3.2. Relationship with Farm Buildings Currently in Use for Agricultural Activities
2.3.3. Relationship with Road Network
2.3.4. Relationship with Topographical Parameters
- Altitude: height above sea level;
- Slope: based on first-order derivation estimation, it expresses the maximum gradient angle for each pixel in degrees.
- Topographic Position Index (TPI): this index measures the topographic position of a central point as the difference between the elevation at this point and the average elevation within a certain established area. Negative TPI values represent the valleys and thus a lower position than the areas. Positive TPI values represent the ridges and therefore positions above the average refer to the surrounding environment. TPI values close to zero represent flat areas or areas with a constant slope (where the slope of the point is greater than zero). The topographic position is a phenomenon that depends on the scale [51].
- Terrain Ruggedness Index (TRI): to express the difference in elevation between adjacent cells of a digital elevation grid, the process automatically calculates the difference in elevation values between a cell in the central position and the eight cells that surround it. The higher the value is, the rougher the land is [52].
2.3.5. Visual Impact of Rural Buildings
3. Results
3.1. Rural Buildings: Distribution and Density
3.2. Relationship with Farm Buildings Currently in Use for Agricultural Activities
3.3. Relationship with Road Network
3.4. Relationship with Topographical Parameters
3.5. Visual Impact of Rural Buildings
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- MacDonald, D.; Crabtree, J.; Wiesinger, G.; Dax, T.; Stamou, N.; Fleury, P.; Gutierrez, L.J.; Gibon, A. Agricultural abandonment in mountain areas of Europe: Environmental consequences and policy response. J. Environ. Manag. 2000, 59, 47–69. [Google Scholar] [CrossRef]
- Agnoletti, M. The Italian Historical Rural Landscape: Cultural Values for the Environment and Rural Development; Agnoletti, M., Ed.; Springer: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Van der Zanden, E.H.; Verburg, P.H.; Schulp, C.J.E.; Verkerk, P.J. Trade-offs of European agricultural abandonment. Land Use Policy 2017, 62, 290–301. [Google Scholar] [CrossRef]
- Perpiña Castillo, C.; Kavalov, B.; Diogo, V.; Jacobs-Crisioni, C.; Batista e Silva, F.; Lavalle, C. Territorial Facts and Trends in the EU Rural Areas within 2015–2030. Available online: https://www.researchgate.net/publication/333508542_Territorial_Facts_and_Trends_in_the_EU_Rural_Areas_within_2015-2030 (accessed on 27 August 2019).
- Stoate, C.; Báldi, A.; Beja, P.; Boatman, N.D.; Herzon, I.; van Doorn, A.; de Snoo, G.R.; Rakosy, L.; Ramwell, C. Ecological impacts of early 21st century agricultural change in Europe—A review. J. Environ. Manag. 2009, 91, 22–46. [Google Scholar] [CrossRef] [PubMed]
- Navarro, L.M.; Pereira, H.M. Rewilding abandoned landscapes in Europe. Ecosystems 2012, 15, 900. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, J.M. Methodological bases for documenting and reusing vernacular farm architecture. J. Cult. Herit. 2010, 11, 119–129. [Google Scholar] [CrossRef]
- Picuno, P. Use of traditional material in farm buildings for a sustainable rural environment. Int. J. Sustain. Built Environ. 2016, 5, 451–460. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, J.M.; Gallego, E.; García, A.I.; Ayuga, F. New uses for old traditional farm buildings: The case of the underground wine cellars in Spain. Land Use Policy 2010, 27, 738–748. [Google Scholar] [CrossRef]
- Picuno, C.A.; Laković, I.; Roubis, D.; Picuno, P.; Capetanović, A. Analysis of the characteristics of traditional rural constructions for animal corral in the Adriatic-Ionian area. Sustainability 2017, 9, 1441. [Google Scholar] [CrossRef] [Green Version]
- Hernández, J.; García, L.; Ayuga, F. Integration methodologies for visual impact assessment of rural buildings by geographic information systems. Biosyst. Eng. 2004, 88, 255–263. [Google Scholar] [CrossRef]
- Cañas, I.; Ayuga, E.; Ayuga, F.A. Contribution to the assessment of scenic quality of landscapes based on preferences expressed by the public. Land Use Policy 2009, 26, 1173–1181. [Google Scholar] [CrossRef]
- Jeong, J.S.; García-Moruno, L.; Hernández-Blanco, J. Integrating buildings into a rural landscape using a multi-criteria spatial decision analysis in GIS-enabled web environment. Biosyst. Eng. 2012, 112, 82–92. [Google Scholar] [CrossRef]
- Agnoletti, M. Rural landscape, nature conservation and culture: Some notes on research trends and management approaches from a (southern) European perspective. Landsc. Urban Plan 2014, 126, 6673. [Google Scholar] [CrossRef]
- ICOMOS. ICOMOS-IFLA Principles concerning rural landscapes as heritage. In Proceedings of the 19th ICOMOS General Assembly and Scientific Symposium, New Delhi, India, 11–15 December 2017; ICOMOS: Paris, France. [Google Scholar]
- McKenzie, P.; Cooper, A.; McCann, T.; Rogers, D. The ecological impact of rural building on habitats in an agricultural landscape. Landsc. Urban Plan 2011, 101, 262–268. [Google Scholar] [CrossRef]
- Haller, A.; Bender, O. Among rewilding mountains: Grassland conservation and abandoned settlements in the Northern Apennines. Landsc. Res. 2018, 43, 1068–1084. [Google Scholar] [CrossRef] [Green Version]
- Calaciura, B.; Spinelli, O. Management of Natura 2000 Habitats: 6210 Semi-natural Dry Grasslands and Scrubland Facies on Calcareous Substrates (Festuco-Brometalia) (*Important Orchid Sites); European Commission: Brussels, Belgium, 2008. [Google Scholar]
- Ana, M. Tourism industry in the new Europe: Trends, policies and challenges. In Proceedings of the International Conference on Business Excellence, Bucharest, Romania, 30–31 March 2017; Volume 11, pp. 493–503. Available online: https://content.sciendo.com/configurable/contentpage/journals$002fpicbe$002f11$002f1$002farticle-p493.xml (accessed on 27 August 2019).
- Cano, M.; Garzón, E.; Sánchez-Soto, P.J. Preservation and conservation of rural buildings as a subject cultural tourism: A review concerning the application of new technologies and methodologies. J. Tour. Hosp. 2013, 2, 115. [Google Scholar]
- Jeong, J.S.; Garcìa-Moruno, L. The study of building integration into the surrounding rural landscape: Focus on implementation of a web-based MC-SDSS validation by two-way participation. Land Use Policy 2016, 57, 719–729. [Google Scholar] [CrossRef]
- Palmisano, G.O.; Loisi, R.V.; Rocchi, G.R.; Boggia, L.; Roma, A.R.; Dal Sasso, P. Using analytic network process and dominance-based rough set approach for sustainable requalification of traditional farm buildings in Southern Italy. Land Use Policy 2016, 59, 95–110. [Google Scholar] [CrossRef]
- Martinez-Graña, A.M.; Goy, Y.; Goy, J.L.; Zazo Cardeña, C. Natural heritage mapping of the las batuecas-sierra de francia and quilamas nature parks (SW Salamanca, Spain). J. Maps 2011, 7, 600–613. [Google Scholar] [CrossRef] [Green Version]
- Biscione, M.; Danese, M.; Masini, N. A framework for cultural heritage management and research: The Cancellara case study. J. Maps 2018, 14, 576–582. [Google Scholar] [CrossRef] [Green Version]
- Blanco, A.; de Bustamante, I.; Pascual-Aguilar, J.A. Using old cartography for the inventory of a forgotten heritage: The hydraulic heritage of the community of Madrid. Sci. Total Environ. 2019, 665, 314–328. [Google Scholar] [CrossRef]
- Inventario Nazionale dei Geositi. Available online: http://sgi.isprambiente.it/GeositiWeb/default.aspx?ReturnUrl=%2fgeositiweb%2f (accessed on 27 August 2019).
- Ruggiero, G.; Parlavecchia, M.; Dal Sasso, P. Typological characterisation and territorial distribution of traditional rural buildings in the Apulian territory (Italy). J. Cult. Herit. 2019, 39, 278–287. [Google Scholar] [CrossRef]
- Parlavecchia, M.; Pascuzzi, S.; Anifantis, A.S.; Santoro, F.; Ruggiero, G. Use of GIS to evaluate minor rural buildings distribution compared to the communication routes in a part of the Apulian territory (Southern Italy). Sustainability 2019, 11, 4700. [Google Scholar] [CrossRef] [Green Version]
- Statuto, D.; Cillis, G.; Picuno, P. GIS-based analysis of temporal evolution of rural landscape: A case study in Southern Italy. Nat. Resour. Res. 2019, 28, 1–15. [Google Scholar] [CrossRef]
- Cillis, G.; Statuto, D.; Picuno, P. Valorisation of historical farm buildings for protecting the rural landscape. In Proceedings of the 47th Symposium on: Actual Tasks on Agricultural Engineering—ATAE 2109, Opatija, Croatia, 5–7 March 2019.
- Shi, T.; Li, X.; Xin, L.; Xu, X. Analysis of farmland abandonment at parcel level: A case study in the mountainous area of China. Sustainability 2016, 8, 988. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Li, X. Global understanding of farmland abandonment: A review and prospects. J. Geogr. Sci 2017, 27, 1123. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Fu, B.; Wang, H.W.; Wang, W. Spatial patterns of farmland abandonment and its impact factors in the central three gorges reservoir area . J. Mt. Sci. 2018, 15, 631. [Google Scholar] [CrossRef]
- Ruda, G. Rural buildings and environment. Landsc. Urban Plan. 1998, 41, 93–97. [Google Scholar] [CrossRef]
- Saganeiti, L.; Favale, A.; Pilogallo, A.; Scorza, F.; Murgante, B. Assessing urban fragmentation at regional scale using sprinkling indexes. Sustainability 2018, 10, 3274. [Google Scholar] [CrossRef] [Green Version]
- Statuto, D.; Tortora, A.; Picuno, P. A GIS approach for the quantification of forest and agricultural biomass in the Basilicata region. J. Agric. Eng. 2013, e125, 627–631. [Google Scholar] [CrossRef]
- Cillis, G.; Statuto, D.; Picuno, P. Historical maps processed into a GIS for the assessment of forest landscape dynamics. In Proceedings of the Public Recreation and Landscape Protection—With Sense Hand in Hand? Křtiny, Czech Republic, 13–15 May 2019; pp. 180–184. Available online: https://www.researchgate.net/publication/333192060_HISTORICAL_MAPS_PROCESSED_INTO_A_GIS_FOR_THE_ASSESSMENT_OF_FOREST_LANDSCAPE_DYNAMICS (accessed on 24 August 2019).
- Grano, M.C. Paesaggio, strutture rurali e architettura popolare nelle province di potenza e matera. In Cultural Landscapes: Metodi, Strumenti e Analisi del Paesaggio fra Archeologia, geologia e Storia in Contesti di Studio del Lazio e Della Basilicata (Italia); Gabrielli, G., Lazzari, M., Sabia, C.A., Del Lungo, S., Eds.; BAR International Series 2629; Archaeopress: Oxford, UK, 2014; pp. 131–148. Available online: https://www.researchgate.net/publication/303932128_PAESAGGIO_STRUTTURE_RURALI_E_ARCHITETTURA_POPOLARE_NELLE_PROVINCE_DI_POTENZA_E_MATERA (accessed on 24 August 2019).
- Basilicata Region. Le Trasformazioni dei Paesaggi Agrari in Basilicata—Indirizzi per il Controllo e la Gestione; Basilicata Region: Potenza, Italy, 2007. [Google Scholar]
- Franciosa, L. La casa rurale nella Lucania. In The rural house in Lucania Region, in Italian; Ohlski: Firenze, Italy, 1942. [Google Scholar]
- Cultural Heritage and Landscape Italian Code, art. 10 Legislative Decree n. 42/2004.
- Statuto, D.; Picuno, P. Valorisation of vernacular farm buildings for the sustainable development of rural tourism in mountain areas of the Adriatic-Ionian macro-region. J. Agric. Eng. 2017, 48, 21–26. [Google Scholar] [CrossRef]
- Cillis, G.; Statuto, D. Landscape protection and tourist valorisation of the cultural and natural heritage of the UNESCO site of Matera (Italy). In Proceedings of the Public Recreation and Landscape Protection—With Nature Hand in Hand? Křtiny, Czech Republic, 2–4 May 2018; pp. 226–231. Available online: https://www.researchgate.net/publication/325093595_Landscape_protection_and_tourist_valorisation_of_the_cultural_and_natural_heritage_of_the_UNESCO_site_of_Matera_Italy (accessed on 24 August 2019).
- Geoportale Nazionale. Available online: http://www.pcn.minambiente.it/ (accessed on 27 August 2019).
- RSDI—Infrastruttura Regionale dei Dati Spaziali della Regione Basilicata. Available online: https://rsdi.regione.basilicata.it/ (accessed on 29 August 2019).
- QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. 2018. Available online: http://qgis.osgeo.org (accessed on 1 August 2019).
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. 2014. Available online: http://www.R-project.org/ (accessed on 1 August 2019).
- QGIS NNJoin Plugin. 2019. Available online: http://arken.nmbu.no/~havatv/gis/qgisplugins/NNJoin (accessed on 24 August 2019).
- De Reu, J.; Bourgeois, J.; Bats, M.; Zwertvaegher, A.; Gelorini, V.; De Smedt, P.; Chu, W.; Antrop, M.; De Maeyer, P.; Finke, P.; et al. Application of the topographic position index to heterogeneous landscapes. Geomorphology 2013, 186, 39–49. [Google Scholar] [CrossRef]
- Amatulli, G.; Domisch, S.; Tuanmu, M.; Parmentier, B.; Ranipeta, A.; Malczyk, J.; Jetz, W. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 2018, 5, 180040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, A.D. Topographic Position and Landforms Analysis. In Poster Presentation, ESRI Users Conference. In Poster Presentation, ESRI Users Conference; San Diego, CA, USA, 2001; Available online: http://www.jennessent.com/downloads/tpi-poster-tnc_18x22.pdf (accessed on 24 August 2019).
- Riley, S.J.; DeGloria, S.D.; Elliot, R. A terrain ruggedness index that quantifies topographic heterogeneity. Intermt. J. Sci. 1999, 5, 23–27. [Google Scholar]
- Miller, D. A method for estimating changes in the visibility of land cover. Landsc. Urban Plan. 2001, 54, 9–104. [Google Scholar] [CrossRef]
- Sander, H.A.; Manson, S.M. Heights and locations of artificial structures in viewshed calculation: How close is close enough? Landsc. Urban Plan. 2007, 82, 257–270. [Google Scholar] [CrossRef]
- Čučković, Z. Advanced viewshed analysis: A Quantum GIS plug-in for the analysis of visual landscapes. J. Open Source Softw. 2016, 1, 32. [Google Scholar] [CrossRef] [Green Version]
- Armesto González, J.; Docampo, M.L.G.; Cañas Guerrero, I. The application of new technologies in construction: Inventory and characterisation of rural constructions using the Ikonos satellite image. Build. Environ. 2006, 41, 174–183. [Google Scholar] [CrossRef]
- Xu, F.; Ho, H.C.; Chi, G.; Wang, Z. Abandoned rural residential land: Using machine learning techniques to identify rural residential land vulnerable to be abandoned in mountainous areas. Habitat Int. 2019, 84, 43–56. [Google Scholar] [CrossRef]
- Terres, J.M.; Nisini Scacchiafichi, L.; Wania, A.; Ambar, M.; Anguiano, E.; Buckwell, A.; Coppola, A.; Gocht, A.; Nordström Källström, H.; Pointereau, P.; et al. Farmland abandonment in Europe: Identification of drivers and indicators, and development of a composite indicator of risk. Land Use Policy 2015, 49, 20–34. [Google Scholar] [CrossRef]
- Lasanta, T.; Nadal-Romero, E.; Arnáez, J. Managing abandoned farmland to control the impact of re-vegetation on the environment. The state of the art in Europe. Environ. Sci. Policy 2015, 52, 99–109. [Google Scholar] [CrossRef] [Green Version]
- Ustaoglu, E.; Collier, M.J. Farmland abandonment in Europe: An overview of drivers, consequences and assessment of the sustainability implications. Environ. Rev. 2018. [Google Scholar] [CrossRef]
- Vidal-Macua, J.J.; Ninyerola, M.; Zabala, A.; Domingo-Marimon, C.; Gonzalez-Guerrero, O.; Pons, X. Environmental and socioeconomic factors of abandonment of rainfed and irrigated crops in northeast Spain. Appl. Geogr. 2018, 90, 155–174. [Google Scholar] [CrossRef]
- Statuto, D.; Cillis, G.; Picuno, P. Visual quality indicators for assessing landscape characteristics and managing its protection. In Proceedings of the Public Recreation and Landscape Protection—With Sense Hand in Hand? Křtiny, Czech Republic, 13–15 May 2019; pp. 476–480. Available online: https://www.researchgate.net/publication/333192079_VISUAL_QUALITY_INDICATORS_FOR_ASSESSING_LANDSCAPE_CHARACTERISTICS_AND_MANAGING_ITS_PROTECTION (accessed on 24 August 2019).
- Olišarová, L.; Cillis, G.; Statuto, D.; Picuno, P. Analysis of the impact of settlement patterns on landscape protection in two different European rural areas. In Proceedings of the Conference on: Public Recreation and Landscape Protection: With Nature Hand in Hand! Křtiny, Czech Republic, 2–4 May 2018; pp. 34–39. Available online: https://www.researchgate.net/publication/324991304_Analysis_of_the_impact_of_settlement_patterns_on_landscape_protection_in_two_different_european_rural_areas (accessed on 24 August 2019).
- Keenleyside, C.; Tucker, G.M. Farmland abandonment in the EU: An assessment of trends and prospects. In Report Prepared for WWF; Institute for European Environmental Policy: London, UK, 2010. [Google Scholar]
- Palmer, J.F. The contribution of a GIS-based landscape assessment model to a scientifically rigorous approach to visual impact assessment. Landsc. Urban Plan. 2019, 189, 80–90. [Google Scholar] [CrossRef]
- Picuno, P.; Cillis, G.; Statuto, D. Investigating the time evolution of a rural landscape: How historical maps may provide environmental information when processed using a GIS. Ecol. Eng. 2019, 139, 105580. [Google Scholar] [CrossRef]
- Wu, J. Landscape sustainability science: Ecosystem services and human well-being in changing landscapes. Landsc. Ecol. 2013, 28, 999. [Google Scholar] [CrossRef]
Rural Buildings | Mean | Min | Max | Std. Deviation |
---|---|---|---|---|
Abandoned | 532.76 | 19.15 | 2355.63 | 382.48 |
Not Abandoned | 256.95 | 16.25 | 4210.21 | 355.76 |
Rural Buildings | Mean | Min | Max | Std. Deviation |
---|---|---|---|---|
Abandoned | 135.01 | 4.54 | 918.01 | 158.23 |
Not Abandoned | 48.68 | 2.92 | 1152.65 | 79.97 |
Altitude (m) | Slope (°) | TPI | TRI | |
---|---|---|---|---|
Abandoned | 506.27 ± 276.15 | 11.67 ± 5.87 | 0.022 ± 0.029 | 0.845 ± 0.436 |
Not Abandoned | 551.33 ± 277.89 | 10.24 ± 5.12 | 0.019 ± 0.028 | 0.744 ± 0.377 |
Not Abandoned | Abandoned | |||
---|---|---|---|---|
No. of Visible Buildings | ha | % | ha | % |
1 | 174,669.12 | 85.187 | 47,811.12 | 92.705 |
2 | 24,256.21 | 11.830 | 3390.22 | 6.574 |
3 | 4619.56 | 2.253 | 298.76 | 0.579 |
4 | 1176.97 | 0.574 | 59.97 | 0.116 |
5 | 271.12 | 0.132 | 13.07 | 0.025 |
6 | 48.96 | 0.024 | 0.03 | 0.001 |
7 | 4.81 | 0.002 | ||
8 | 1.98 | 0.001 | ||
9 | 0.03 | 0.001 | ||
Visible Area Total Real | 205,041.93 | 100 | 51,573.17 | 100 |
Total Potential | 761,764.00 | 26.9% | 256,224.00 | 20.1% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cillis, G.; Statuto, D.; Picuno, P. Vernacular Farm Buildings and Rural Landscape: A Geospatial Approach for Their Integrated Management. Sustainability 2020, 12, 4. https://doi.org/10.3390/su12010004
Cillis G, Statuto D, Picuno P. Vernacular Farm Buildings and Rural Landscape: A Geospatial Approach for Their Integrated Management. Sustainability. 2020; 12(1):4. https://doi.org/10.3390/su12010004
Chicago/Turabian StyleCillis, Giuseppe, Dina Statuto, and Pietro Picuno. 2020. "Vernacular Farm Buildings and Rural Landscape: A Geospatial Approach for Their Integrated Management" Sustainability 12, no. 1: 4. https://doi.org/10.3390/su12010004
APA StyleCillis, G., Statuto, D., & Picuno, P. (2020). Vernacular Farm Buildings and Rural Landscape: A Geospatial Approach for Their Integrated Management. Sustainability, 12(1), 4. https://doi.org/10.3390/su12010004