Quantitative Assessment of the Relative Impacts of Land Use and Climate Change on the Key Ecosystem Services in the Hengduan Mountain Region, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Preparation
2.2.1. Land Use Data
2.2.2. Climate Data
2.2.3. Soil Data
2.2.4. DEM Data
2.3. Detecting the Relative Impacts Of Land Use and Climate Change on Ecosystem Services
2.4. Ecosystem Service Assessment
2.4.1. Water Yield
2.4.2. Soil Erosion
2.5. Conditions Setting
3. Results
3.1. Driving Forces Analysis of Water Yield and Soil Erosion
3.1.1. Land Use Change Analysis
3.1.2. Climate Change Analysis
3.2. Assessment, Validation, and Spatio-Temporal Heterogeneity of Water Yield and Soil Erosion
3.3. Changes in Water Yield and Soil Erosion under Different Conditions
4. Discussion
4.1. Impacts of Land Use Change on Water Yield and Soil Erosion
4.2. Impacts of Climate Change on Water Yield and Soil Erosion
4.3. Contribution of Land Use and Climate Change to Water Yield and Soil Erosion
4.4. Uncertainties
5. Conclusions
- (1)
- The total amount of water yield and soil erosion decreased under the impact of land use and climate change in the Hengduan Mountain region from 1990 to 2015, which indicates that the soil and water conservation capacity has increased over the past 25 years.
- (2)
- Under the land use change condition, soil and water conservation capacity in the Hengduan Mountain region has decreased in the last five years. Dynamic monitoring of forests should be strengthened in the future so that ecological restoration projects can bring about continuous benefits.
- (3)
- Climate change has played a decisive role in the change of water yield and soil erosion in the Hengduan Mountain region. Precipitation was the main factor affecting water yield and soil erosion, and soil erosion was not only affected by the amount of precipitation, but it was also closely related to precipitation intensity.
- (4)
- The contribution of land use and climate change to water yield was 26.94% and 73.06%, respectively, while for soil erosion, the contribution of land use and climate change was 16.23% and 83.77%, respectively.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fu, B.J.; Zhou, G.Y.; Bai, Y.F.; Song, C.C.; Liu, J.Y.; Zhang, H.Y.; Lü, Y.H.; Zheng, H.; Xie, G.D. The main terrestrial ecosystem services and ecological security in China. Adv. Earth Sci. 2009, 6, 572–575. [Google Scholar]
- Lawler, J.J.; Lewis, D.J.; Nelson, E.; Plantinga, A.J.; Polasky, S.; Withey, J.C.; Helmers, D.P.; Martinuzzi, S.; Pennington, D.; Radeloff, V.C. Projected land-use change impacts on ecosystem services in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 7492–7497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thom, D.; Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. 2016, 91, 760–781. [Google Scholar] [CrossRef] [PubMed]
- MA. Ecosystems and Human Well-Being; Island Press: Washington, DC, USA, 2005; Volume 5. [Google Scholar]
- Liu, Y.; Bi, J.; Lv, J. Future impacts of climate change and land use on multiple ecosystem services in a rapidly urbanizing agricultural basin, China. Sustainability 2018, 10, 4575. [Google Scholar] [CrossRef] [Green Version]
- Fu, Q.; Li, B.; Hou, Y.; Xu, B.; Zhang, X.S. Effects of land use and climate change on ecosystem services in Central Asia’s arid regions: A case study in Altay Prefecture, China. Sci. Total Environ. 2017, 607–608, 633–646. [Google Scholar] [CrossRef]
- Zhao, W.W.; Liu, Y.; Feng, Q.; Wang, Y.P.; Yang, S.Q. Ecosystem services for coupled human and environment systems. Prog. Geog. 2018, 37, 139–151. [Google Scholar]
- Su, C.H.; Fu, B.J. Evolution of ecosystem services in the Chinese Loess Plateau under climatic and land use changes. Glob. Planet. Change. 2013, 101, 119–128. [Google Scholar] [CrossRef]
- Yue, D.X.; Du, J.; Gong, J.; Jiang, T.C.; Zhang, J.J.; Guo, J.J. Dynamic analysis of farmland ecosystem service value and multiple regression analysis of the influence factors in Minqin Oasis. Acta Ecol. Sin. 2011, 31, 2567–2575. [Google Scholar]
- Caputo, J.; Beier, C.M.; Groffman, P.M.; Burns, D.A.; Beall, F.D.; Hazlett, P.W.; Yorks, T.E. Effects of harvesting forest biomass on water and climate regulation services: A synthesis of long-term ecosystem experiments in eastern North America. Ecosystems 2016, 19, 271–283. [Google Scholar] [CrossRef]
- Sanchez-Canales, M.; Lopez-Benito, A.; Acuna, V.; Ziv, G.; Hamel, P.; Chaplin-Kramer, R.; Elorza, F.J. Sensitivity analysis of a sediment dynamics model applied in a Mediterranean river basin: Global change and management implications. Sci. Total Environ. 2015, 502, 602–610. [Google Scholar] [CrossRef]
- Wang, H.; Gao, J.B.; Hou, W.J. Quantitative attribution analysis of soil erosion in different geomorphological types in karst areas: Based on the geodetector method. J. Geogr. Sci. 2019, 29, 271–286. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Brown, D.G.; Chen, J.Q. Drivers of the dynamics in net primary productivity across ecological zones on the Mongolian Plateau. Landsc. Ecol. 2013, 28, 725–739. [Google Scholar] [CrossRef]
- Li, A.; Wu, J.G.; Huang, J.H. Distinguishing between human-induced and climate-driven vegetation changes: A critical application of RESTREND in inner Mongolia. Landsc. Ecol. 2012, 27, 969–982. [Google Scholar] [CrossRef]
- Huang, K.; Zhang, Y.J.; Zhu, J.T.; Liu, Y.J.; Zu, J.X.; Zhang, J. The influences of climate change and human activities on vegetation dynamics in the Qinghai-Tibet Plateau. Remote. Sens. 2016, 8, 876. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Zhu, Q.; Peng, C.; Wu, N.; Wang, Y.; Fang, X.; Gao, Y.; Zhu, D.; Yang, G.; Tian, J.; et al. The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Glob. Chang. Biol. 2013, 19, 2940–2955. [Google Scholar] [CrossRef]
- Fryrear, D.; Sutherland, P.; Davis, G.; Hardee, G.; Dollar, M. Wind erosion estimates with RWEQ and WEQ. In Proceedings of the Conference Sustaining the Global Farm, 10th International Soil Conservation Organization Meeting; Purdue University: West Lafayette, IN, USA, 1999; pp. 760–765. [Google Scholar]
- Chen, D.; Li, J.; Zhou, Z.; Liu, Y.; Li, T.; Liu, J. Simulating and mapping the spatial and seasonal effects of future climate and land-use changes on ecosystem services in the Yanhe watershed, China. Environ. Sci. Pollut. Res. Int. 2018, 25, 1115–1131. [Google Scholar] [CrossRef]
- Krkoška Lorencová, E.; Harmáčková, Z.V.; Landová, L.; Pártl, A.; Vačkář, D. Assessing impact of land use and climate change on regulating ecosystem services in the Czech Republic. Ecos. Health Sust. 2016, 2, 1–12. [Google Scholar] [CrossRef]
- Ostberg, S.; Schaphoff, S.; Lucht, W.; Gerten, D. Three centuries of dual pressure from land use and climate change on the biosphere. Environ. Res. Lett. 2015, 10, 044011. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.Y.; Kalin, L.; Kuang, W.H.; Tian, H.Q. Individual and combined effects of land use/cover and climate change on Wolf Bay watershed streamflow in southern Alabama. HyPr 2014, 28, 5530–5546. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Zhang, J.Z.; Li, X.Y.; Cao, L.Y. Hydrological characteristics of the Hengduan Mountain area. Hydrology 1983, 3, 41–48. [Google Scholar]
- Rao, E.M.; Xiao, Y.; Ouyang, Z.Y.; Zheng, H. Changes in ecosystem service of soil conservation between 2000 and 2010 and its driving factors in southwestern China. Chin. Geogr. Sci. 2016, 26, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.P.; Chen, D.Q.; Duan, X.B.; Qiu, S.L.; Huang, M.G. Monitoring of the four famous Chinese carps resources in the middle and upper reaches of the Yangtze River. Resour. Environ. Yangtze Basin 2004, 13, 183–186. [Google Scholar]
- Zhou, Z.C.; Gan, Z.T.; Shangguan, Z.P.; Dong, Z.B. China’s Grain for Green Program has reduced soil erosion in the upper reaches of the Yangtze River and the middle reaches of the Yellow River. Int. J. Sustain. Dev. World 2009, 16, 234–239. [Google Scholar] [CrossRef]
- Zheng, D.; Yang, Q.Y. Some problems of natural regionalization in Hengduan mountain area. J. Mount. Res. 1987, 5, 7–13. [Google Scholar]
- Li, Z.X.; He, Y.Q.; Xin, H.J.; Wang, C.F.; Jia, W.X.; Zhang, W.; Liu, J. Spatio-temporal variations of temperature and precipitation in Mts. Hengduan Region during 1960–2008. J. Geogr. Sci. 2010, 27, 980–986. [Google Scholar]
- Liu, J.Y.; Kuang, W.H.; Zhang, Z.X.; Xu, X.L.; Qin, Y.W.; Ning, J.; Zhou, W.C.; Zhang, S.W.; Li, R.D.; Yan, C.Z. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Hutchinson, M.F.; Xu, T. Anusplin Version 4.2 User Guide; Centre for Resource and Environmental Studies, The Australian National University: Canberra, Australia, 2004; Volume 54. [Google Scholar]
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST User’s Guide. 2014. Available online: http://data.naturalcapitalproject.org/nightly-build/invest-users-guide/html/ (accessed on 13 July 2016).
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; Mccool, D.K.; Yoder, D.C. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE); United States Department of Agriculture: Washington, DC, USA, 1997.
- Zhou, W.; Liu, G.; Pan, J.; Feng, X. Distribution of available soil water capacity in China. J. Geogr. Sci. 2005, 15, 3–12. [Google Scholar] [CrossRef]
- Droogers, P.; Allen, R.G. Estimating reference evapotranspiration under inaccurate data conditions. Irrig. Drain. Syst. 2002, 16, 33–45. [Google Scholar] [CrossRef]
- Hu, Q.F.; Yang, D.W.; Wang, Y.T.; Yang, H.B. Global calibration of Hargreaves equation and its applicability in China. Adv. Water Sci. 2011, 22, 160–167. [Google Scholar]
- Wischmeier, W.H. Predicting rainfall erosion losses from cropland east of the Rocky Mountain. In Agricultural Handbook; Government Printing Office: Washington, DC, USA, 1965; p. 47. [Google Scholar]
- Arnoldus, H.M.J.; Boodt, M.D.; Gabriels, D. An approximation of the rainfall factor in the Universal Soil Loss Equation. In Assessment of Erosion; De Boodt, M., Gabriels, D., Eds.; John Wiley and Sons: New York, NY, USA, 1980; pp. 127–132. [Google Scholar]
- Williams, J.; Jones, C.; Kiniry, J.; Spanel, D.A. The EPIC crop growth model. Trans. ASAE 1989, 32, 497–511. [Google Scholar] [CrossRef]
- McCool, D.; Brown, L.; Foster, G.; Mutchler, C.; Meyer, L. Revised slope steepness factor for the Universal Soil Loss Equation. Trans. ASAE 1987, 30, 1387–1396. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, Q.; Li, R.; Liu, Q.; Moore, D.; He, P.; Ritsema, C.J.; Geissen, V. Extension of a GIS procedure for calculating the RUSLE equation LS factor. Comput. Geosci. 2013, 52, 177–188. [Google Scholar] [CrossRef]
- Renard, K.G.; Foster, G.R.; Weesies, G.A. Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). In Agricultural Handbook No. 703; U.S. Department of Agriculture, U.S.Government Printing Office: Washington, DC, USA, 1997; p. 404. [Google Scholar]
- Fu, B.; Liu, Y.; Lü, Y.; He, C.; Zeng, Y.; Wu, B. Assessing the soil erosion control service of ecosystem change in the Loess Plateau of China. Ecol. Complex. 2011, 8, 284–293. [Google Scholar] [CrossRef]
- Xiao, L.; Yang, X.; Chen, S.; Cai, H. An assessment of erosivity distribution and its influence on the effectiveness of land use conversion for reducing soil erosion in Jiangxi, China. Catena 2015, 125, 50–60. [Google Scholar] [CrossRef]
- Wang, D.B.; Hejazi, M. Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States. Water Resour. Res. 2011, 47, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, Z.Y.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
- Ge, Y.; Cui, P.; Lin, Y.; Zhuang, J.; Jia, S. Soil erosion evaluation and prediction approach using 137Cs, RS, and GIS in the Xiaojiang River basin of China. J. Remote Sens. 2014, 18, 887–901. [Google Scholar]
- Ministry of Water Resources of the People’s Republic of China. Standards for Classification and Gradation of Soil Erosion, SL 190-96; China Hydroelectricity Press: Beijing, China, 2008. [Google Scholar]
- Chen, T.; Peng, L.; Liu, S.; Wang, Q. Spatio-temporal pattern of net primary productivity in Hengduan Mountains area, China: Impacts of climate change and human activities. Chin. Geogr. Sci. 2017, 27, 948–962. [Google Scholar] [CrossRef] [Green Version]
- Reiche, J.; Lucas, R.; Mitchell, A.L.; Verbesselt, J.; Hoekman, D.H.; Haarpaintner, J.; Kellndorfer, J.M.; Rosenqvist, A.; Lehmann, E.A.; Woodcock, C.E. Combining satellite data for better tropical forest monitoring. Nat. Clim. Chang. 2016, 6, 120. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, J.; Lian, J.; Fan, Z.; Ouyang, X.; Ye, W. Seeing the forest from drones: Testing the potential of lightweight drones as a tool for long-term forest monitoring. Biol. Conserv. 2016, 198, 60–69. [Google Scholar] [CrossRef]
- Feng, X.; Fu, B.; Piao, S.; Wang, S.; Ciais, P.; Zeng, Z.; Lü, Y.; Zeng, Y.; Li, Y.; Jiang, X.; et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Chang. 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Jiang, Z.; Lian, Y.; Qin, X. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth-Sci. Rev. 2014, 132, 1–12. [Google Scholar] [CrossRef]
- Wang, S.J.; Liu, Q.M.; Zhang, D.F. Karst rocky desertification in southwestern China: Geomorphology, land use, impact and rehabilitation. Land Degrad. Dev. 2004, 15, 115–121. [Google Scholar] [CrossRef]
- Goldstein, J.H.; Giorgio, C.; Thomas Kaeo, D.; Driss, E.; Neil, H.; Guillermo, M.; Stephen, P.; Stacie, W.; Daily, G.C. Integrating ecosystem-service tradeoffs into land-use decisions. Proc. Natl. Acad. Sci. USA 2012, 109, 7565–7570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, E.F.; Wang, X.l.; Zhu, J.J.; Xi, W.M. Quantifying ecosystem service trade-offs for plantation forest management to benefit provisioning and regulating services. Ecol. Evol. 2017, 7, 7807–7821. [Google Scholar] [CrossRef]
- Stonefelt, M.D.; Fontaine, T.A.; Hotchkiss, R.H. Impacts of climate change on water yield in the Upper Wind River Basin. J. Am. Water Resour. Assos. 2010, 36, 321–336. [Google Scholar] [CrossRef]
- O’Neal, M.R.; Nearing, M.A.; Vining, R.C.; Southworth, J.; Pfeifer, R.A.J.C. Climate change impacts on soil erosion in Midwest United States with changes in crop management. Catena 2005, 61, 165–184. [Google Scholar] [CrossRef]
- Michael, A.; Schmidt, J.; Enke, W.; Deutschländer, T.; Malitz, G.J.C. Impact of expected increase in precipitation intensities on soil loss-results of comparative model simulations. Catena 2005, 61, 155–164. [Google Scholar] [CrossRef]
- Nearing, M.A.; Jetten, V.; Baffaut, C.; Cerdan, O.; Couturier, A.; Hernandez, M.; Bissonnais, Y.L.; Nichols, M.H.; Nunes, J.P.; Renschler, C.S. Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena 2005, 61, 131–154. [Google Scholar] [CrossRef]
- Su, B.; Xiao, B.; Zhu, D.; Jiang, T. Trends in frequency of precipitation extremes in the Yangtze River basin, China: 1960–2003. Hydrolog. Sci. J. 2005, 50, 479–492. [Google Scholar]
- Zhang, M.; Jinyun, H.E.; Wang, B.; Wang, S.; Shanshan, L.I.; Liu, W.; Xuening, M.A. Extreme drought changes in Southwest China from 1960 to 2009. J. Geogr. Sci. 2013, 23, 3–16. [Google Scholar] [CrossRef]
- Jiao, Y.; Li, X.; Liang, L.; Takeuchi, K.; Okuro, T.; Zhang, D.; Sun, L. Indigenous ecological knowledge and natural resource management in the cultural landscape of China’s Hani Terraces. Ecol. Res. 2012, 27, 247–263. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, S.; Gu, F. The impact of forest vegetation change on water yield in the subalpine region of southwestern China. Acta Ecol. Sin. 2011, 31, 7601–7608. [Google Scholar]
- Dale, V.H. The relationship between land-use change and climate change. Ecol. Appl. 1997, 7, 753–769. [Google Scholar] [CrossRef]
- Mendelsohn, R.; Dinar, A. Land use and climate change interactions. Annu. Rev. Resour. Econ. 2009, 1, 309–332. [Google Scholar] [CrossRef]
- Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.; Chen, J.; Jeu, R.; et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. [Google Scholar] [CrossRef]
- Yue, Y.; Ni, J.; Ciais, P.; Piao, S.; Wang, T.; Huang, M.; Borthwick, A.G.L.; Li, T.; Wang, Y.; Chappell, A.; et al. Lateral transport of soil carbon and land—Atmosphere CO2 flux induced by water erosion in China. Proc. Natl. Acad. Sci. USA 2016, 113, 6617–6622. [Google Scholar] [CrossRef] [Green Version]
Year | Land Use Change + Climate Change Condition | Land Use Change Condition | Climate Change Condition |
---|---|---|---|
1990 | 1990 land use data | 1990 land use data | 1990 land use data |
1990 climate data | 1990 climate data | 1990 climate data | |
2015 | 2015 land use data | 2015 land use data | 1990 land use data |
2015 climate data | 1990 climate data | 2015 climate data |
Land Use Change | Area (km2) | Water Yield | Soil Erosion | ||
---|---|---|---|---|---|
Mean (mm) | Sum (108 m3) | Mean (t ha−1 yr−1) | Sum (106 t) | ||
Cropland to woodland | 753 | −181.94 | −1.37 | −103.85 | −7.82 |
Cropland to grassland | 1017 | −121.93 | −1.24 | −55.75 | −5.67 |
Woodland to cropland | 706 | 177.05 | 1.25 | 94.9 | 6.70 |
Woodland to grassland | 3641 | 48.06 | 1.75 | 36.94 | 13.45 |
Grassland to cropland | 852 | 122.07 | 1.04 | 42.61 | 3.63 |
Grassland to woodland | 8429 | −54.93 | −4.63 | −30.75 | −25.92 |
Grassland to bare rock | 1160 | 130.34 | 1.51 | −51.21 | −5.94 |
Bare rock to grassland | 2196 | −101.09 | −2.22 | 49.18 | 10.80 |
Climate Change | Area (km2) | Water Yield (mm) | Soil Erosion Rates (t ha−1 yr−1) |
---|---|---|---|
Warming and drying | 307,618 | −28.05 | −5.99 |
Warming and wetting | 139,019 | 46.96 | 6.12 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, E.; Yin, L.; Wang, Y.; Ma, L.; Tong, M. Quantitative Assessment of the Relative Impacts of Land Use and Climate Change on the Key Ecosystem Services in the Hengduan Mountain Region, China. Sustainability 2020, 12, 4100. https://doi.org/10.3390/su12104100
Dai E, Yin L, Wang Y, Ma L, Tong M. Quantitative Assessment of the Relative Impacts of Land Use and Climate Change on the Key Ecosystem Services in the Hengduan Mountain Region, China. Sustainability. 2020; 12(10):4100. https://doi.org/10.3390/su12104100
Chicago/Turabian StyleDai, Erfu, Le Yin, Yahui Wang, Liang Ma, and Miao Tong. 2020. "Quantitative Assessment of the Relative Impacts of Land Use and Climate Change on the Key Ecosystem Services in the Hengduan Mountain Region, China" Sustainability 12, no. 10: 4100. https://doi.org/10.3390/su12104100
APA StyleDai, E., Yin, L., Wang, Y., Ma, L., & Tong, M. (2020). Quantitative Assessment of the Relative Impacts of Land Use and Climate Change on the Key Ecosystem Services in the Hengduan Mountain Region, China. Sustainability, 12(10), 4100. https://doi.org/10.3390/su12104100