Sustainability of Vehicle Fuel Biomethane Produced from Grass Silage in Finland
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Description and Boundaries
2.2. Grass Cultivation
2.3. Transportation and Machinery
2.4. Energy and Mass Balance of the Biogas Production Chain
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rasi, S.; Läntelä, J.; Veijanen, A.; Rintala, J. Landfill gas upgrading with countercurrent water wash. Waste Manag. 2008, 28, 1528–1534. [Google Scholar] [CrossRef] [PubMed]
- Lauer, M.; Leprich, U.; Thrän, D. Economic assessment of flexible power generation from biogas plants in Germany’s future electricity system. Renew. Energy 2020, 146, 1471–1485. [Google Scholar] [CrossRef]
- Prussi, M.; Padella, M.; Conton, M.; Postma, E.; Lonza, L. Review of technologies for biomethane prodcution and assessment of Eu tranport share in 2030. J. Clean. Prod. 2019, 222, 565–572. [Google Scholar] [CrossRef] [PubMed]
- EU. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources. 2018. Available online: http://data.europa.eu/eli/dir/2018/2001/oj (accessed on 6 June 2019).
- Government of Finland. Inclusive and Competent Finland—A Socially, Economically and Ecologically Sustainable Society; Programme of Prime Minister Sanna Marin’s Government 10 December 2019; Government of Finland: Helsinki, Finland, 2019; p. 33. [Google Scholar]
- Ministry of Economic Affairs and Employment. Government Report on the National Energy and Climate Strategy for 2030; Publications of the Ministry of Economic Affairs and Employment: Helsinki, Finland, 2017; ISBN 978-952-327-199-9. [Google Scholar]
- Winquist, E.; Rikkonen, P.; Pyysiäinen, J.; Varho, V. Is biogas an energy or a sustainability product?—Business opportunities in the Finnish biogas branch. J. Clean. Prod. 2019, 233, 1344–1354. [Google Scholar] [CrossRef]
- Scarlat, N.; Fahl, F.; Dallemand, J.-F.; Monfortio, F.; Motola, V. A spatial analysis of biogas potential from manure in Europe. Renew. Sustain. Energy Rev. 2018, 94, 915–930. [Google Scholar] [CrossRef]
- Official Statistics of Finland (OSF): Crop Production Statistics [e-publication]. Helsinki: Natural Resources Institute Finland. Available online: http://www.stat.fi/til/satot/index_en.html (accessed on 23 April 2020).
- Esteves, E.; Herrera, A.; Esteves, V.; Morgadi, C. Life cycle assessment of manure biogas production: A review. J. Clean. Prod. 2019, 219, 411–423. [Google Scholar] [CrossRef]
- Timonen, K.; Sinkko, T.; Luostarinen, S.; Tampio, E.; Joensuu, K. LCA of anaerobic digestion: Emission allocation for energy and digestate. J. Clean. Prod. 2019, 235, 1567–1579. [Google Scholar] [CrossRef]
- IPCC. Agriculture, Forestry and Other Land Use. In Guidelines for National Greenhouse Gas Inventories; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2006; Volume 4. [Google Scholar]
- Tuomisto, H.L.; Helenius, J. Comparison of Energy and Greenhouse Gas Balances of Biogas with Other Transport Biofuel Options Based on Domestic Agricultural Biomass in Finland. Agric. Food Sci. 2008, 17, 240–251. [Google Scholar] [CrossRef]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Yara. Ympäristö—Hiilijalanjälki. 2020. Available online: https://www.yara.fi/tietoa-yarasta/ymparisto/hiilijalanjalki/ (accessed on 4 February 2020). (In Finnish).
- Welin, T.; Nordkalk Oy, Pargas, Finland. Personal communication, 9 September 2008.
- Saarinen, M.; Sinkko, T.; Joensuu, K.; Silvenius, F.; Ratilainen, A. Nutrition and Soil Quality Impacts in Life Cycle Assessment of Food (In Finnish). SustFoodChoice-Project Final Report 2014. MTT Report 186. Available online: http://urn.fi/URN:ISBN:978–952-487–540-0 (accessed on 12 May 2020).
- Grönroos, J.; Voutilainen, P. Maatalouden Tuotantotavat ja Ympäristö. Inventaarioanalyysin Tulokset; Finnish Environment Institute: Helsinki, Finland, 2001; Available online: http://hdl.handle.net/10138/40845 (accessed on 12 May 2020). (In Finnish)
- Mikkola, H.J.; Ahokas, J. Energy ratios in Finnish agricultural production. Agric. Food Sci. 2009, 18, 332–346. [Google Scholar] [CrossRef]
- LIPASTO Database. Työkoneiden Keskimääräinen Päästö ja Energia Polttoainelitraa Kohden Suomessa Vuonna. 2016. Available online: http://lipasto.vtt.fi/yksikkopaastot/muut/tyokoneet/tyokoneet_litra.htmpäivitys (accessed on 6 July 2017). (In Finnish).
- Pöschl, M.; Ward, S.; Owende, P. Evaluation of energy efficiency of various biogas production and utilization pathways. Appl. Energy 2010, 87, 3305–3321. [Google Scholar] [CrossRef]
- Finnish Energy. Electricity Net Production, Imports and Exports (GWh) in Finland 2007–2018. Available online: https://energia.fi/julkaisut/materiaalipankki/sahkon_hankinta_energialahteittain_2007–2018.html#material-view (accessed on 20 April 2020).
- Official Statistics of Finland (OSF). Definitions for Classification of Fuels and Energy Sources 2019. Available online: https://www.stat.fi/static/media/uploads/tup/khkinv/edelliset_luokitukset.pdf (accessed on 20 April 2020).
- Adams, P.; McManus, M. Characterisation and variability of greenhouse gas emissions from biomethane production via anaerobic digestion of maize. J. Clean. Prod. 2019, 218, 529–542. [Google Scholar] [CrossRef]
- Siddiqui, S.; Zerhuse, B.; Zehetmeier, M.; Effenberger, M. Distribution of specific greenhouse gas emissions from combined heat-and-power production in agricultural biogas plants. Biomass Bioenergy 2020, 133, 105443. [Google Scholar] [CrossRef]
- Panerinto, D.; Genon, G.; Brizio, E.; Russolillo, D. Production of green energy from co-digestion: Perspectives for the Province of Cuneo, energetic balance and environmental sustainability. Clean Technol. Environ. Policy 2013, 15, 1055–1062. [Google Scholar] [CrossRef]
- Battini, F.; Agostini, A.; Boulamanti, A.K.; Giuntoli, J.; Amaducci, S. Mitigating the environmental impacts of milk production via anaerobicdigestion of manure: Case study of a dairy farm in the Po Valley. Sci. Total Environ. 2014, 481, 196–208. [Google Scholar] [CrossRef]
- Holmgren, M.; Hansen, M.; Reinelt, T.; Westerkamp, T.; Jørgensen, L.; Scheutz, C.; Delre, A. Measurements of Methane Emissions from Biogas Production. Report 2015:158. Available online: www.energiforsk.se (accessed on 10 February 2020).
- Flesch, T.; Desjardins, R.; Worth, D. Fugitive methane emissions from an agricultural biodigester. Biomass Bioenergy 2011, 35, 3927–3935. [Google Scholar] [CrossRef]
- Groth, A.; Mauer, C.; Reiser, M.; Kranert, M. Determination of methane emission rates on a biogas plant using data from laser absorption spectrometry. Bioresour. Technol. 2015, 178, 359–361. [Google Scholar] [CrossRef]
- Heikkinen, J.; Ketoja, E.; Nuutinen, V.; Regina, K. Declining trend of carbon in Finnish cropland soils in 1974–2009. Glob. Chang. Biol. 2013. [Google Scholar] [CrossRef]
- Shurpali, N.J.; Li, Y.; Korhonen, P.; Virkajärvi, P. CO2 and N2O balance of a legume-based grassland in eastern Finland. In Proceedings of the 28th General Meeting of the European Grassland Federation, Helsinki, Finland, 19–22 October 2020. accepted. [Google Scholar]
- Klumpp, K.; Fornara, D.A. The Carbon sequestration of grassland soils—climate change and mitigation strategies. Grassl. Sci. Eur. 2018, 23, 509–519. [Google Scholar]
- IPCC. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. 2013. Available online: http://www.ipcc-nggip.iges.or.jp/home/wetlands.html (accessed on 12 May 2020).
- Meyer, A.; Ehimen, E.; Holm-Nielsen, J. Future European biogas: Animal manure, straw and grass potentials for a sustainable European biogas production. Biomass Bioenergy 2018, 111, 154–164. [Google Scholar] [CrossRef]
- Arodudu, O.; Helming, K.; Voinov, A.; Wiggering, H. Integrating agronomic factors into energy efficiency assessment of agro-bioenergy production—A case study of ethanol and biogas production from maize feedstock. Appl. Energy 2017, 198, 426–439. [Google Scholar] [CrossRef] [Green Version]
- Paolini, V.; Petracchini, F.; Segreto, M.; Tomassetti, L.; Naja, N.; Cecunato, A. Environmental impact of biogas: A short review of current knowledge. J. Environ. Sci. Health 2018, 53, 899–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Scenario | Amount of Substrates (t/a) | Energy (MWh) |
---|---|---|
1. Grass silage (mineral soil) | 62,000 | 46,100 |
2. Grass silage (organic soil) | 62,000 | 46,100 |
3. Clover silage (mineral soil) | 74,000 | 45,900 |
4. Grass silage (mineral soil) + 80% manure * | 135,000 | 46,670 |
5. Grass silage from green manuring | 48,000 | 46,000 |
6. Grass silage (mineral soil)+ 20% cattle manure | 74,000 | 46,000 |
7. Grass silage (organic soil)+ 20% cattle manure | 74,000 | 46,000 |
8. Clover silage + 20% cattle manure | 87,000 | 45,550 |
Yield Level | Mineral Soil | Organic Soil | Green Manuring | |
---|---|---|---|---|
Grass ley | Clover ley | Grass ley | ||
Yield level (kgTS/ha) | 7530 | 7530 | 7530 | 3040 |
Nitrogen fertilisation (kgN/ha) | 180 | 90 | 130 | |
Number of harvests per year | 3 | 3 | 3 | 1 |
Emission Category | Emission Factors | Reference |
---|---|---|
Production of input materials and fuels | ||
Mineral fertiliser | 3.6 kg CO2eq/kg N | [15] |
Limestone | 0.01 kg CO2eq/kg | [16] |
Seeds | 0.5 kg CO2eq/kg | [17] |
AIV preservative | 3.1 kg CO2eq/kg | [18] |
Emissions during field production | ||
Direct N2O from fertilisation | N input in fertilisers (kg N/ha)x0.01x(44/28) kgN2O/ha | [12] |
Indirect N2O from N leaching | N input in fertilisers (kg N/ha)x0.0075x0.3x(44/28) kgN2O/ha | [12] |
Indirect N2O from N volatilisation as NH3 and NOx | N input in fertilisers (kg N/ha)x0.1x0.01x(44/28) kgN2O/ha | [12] |
N2O from decomposition of crop residues | N input in crop residues (kg N/ha)x0.01x(44/28) kgN2O/ha | [12] |
N2O from decomposition of organic matter | 9.5 kg/ha x(44/28) kgN2O/ha (for perennial crops) | [12] |
Liming | 0.1 kg CO2-C/ha x(44/12) | [12] |
TS (%) | VS (%) | Ntot (g/kgww) | NH4-N (g/kgww) | Ptot (g/kgww) | BMP m3CH4/tVS | |
---|---|---|---|---|---|---|
Grass silage | 30.0 | 27.0 | 7.7 | 0.3 | 0.87 | 310 |
Clover silage | 26.2 | 24.1 | 11.0 | 0.4 | 0.69 | 290 |
Grass silage from green manuring | 40.0 | 36.0 | 5.0 | 0.4 | 0.64 | 300 |
Cattle slurry | 9.0 | 7.2 | 5.0 | 2.9 | 0.9 | 210 |
Solid cattle manure | 30.1 | 25.6 | 5.4 | 1.9 | 1.0 | 200 |
Pig slurry | 8.2 | 7.0 | 4.6 | 2.9 | 1.0 | 320 |
Silage Type from Different Scenarios * | 1 | 2 | 3 | 5 | ||
---|---|---|---|---|---|---|
GHG Emissions | gCO2ekv/MJ | 28.2 | 75.3 | 20.1 | 6.1 | |
Share of emissions | Soil N2O emissions from fertiliser use | % | 54 | 15 | 50 | 0 |
Soil N2O emissions from decomposition of organic matter | % | 0 | 71 | 0 | 0 | |
Soil CO2 emissions from liming | % | 2 | 1 | 3 | 0 | |
Production of fuels and use of machinery | % | 12 | 4 | 18 | 77 | |
Production of mineral fertilisers | % | 27 | 7 | 21 | 0 | |
Production of other inputs | % | 5 | 2 | 8 | 23 |
Scenario | Total Emissions before Manure Bonus (gCO2eq/MJ) | Total Emissions after Manure Bonus (gCO2eq/MJ) | Emission Reduction Potential (%) |
---|---|---|---|
1. Grass silage (mineral soil) | 45 | 52 | |
2. Grass silage (organic soil) | 104 | −11 | |
3. Clover silage | 34 | 64 | |
4. Grass silage (mineral soil) 20% + 80% manure | 28 | 2 | 98 |
5. Grass silage from green manuring | 18 | 81 | |
6. Grass silage (mineral soil) 80% + manure 20% | 44 | 42 | 55 |
7. Grass silage (organic soil) 80% +manure 20% | 100 | 98 | −4 |
8. Clover silage 80% + manure 20% | 34 | 31 | 67 |
Scenario | Total Emissions before Manure Bonus (gCO2eq/MJ) | Total Emissions after Manure Bonus (gCO2eq/MJ) | Emission Reduction Potential (%) |
---|---|---|---|
1. Grass silage (mineral soil) | 36 | 62 | |
2. Grass silage (organic soil) | 95 | −1 | |
3. Clover silage | 25 | 73 | |
4. Grass silage (mineral soil) 20% + 80% manure | 18 | −8 | 109 |
5. Grass silage from green manuring | 8 | 74 | |
6. Grass silage (mineral soil) 80% + manure 20% | 35 | 33 | 65 |
7. Grass silage (organic soil) 80% +manure 20% | 91 | 89 | 5 |
8. Clover silage 80% + manure 20% | 24 | 21 | 78 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rasi, S.; Timonen, K.; Joensuu, K.; Regina, K.; Virkajärvi, P.; Heusala, H.; Tampio, E.; Luostarinen, S. Sustainability of Vehicle Fuel Biomethane Produced from Grass Silage in Finland. Sustainability 2020, 12, 3994. https://doi.org/10.3390/su12103994
Rasi S, Timonen K, Joensuu K, Regina K, Virkajärvi P, Heusala H, Tampio E, Luostarinen S. Sustainability of Vehicle Fuel Biomethane Produced from Grass Silage in Finland. Sustainability. 2020; 12(10):3994. https://doi.org/10.3390/su12103994
Chicago/Turabian StyleRasi, Saija, Karetta Timonen, Katri Joensuu, Kristiina Regina, Perttu Virkajärvi, Hannele Heusala, Elina Tampio, and Sari Luostarinen. 2020. "Sustainability of Vehicle Fuel Biomethane Produced from Grass Silage in Finland" Sustainability 12, no. 10: 3994. https://doi.org/10.3390/su12103994
APA StyleRasi, S., Timonen, K., Joensuu, K., Regina, K., Virkajärvi, P., Heusala, H., Tampio, E., & Luostarinen, S. (2020). Sustainability of Vehicle Fuel Biomethane Produced from Grass Silage in Finland. Sustainability, 12(10), 3994. https://doi.org/10.3390/su12103994