Exploring How Teachers Diagnose Student Conceptions about the Cycle of Matter
Abstract
:1. Introduction
2. Teachers’ Diagnostic Skills in the Context of ESD
2.1. The Relevance of Student Conceptions when Teaching SDGs with an Ecological Focus
2.2. Typical Student Conceptions Relevant for Developing Sustainability Competencies
2.3. Teachers’ Diagnosing and Student Learning
2.4. Research Goals and Research Questions
- RQ 1:
- What do future science teachers notice, and how do they interpret students’ expressions about the cycle of matter within the context of education for sustainable development?
- RQ 2:
- What relevant teacher characteristics influence pre-service teachers’ diagnostic skills?
- RQ 3:
- Do in-service teachers show higher levels of diagnostic skills than pre-service teachers?
3. Materials and Methods
3.1. Participants and Design
3.2. Materials
3.2.1. Questionnaire
3.2.2. Vignette-Based Test
3.2.3. Paper-and-Pencil Test
3.3. Data Analysis
4. Results
4.1. RQ 1: What do Future Science Teachers Notice and How do They Interpret Students’ Verbal Expressions about the Cycle of Matter within the Context of Education for Sustainable Development?
4.2. RQ 2: What Relevant Teacher Characteristics Influence Pre-Service Teachers’ Diagnostic Skills?
4.3. RQ 3: Do In-Service Teachers Show Higher Diagnostic Skills than Pre-Service Teachers?
5. Discussion
5.1. RQ 1: What do Future Science Teachers Notice and How do They Interpret Students’ Expressions about the Cycle of Matter within the Context of Education for Sustainable Development?
5.2. RQ 2: What Relevant Teacher Characteristics Influence Pre-Service Teachers’ Diagnostic Skills?
5.3. RQ 3: Do In-Service Teachers Show Higher Levels of Diagnostic Skills than Pre-Service Teachers?
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Leicht, A.; Heiss, J.; Byun, W.J. (Eds.) Issues and Trends in Education for Sustainable Development; United Nations Educational, Scientific and Cultural Organization: Paris, France, 2018; ISBN 9231002449. [Google Scholar]
- Rieß, W. Bildung für Nachhaltige Entwicklung. Theoretische Analysen und Empirische Studien; Waxmann: Münster/München/Berlin, Germany, 2010; ISBN 9783830923114. [Google Scholar]
- Rieß, W.; Mischo, C.; Waltner, E.-M. Ziele einer Bildung für nachhaltige Entwicklung in Schule und Hochschule: Auf dem Weg zu empirisch überprüfbaren Kompetenzen. GAIA Ecol. Perspect. Sci. Soc. 2018, 27, 298–305. [Google Scholar] [CrossRef]
- Schuler, S.; Fanta, D.; Rosenkraenzer, F.; Riess, W. Systems thinking within the scope of education for sustainable development (ESD)—A heuristic competence model as a basis for (science) teacher education. J. Geogr. High. Educ. 2017, 42, 192–204. [Google Scholar] [CrossRef]
- Fanta, D.; Braeutigam, J.; Riess, W. Fostering systems thinking in student teachers of biology and geography—An intervention study. J. Biol. Educ. 2019, 12, 1–19. [Google Scholar] [CrossRef]
- Waltner, E.-M.; Rieß, W.; Mischo, C. Development and Validation of an Instrument for Measuring Student Sustainability Competencies. Sustainability 2019, 11, 1717. [Google Scholar] [CrossRef] [Green Version]
- Baisch, P. Schülervorstellungen zum Stoffkreislauf. Eine Interventionsstudie im Kontext Einer Bildung für nachhaltige Entwicklung; Verlag Dr. Kovač: Hamburg, Germany, 2009; ISBN 978-3-8300-4720-9. [Google Scholar]
- Leach, J.; Driver, R.; Scott, P.; Wood-Robinson, C. Children’s ideas about ecology 2: Ideas found in children aged 5-16 about the cycling of matter. Int. J. Sci. Educ. 2008, 18, 19–34. [Google Scholar] [CrossRef]
- Opitz, S.T.; Blankenstein, A.; Harms, U. Student conceptions about energy in biological contexts. J. Biol. Educ. 2017, 51, 427–440. [Google Scholar] [CrossRef]
- Duit, R.; Treagust, D.; Widoro, A. Teaching Science for Conceptual Change: Theory and Practice. In International Handbook of Research on Conceptual Change; Vosniadou, S., Ed.; Routledge: New York, NY, USA; London, UK, 2008; pp. 629–645. [Google Scholar]
- Taber, K.S. The nature of student conceptions. In Science Education: An International Course Companion; Taber, K.S., Akpan, B., Eds.; Sense Publishers: Rotterdam, The Netherlands; Boston, MA, USA; Taipei, Taiwan, 2017; pp. 119–131. ISBN 9463007482. [Google Scholar]
- Rosenkränzer, F.; Kramer, T.; Hörsch, C.; Schuler, S.; Rieß, W. Promoting Student Teachers’ Content Related Knowledge in Teaching Systems Thinking: Measuring Effects of an Intervention through Evaluating a Videotaped Lesson. HES 2016, 6, 156. [Google Scholar] [CrossRef] [Green Version]
- Rosenkränzer, F.; Hörsch, C.; Schuler, S.; Rieß, W. Student teachers’ pedagogical content knowledge for teaching systems thinking: Effects of different interventions. Int. J. Sci. Educ. 2017, 39, 1932–1951. [Google Scholar] [CrossRef]
- Larkin, D. Misconceptions about “misconceptions”: Preservice secondary science teachers’ views on the value and role of student ideas. Sci. Ed. 2012, 96, 927–959. [Google Scholar] [CrossRef]
- Kattmann, U. Schüler Besser Verstehen. Alltagsvorstellungen im Biologieunterricht; Aulis-Verlag: Hallbergmoos, Germany, 2015; ISBN 978-3-7614-2941-9. [Google Scholar]
- Bransford, J.D. How People Learn. Brain, Mind, Experience, and School, 3. Print; National Academy Press: Washington, DC, USA, 2000; ISBN 0309065577. [Google Scholar]
- Morrison, J.A.; Lederman, N.G. Science teachers’ diagnosis and understanding of students’ preconceptions. Sci. Ed. 2003, 87, 849–867. [Google Scholar] [CrossRef]
- Ruiz-Primo, M.A.; Furtak, E.M. Exploring teachers’ informal formative assessment practices and students’ understanding in the context of scientific inquiry. J. Res. Sci. Teach. 2007, 44, 57–84. [Google Scholar] [CrossRef]
- Loibl, K.; Leuders, T.; Dörfler, T. A Framework for Explaining Teachers’ Diagnostic Judgements by Cognitive Modeling (DiaCoM). Teach. Teach. Educ. 2020, 91, 103059. [Google Scholar] [CrossRef]
- Heitzmann, N.; Seidel, T.; Hetmanek, A.; Wecker, C.; Fischer, M.; Ufer, S.; Schmidmaier, R.; Neuhaus, B.J.; Siebeck, M.; Stürmer, K.; et al. Facilitating Diagnostic Competences in Simulations in Higher Education: A Framework and a Research Agenda. Frontline Learn. Res. 2019, 7, 1–24. [Google Scholar] [CrossRef]
- Hammann, M.; Asshoff, R. Schülervorstellungen im Biologieunterricht. Ursachen für Lernschwierigkeiten, 2. Aufl.; Klett Kallmeyer: Seelze, Germany, 2015; ISBN 978-3-7800-4908-7. [Google Scholar]
- Ausubel, D.P. Educational Psychology. A Cognitive View; Holt Rinehart and Winston: New York, NY, USA, 1968; ISBN 0030696402. [Google Scholar]
- Taber, K.S. Alternative Conceptions/Frameworks/Misconceptions. In Encyclopedia of Science Education; Gunstone, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 37–41. [Google Scholar]
- Lucariello, J. How Do I Get M Students Over Their Alternative Conceptions (Misconceptions) for Learning? Available online: https://www.apa.org/education/k12/misconceptions (accessed on 4 March 2020).
- Carpenter, T.P.; Fennema, E.; Peterson, P.L.; Chiang, C.-P.; Loef, M. Using Knowledge of Children’s Mathematics Thinking in Classroom Teaching: An Experimental Study. Am. Educ. Res. J. 2016, 26, 499–531. [Google Scholar] [CrossRef]
- Decristan, J.; Hondrich, A.L.; Büttner, G.; Hertel, S.; Klieme, E.; Kunter, M.; Lühken, A.; Adl-Amini, K.; Djakovic, S.-K.; Mannel, S.; et al. Impact of Additional Guidance in Science Education on Primary Students’ Conceptual Understanding. J. Educ. Res. 2015, 108, 358–370. [Google Scholar] [CrossRef]
- Furtak, E.M.; Kiemer, K.; Circi, R.K.; Swanson, R.; de León, V.; Morrison, D.; Heredia, S.C. Teachers’ formative assessment abilities and their relationship to student learning: Findings from a four-year intervention study. Instr. Sci. 2016, 44, 267–291. [Google Scholar] [CrossRef]
- Biologie unterrichten mit Alltagsvorstellungen. Didaktische Rekonstruktion in Unterrichtseinheiten; Kattmann, U., Ed.; 1. Auflage; Klett/Kallmeyer: Seelze, Germany, 2017; ISBN 9783772710681. [Google Scholar]
- Gropengießer, H.; Marohn, A. Schülervorstellungen und Conceptual Change. In Theorien in der Naturwissenschaftsdidaktischen Forschung; Krüger, D., Parchmann, I., Schecker, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 49–66. ISBN 9783662563205. [Google Scholar]
- Schoenfeld, A.H. Noticing Matters. A Lot. Now What? In Mathematics Teacher Noticing: Seeing through Teachers’ Eyes, 1. Publ; Sherin, M.G., Ed.; Routledge: London, UK, 2011; pp. 223–238. ISBN 0-415-87863-2. [Google Scholar]
- Helldén, G. Environmental Education and Pupils’ Conceptions of Matter. Environ. Educ. Res. 1995, 1, 267–277. [Google Scholar] [CrossRef]
- Sander, E.; Jelemenská, P.A.; Kattmann, U. Towards a better understanding of ecology. J. Biol. Educ. 2006, 40, 119–123. [Google Scholar] [CrossRef]
- Schülervorstellungen und fachliche Vorstellungen zu Mikroorganismen und mikrobiellen Prozessen. Ein Beitrag zur didaktischen Rekonstruktion. Zugl.: Oldenburg, University, Diss.; Hilge, C., Ed.; Didaktisches Zentrum (DIZ) University Oldenburg: Oldenburg, Germany, 1999; ISBN 3814206851. [Google Scholar]
- Smith, E.L.; Anderson, C.W. Plants as producers: A case study of elementary science teaching. J. Res. Sci. Teach. 1984, 21, 685–698. [Google Scholar] [CrossRef]
- Schecker, H.; Duit, R. Schülervorstellungen und Physiklernen. In Schülervorstellungen und Physikunterricht; Schecker, H., Wilhelm, T., Hopf, M., Duit, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2018; pp. 1–21. ISBN 978-3-662-57269-6. [Google Scholar]
- Chi, M.T.H.; Siler, S.A.; Jeong, H. Can Tutors Monitor Students’ Understanding Accurately? Cogn. Instr. 2004, 22, 363–387. [Google Scholar] [CrossRef] [Green Version]
- Shavelson, R.J.; Yin, Y.; Furtak, E.M.; Araceli Ruiz-Primo, M.; Ayala, C.C.; Young, D.B.; Tomita, M.K.; Brandon, P.R.; Pottenger, F.M., III. On the Role and Impact of Formative Assessment on Science Inquiry Teaching and Learning. Assess. Sci. Learn. Perspect. Res. Pract. 2008, 2008, 21–36. [Google Scholar]
- Chernikova, O.; Heitzmann, N.; Fink, M.C.; Timothy, V.; Seidel, T.; Fischer, F. Facilitating Diagnostic Competences in Higher Education—A Meta-Analysis in Medical and Teacher Education. Educ. Psychol. Rev. 2019, 68, 1–40. [Google Scholar] [CrossRef] [Green Version]
- Herppich, S.; Praetorius, A.-K.; Förster, N.; Glogger-Frey, I.; Karst, K.; Leutner, D.; Behrmann, L.; Böhmer, M.; Ufer, S.; Klug, J.; et al. Teachers’ assessment competence: Integrating knowledge-, process-, and product-oriented approaches into a competence-oriented conceptual model. Teach. Teach. Educ. 2017, 76, 181–193. [Google Scholar] [CrossRef]
- Glogger-Frey, I.; Herppich, S.; Seidel, T. Linking teachers’ professional knowledge and teachers’ actions: Judgment processes, judgments and training. Teach. Teach. Educ. 2018, 76, 176–180. [Google Scholar] [CrossRef]
- Chi, M.T.H.; Siler, S.A.; Jeong, H.; Yamauchi, T.; Hausmann, R.G. Learning from human tutoring. Cogn. Sci. 2001, 25, 471–533. [Google Scholar] [CrossRef]
- Van de Pol, J.; Volman, M.; Oort, F.; Beishuizen, J. Teacher Scaffolding in Small-Group Work: An Intervention Study. J. Learn. Sci. 2014, 23, 600–650. [Google Scholar] [CrossRef]
- Glogger-Frey, I.; Herppich, S. Formative Diagnostik als Teilaspekt diagnostischer Kompetenz. In Diagnostische Kompetenz von Lehrkräften: Theoretische und methodische Weiterentwicklungen; Südkamp, A., Praetorius, A.-K., Eds.; Waxmann: Münster, Germany; New York, NY, USA, 2017; pp. 42–45. ISBN 978-3-8309-8596-9. [Google Scholar]
- Klieme, E.; Warwas, J. Konzepte der Individuellen Förderung. Zeitschrift für Pädagogik 2011, 57, 805–818. [Google Scholar]
- Heritage, M. Formative Assessment: What Do Teachers Need to Know and Do? Phi Delta Kappan 2007, 89, 140–145. [Google Scholar] [CrossRef]
- Blomberg, G.; Stürmer, K.; Seidel, T. How pre-service teachers observe teaching on video: Effects of viewers’ teaching subjects and the subject of the video. Teach. Teach. Educ. 2011, 27, 1131–1140. [Google Scholar] [CrossRef]
- Blömeke, S.; Gustafsson, J.-E.; Shavelson, R.J. Beyond Dichotomies. Zeitschrift für Psychologie 2015, 223, 3–13. [Google Scholar] [CrossRef]
- Piwowar, V.; Barth, V.L.; Ophardt, D.; Thiel, F. Evidence-based scripted videos on handling student misbehavior: The development and evaluation of video cases for teacher education. Prof. Dev. Educ. 2017, 10, 1–16. [Google Scholar] [CrossRef]
- Helldén, G. What will happen to the leaves on the ground? In Lehren fürs Leben: Didaktische Rekonstruktion in der Biologie; Ulrich Kattmann zur Verabschiedung aus dem Dienst der Carl-von-Ossietzky-Universität Oldenburg; Gropengießer, H., Kattmann, U., Eds.; Aulis-Verl. Deubner: Köln, Germany, 2004; pp. 96–108. ISBN 3-7614-2565-1. [Google Scholar]
- Rath, V. Diagnostische Kompetenz von angehenden Physiklehrkräften. Dissertation; Universität Paderborn: Paderborn, Germany, 2017. [Google Scholar]
- Lindmeier, A.M. Video-vignettenbasierte standardisierte Erhebung von Lehrerkognitionen. In Videobasierte Kompetenzforschung in den Fachdidaktiken; Riegel, U., Macha, K., Eds.; Waxmann: Münster, Germany, 2013; pp. 45–62. ISBN 9783830928805. [Google Scholar]
- Schmitt, N. Uses and abuses of coefficient alpha. Psychol. Assess. 1996, 8, 350–353. [Google Scholar] [CrossRef]
- Mayring, P. Qualitative Inhaltsanalyse. Grundlagen und Techniken, Online-Ausg; Beltz: Weinheim, Germany; Basel, Switzerland, 2015; ISBN 978-3-407-29393-0. [Google Scholar]
- Schneider, J.; Bohl, T.; Kleinknecht, M.; Rehm, M.; Kuntze, S.; Syring, M. Unterricht analysieren und reflektieren mit unterschiedlichen Fallmedien: Ist Video wirklich besser als Text? Unterrichtswissenschaft 2016, 44, 474–490. [Google Scholar]
- Furtak, E.M.; Thompson, J.; van Es, E.A. Formative Assessment and Noticing. Toward a Synthesized Framework for Attending and Responding During Instruction. In Proceedings of the Annual Meeting of the American Educational Research Association, Washington, DC, USA, 8–12 April 2016. [Google Scholar]
- Fleiss, J.L.; Cohen, J. The Equivalence of Weighted Kappa and the Intraclass Correlation Coefficient as Measures of Reliability. Educ. Psychol. Meas. 2016, 33, 613–619. [Google Scholar] [CrossRef]
- Schrenk, M.; Gropengießer, H.; Groß, J.; Hammann, M.; Weitzel, H.; Zabel, J. Schülervorstellungen im Biologieunterricht. In Biologiedidaktische Forschung: Erträge für die Praxis; Groß, J., Hammann, M., Schmiemann, P., Zabel, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 3–20. ISBN 978-3-662-58442-2. [Google Scholar]
- Rasch, B.; Friese, M.; Hofmann, W.; Naumann, E. Quantitative Methoden 2. Einführung in die Statistik für Psychologen und Sozialwissenschaftler, 4, Überarbeitete Auflage; Springer: Berlin/Heidelberg, Germany, 2014; ISBN 9783662435489. [Google Scholar]
- Eid, M.; Gollwitzer, M.; Schmitt, M. Statistik und Forschungsmethoden. Mit Online-Materialien, 5, Korrigierte Auflage; Beltz: Weinheim, Germany; Basel, Switzerland, 2017; ISBN 9783621282017. [Google Scholar]
- Van Es, E.A. A Framework for Learning to Notice Student Thinking. In Mathematics Teacher Noticing: Seeing through Teachers’ Eyes; Sherin, M.G., Ed.; Routledge: London, UK, 2011; pp. 134–151. ISBN 0-415-87863-2. [Google Scholar]
- Ostermann, A.; Leuders, T.; Philipp, K. Fachbezogene diagnostische Kompetenzen von Lehrkräften-Von Verfahren der Erfassung zu kognitiven Modellen zur Erklärung. In Pädagogische Professionalität in Mathematik und Naturwissenschaften, 1. Publ; Leuders, T., Nückles, M., Mikelskis-Seifert, S., Philipp, K., Eds.; Springer Spektrum: Wiesbaden, Germany, 2019; pp. 93–116. ISBN 9783658086442. [Google Scholar]
- Shulman, L.S. Those Who Understand: Knowledge Growth in Teaching. Educ. Res. 1984, 15, 4–14. [Google Scholar] [CrossRef]
- Loewenberg Ball, D.; Thames, M.H.; Phelps, G. Content Knowledge for Teaching. J. Teach. Educ. 2008, 59, 389–407. [Google Scholar] [CrossRef] [Green Version]
- Kunter, M.; Gräsel, C. Lehrerexpertise und Lehrerkompetenz. In Handwörterbuch Pädagogische Psychologie, 5, Überarbeitete und Erweiterte Auflage; Rost, D.H., Sparfeldt, J.R., Buch, S., Eds.; Beltz: Weinheim, Germany; Basel, Switzerland, 2018; pp. 400–407. ISBN 9783621282970. [Google Scholar]
- Ruiz-Primo, M.A. Informal formative assessment: The role of instructional dialogues in assessing students’ learning. Stud. Educ. Eval. 2011, 37, 15–24. [Google Scholar] [CrossRef]
- Hattie, J.; Yates, G.C.R. Visible Learning and the Science of How We Learn, 1. Publ; Routledge: London, UK, 2014; ISBN 9780415704991. [Google Scholar]
- Berliner, D.C. Describing the Behavior and Documenting the Accomplishments of Expert Teachers. Bull. Sci. Technol. Soc. 2004, 24, 200–212. [Google Scholar] [CrossRef]
- Ericsson, K.A. The Influence of Experience and Deliberate Practice on the Development of Superior Expert Performance. In The Cambridge Handbook of Expertise and Expert Performance; Ericsson, A., Charness, N., Feltovich, P.J., Hoffman, R.R., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2006; pp. 683–704. ISBN 9780511816796. [Google Scholar]
- Todorova, M.; Sunder, C.; Steffensky, M.; Möller, K. Pre-service teachers’ professional vision of instructional support in primary science classes: How content-specific is this skill and which learning opportunities in initial teacher education are relevant for its acquisition? Teach. Teach. Educ. 2017, 68, 275–288. [Google Scholar] [CrossRef]
- Waltner, E.-M.; Scharenberg, K.; Hörsch, C.; Rieß, W. What Teachers Think and Know about Education for Sustainable Development and How They Implement it in Class. Sustainability 2020, 12, 1690. [Google Scholar] [CrossRef] [Green Version]
- Rieß, W.; Mischo, C. “Bridging the gap”—Zur Verringerung der Kluft zwischen allgemeinen Lehr-Lernmodellen und konkreter Unterrichtsgestaltung am Beispiel der Förderung dynamischer Problemlösekompetenz in der Biologie. Zeitschrift für Didaktik der Biologie (ZDB)-Biologie Lehren und Lernen 2017, 21, 1–22. [Google Scholar] [CrossRef]
Time | Quote | Domain | Category | Concept | Definition |
---|---|---|---|---|---|
[00:06] | “I find… I think that they turn to soil. Those leaves… on the ground.” | Ecology | Student conceptions about the products of decomposition | Soil or humus are regarded as only products of decomposition | Soil or humus are depicted as the only products of decomposition. For example, inorganic products of cellular respiration, as well as further mineralization and decomposition, are not taken into account. |
Scale | Number of Items | Cronbach’s α |
---|---|---|
Content knowledge (CK) | 10 | 0.54 |
Pedagogical content knowledge (PCK) | 10 | 0.50 |
Measure | Pre-Service Teachers | In-Service Teachers | U | ||
---|---|---|---|---|---|
M | SD | M | SD | ||
Selected Situations | 10.35 | 6.92 | 2.86 | 3.80 | 155.5 *** |
Diagnostic Skills | 16.32 | 14.23 | 3.57 | 5.37 | 134.5 *** |
M | SD | 1 | 2 | 3 | |
---|---|---|---|---|---|
1. Diagnostic Skills | 16.32 | 14.23 | |||
2. CK | 5.71 | 1.99 | 0.35 ** | ||
3. PCK | 6.24 | 1.78 | 0.25 * | 0.35 ** | |
4. Teaching Experience | 1.37 | 0.50 | 0.42 ** | 0.42 ** | 0.26 * |
Educational Level | School Type | |
---|---|---|
Diagnostic Skills | 0.34 ** | 0.19 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoppe, T.; Renkl, A.; Seidel, T.; Rettig, S.; Rieß, W. Exploring How Teachers Diagnose Student Conceptions about the Cycle of Matter. Sustainability 2020, 12, 4184. https://doi.org/10.3390/su12104184
Hoppe T, Renkl A, Seidel T, Rettig S, Rieß W. Exploring How Teachers Diagnose Student Conceptions about the Cycle of Matter. Sustainability. 2020; 12(10):4184. https://doi.org/10.3390/su12104184
Chicago/Turabian StyleHoppe, Tobias, Alexander Renkl, Tina Seidel, Stephanie Rettig, and Werner Rieß. 2020. "Exploring How Teachers Diagnose Student Conceptions about the Cycle of Matter" Sustainability 12, no. 10: 4184. https://doi.org/10.3390/su12104184
APA StyleHoppe, T., Renkl, A., Seidel, T., Rettig, S., & Rieß, W. (2020). Exploring How Teachers Diagnose Student Conceptions about the Cycle of Matter. Sustainability, 12(10), 4184. https://doi.org/10.3390/su12104184