COVID-19: A Relook at Healthcare Systems and Aged Populations
Abstract
:1. Introduction
2. Literature Review
2.1. Health Systems and Pandemics
2.2. Aged Population, Health Conditions and Fatality in COVID-19
2.3. Travelling and Other Control Measures in COVID-19
3. Study Data and Methods
3.1. Data
3.2. Methods
4. Empirical Results
4.1. Main Results
4.2. Further Results
5. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Fauci, A.S.; Lane, H.C.; Redfield, R.R. Covid-19—Navigating the Uncharted. N. Engl. J. Med. 2020, 382, 1268–1269. [Google Scholar] [CrossRef] [PubMed]
- McCloskey, B.; Heymann, D.L. SARS to novel coronavirus–Old lessons and new lessons. Epidemiol. Infect. 2020, 148, e22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verity, R.; Okell, L.C.; Dorigatti, I.; Winskill, P.; Whittaker, C.; Imai, N.; Cuomo-Dannenburg, G.; Thompson, H.; Walker, P.G.T.; Fu, H.; et al. Estimates of the severity of coronavirus disease 2019: A model-based analysis. Lancet Infect. Dis. 2020, 3099, 1–9. [Google Scholar] [CrossRef]
- Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet 2020, 395, 1054–1062. [Google Scholar] [CrossRef]
- Gates, B. Responding to Covid-19—A Once-in-a-Century Pandemic? N. Engl. J. Med. 2020, 382, 1677–1679. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.; Pullano, G.; Pinotti, F.; Valdano, E.; Poletto, C.; Boëlle, P.-Y.; D’Ortenzio, E.; Yazdanpanah, Y.; Eholie, S.P.; Altmann, M.; et al. Preparedness and vulnerability of African countries against importations of COVID-19: A modelling study. Lancet 2020, 395, 871–877. [Google Scholar] [CrossRef] [Green Version]
- Hick, J.L.; Biddinger, P.D. Novel Coronavirus and Old Lessons—Preparing the Health System for the Pandemic. N. Engl. J. Med. 2020, 382, e55. [Google Scholar] [CrossRef]
- Levin, P.J.; Gebbie, E.N.; Qureshi, K. Can the Health-Care System Meet the Challenge of Pandemic Flu? Planning, Ethical, and Workforce Considerations. Public Health Rep. 2007, 122, 573–578. [Google Scholar] [CrossRef]
- Hampton, T. Pandemic Flu Planning Falls Short. JAMA 2007, 297, 1177. [Google Scholar] [CrossRef]
- Parpia, A.S.; Ndeffo-Mbah, M.L.; Wenzel, N.S.; Galvani, A.P. Effects of Response to 2014–2015 Ebola Outbreak on Deaths from Malaria, HIV/AIDS, and Tuberculosis, West Africa. Emerg. Infect. Dis. 2016, 22, 433–441. [Google Scholar] [CrossRef]
- Bedford, J.; Enria, D.; Giesecke, J.; Heymann, D.L.; Ihekweazu, C.; Kobinger, G.; Lane, H.C.; Memish, Z.; Oh, M.-D.; Sall, A.A.; et al. COVID-19: Towards controlling of a pandemic. Lancet 2020, 395, 1015–1018. [Google Scholar] [CrossRef]
- Tang, B.; Xia, F.; Bragazzi, N.L.; McCarthy, Z.; Wang, X.; He, S.; Sun, X.; Tang, S.; Xiao, Y.; Wu, J. Lessons drawn from China and South Korea for managing COVID-19 epidemic: Insights from a comparative modeling study. Bull World Health Organ. 2020. [Google Scholar] [CrossRef]
- Wang, Z.; He, T.; Zhu, L.; Sheng, H.; Huang, S.; Hu, J. Active quarantine measures are the primary means to reduce the fatality rate of COVID-19. Bull World Health Organ. 2020. [Google Scholar] [CrossRef]
- Van Wees, J.-D.; Osinga, S.; Van Der Kuip, M.; Tanck, M.; Hanegraaf, M.; Pluymaekers, M.; Leeuwenburgh, O.; Van Bijsterveldt, L.; Zindler, J.; Van Furth, M.T. Forecasting hospitalization and ICU rates of the COVID-19 outbreak: An efficient SEIR model. Bull World Health Organ. 2020. [Google Scholar] [CrossRef]
- Chen, T.; Wu, D.; Chen, H.; Yan, W.; Yang, D.; Chen, G.; Ma, K.; Xu, D.; Yu, H.; Wang, H.; et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: Retrospective study. BMJ 2020, 368, m1091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061. [Google Scholar] [CrossRef]
- Tuite, A.R.; Ng, V.; Rees, E.; Fisman, D.N. Estimation of COVID-19 outbreak size in Italy. Lancet Infect. Dis. 2020, 20, 537. [Google Scholar] [CrossRef] [Green Version]
- Wells, C.R.; Sah, P.; Moghadas, S.M.; Pandey, A.; Shoukat, A.; Wang, Y.; Wang, Z.; Meyers, L.A.; Singer, B.H.; Galvani, A.P. Impact of International Travel and Border Control Measures on the Global Spread of the Novel 2019 Coronavirus Outbreak. Available online: https://www.pnas.org/content/117/13/7504 (accessed on 10 April 2020).
- Shi, S.; Tanaka, S.; Ueno, R.; Gilmour, S.; Tanoue, Y.; Kawashima, T.; Nomura, S.; Miyata, H.; Yoneoka, D. Impact of travel restrictions on importation of novel coronavirus infection: An effective distance approach. Bull World Health Organ. 2020. [Google Scholar] [CrossRef]
- Yuan, Z.; Xiao, Y.; Dai, Z.; Huang, J.; Chen, Y. A simple model to assess Wuhan lock-down effect and region efforts during COVID-19 epidemic in China Mainland. Bull World Health Organ. 2020. [Google Scholar] [CrossRef]
- World Bank. World Development Indicators. Available online: http://datatopics.worldbank.org/world-development-indicators/ (accessed on 10 March 2020).
- Driscoll, J.C.; Kraay, A.C. Consistent Covariance Matrix Estimation with Spatially Dependent Panel Data. Rev. Econ. Stat. 1998, 80, 549–560. [Google Scholar] [CrossRef]
- Hoechle, D. Robust Standard Errors for Panel Regressions with Cross-Sectional Dependence. Stata J.: Promot. Commun. Stat. Stata 2007, 7, 281–312. [Google Scholar] [CrossRef] [Green Version]
- Worldometer. Coronavirus, Confirmed Cases and Deaths by Country, Territory, or Conveyance. 2020. Available online: https://www.worldometers.info/coronavirus/ (accessed on 10 April 2020).
- Csereklyei, Z. Price and income elasticities of residential and industrial electricity demand in the European Union. Energy Policy 2020, 137, 111079. [Google Scholar] [CrossRef]
- Hauk, W.R.; Wacziarg, R. A Monte Carlo study of growth regressions. J. Econ. Growth 2009, 14, 103–147. [Google Scholar] [CrossRef]
- Woo, J.; Kumar, M.S. Public Debt and Growth. Economica 2015, 82, 705–739. [Google Scholar] [CrossRef]
- Stern, D.I. Between estimates of the emissions-income elasticity. Ecol. Econ. 2010, 69, 2173–2182. [Google Scholar] [CrossRef]
- La, V.-P.; Pham, T.-H.; Ho, T.M.; Nguyen, M.-H.; Nguyen, K.-L.P.; Vuong, T.-T.; Nguyen, H.-K.T.; Tran, T.; Van Khuc, Q.; Ho, T.M.; et al. Policy Response, Social Media and Science Journalism for the Sustainability of the Public Health System Amid the COVID-19 Outbreak: The Vietnam Lessons. Sustainability 2020, 12, 2931. [Google Scholar] [CrossRef] [Green Version]
Explanatory Variable | Definition | Source |
---|---|---|
Death rate | Total deaths/total cases, calculated by daily report | WHO reports on COVID-19 |
Hospital beds | Hospital beds (per 1000 citizens) | World Bank Development Indicator (WDI) |
HR (Human Resources) | Sum of physicians (per 1000 citizens) and nurses and midwives (per 1000 citizens) | WDI |
DoC (Death due to non-communicable diseases) | Probability (%) of dying between age 30 and exact age 70 from any of cardiovascular disease, cancer, diabetes, or chronic respiratory disease | WHO |
Population 65 | Proportion of population aged 65 and above in the total population (%) | WDI |
GDP capita | GDP per capita (constant 2010 US$) | WDI |
Air passengers | Air transport, passengers carried (1000) | WDI |
Explanatory Variable | n | mean | sd | min | max | se |
---|---|---|---|---|---|---|
Total cases | 3529 | 2458 | 11,315 | 1 | 122,653 | 190.54 |
Total deaths | 3530 | 97 | 584 | 0 | 10,781 | 9.82 |
Death_rate | 3529 | 0.0144 | 0.0444 | 0 | 1 | 0.0007 |
Hospital_beds | 3515 | 38.3772 | 27.942 | 3 | 134 | 0.4713 |
HR | 3530 | 8.6846 | 5.3958 | 0 | 22.478 | 0.0908 |
DoC | 3515 | 15.6049 | 5.4477 | 8.4 | 29.8 | 0.0919 |
Population_65 | 3467 | 12.77 | 6.63 | 1.09 | 27.58 | 0.11 |
GDP capita | 3447 | 25,858.96 | 23,168.084 | 563.82 | 110,742.31 | 394.61 |
Air passengers | 3530 | 68,978 | 156,841 | 0 | 889,202 | 2639.81 |
Explanatory Variable | Dependent Variable: Death_Rate | ||
---|---|---|---|
(1) | (2) | (3) | |
Hospital beds | −0.00004 | −0.0002*** | −0.0002*** |
(0.00003) | (0.00004) | (0.00005) | |
HR | −0.0003*** | −0.001*** | −0.001*** |
(0.0002) | (0.0003) | (0.0003) | |
DoC | 0.001*** | 0.002*** | 0.003*** |
(0.0002) | (0.0002) | (0.0002) | |
Population_65 | 0.001*** | 0.002*** | |
(0.0002) | (0.0002) | ||
Log(GDP per capita) | 0.004*** | ||
(0.001) | |||
Log(Air passengers) | 0.003*** | ||
(0.0004) | |||
Constant | −0.004 | −0.019*** | −0.108*** |
(0.004) | (0.004) | (0.014) | |
Observation | 3220 | 3210 | 3032 |
R2 | 0.050 | 0.066 | 0.091 |
Adjusted R2 | 0.049 | 0.065 | 0.089 |
F Statistic | 55.87*** | 56.42*** | 50.47*** |
Explanatory Variable | Dependent Variable: Death_Rate | ||
---|---|---|---|
Pooled | FE | Between | |
Hospital beds | −0.0002*** | −0.0002*** | −0.002*** |
(0.00005) | (0.00005) | (0.0003) | |
HR | −0.001*** | −0.001*** | −0.012*** |
(0.0003) | (0.0003) | (0.003) | |
DoC | 0.003*** | 0.003*** | 0.004 |
(0.0002) | (0.0002) | (0.002) | |
Population_65 | 0.002*** | 0.002*** | 0.011*** |
(0.0002) | (0.0002) | (0.002) | |
Log(real GDP per capita) | 0.004*** | 0.003** | 0.037*** |
(0.001) | (0.001) | (0.021) | |
Log(Air passengers) | 0.003*** | 0.003*** | −0.006*** |
(0.0004) | (0.0004) | (0.003) | |
Constant | −0.108*** | −0.282 | |
(0.014) | (0.202) | ||
Observation | 3032 | 3032 | 70 |
R2 | 0.091 | 0.091 | 0.599 |
Adjusted R2 | 0.089 | 0.068 | 0.561 |
F Statistic | 50.47*** (df = 6;3025) | 49.52*** (df = 6;2956) | 15.70*** (df = 6;63) |
Explanatory Variable | Dependent Variable: Death_Rate | |
---|---|---|
HICs | MLICs | |
Hospital beds | 0.00004* | 0.0002 |
(0.00002) | (0.0002) | |
HR | −0.001*** | −0.008*** |
(0.0002) | (0.001) | |
DoC | 0.0001 | 0.005*** |
(0.0002) | (0.0004) | |
Population_65 | 0.001*** | 0.0003 |
(0.0001) | (0.001) | |
Log(real GDP per capita) | 0.007*** | 0.026*** |
(0.002) | (0.003) | |
Log(Air passengers) | 0.002*** | 0.0003 |
(0.0002) | (0.001) | |
Observation | 1604 | 1428 |
R2 | 0.211 | 0.132 |
Adjusted R2 | 0.172 | 0.084 |
F Statistic | 67.915*** (df = 6;1528) | 34.406*** (df = 6;1352) |
Explanatory Variable | Dependent Variable: Death_Rate | ||
---|---|---|---|
FE | Driscoll-Kraay | White | |
Hospital beds | −0.0002*** | −0.0002*** | −0.0002 |
(0.00005) | (0.0001) | (0.0002) | |
HR | −0.001*** | −0.001*** | −0.001* |
(0.0003) | (0.0002) | (0.001) | |
DoC | 0.003*** | 0.003*** | 0.003 |
(0.0002) | (0.001) | (0.002) | |
Population_65 | 0.002*** | 0.002*** | 0.002*** |
(0.0002) | (0.0002) | (0.001) | |
Log(GDP per capita) | 0.003*** | 0.003* | 0.003 |
(0.001) | (0.002) | (0.006) | |
Log(Air passengers) | 0.003*** | 0.003*** | 0.003*** |
(0.0004) | (0.0002) | (0.0002) | |
Observation | 3032 | ||
R2 | 0.091 | ||
Adjusted R2 | 0.068 | ||
F Statistic | 49.522*** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giang, T.-L.; Vo, D.-T.; Vuong, Q.-H. COVID-19: A Relook at Healthcare Systems and Aged Populations. Sustainability 2020, 12, 4200. https://doi.org/10.3390/su12104200
Giang T-L, Vo D-T, Vuong Q-H. COVID-19: A Relook at Healthcare Systems and Aged Populations. Sustainability. 2020; 12(10):4200. https://doi.org/10.3390/su12104200
Chicago/Turabian StyleGiang, Thanh-Long, Dinh-Tri Vo, and Quan-Hoang Vuong. 2020. "COVID-19: A Relook at Healthcare Systems and Aged Populations" Sustainability 12, no. 10: 4200. https://doi.org/10.3390/su12104200
APA StyleGiang, T. -L., Vo, D. -T., & Vuong, Q. -H. (2020). COVID-19: A Relook at Healthcare Systems and Aged Populations. Sustainability, 12(10), 4200. https://doi.org/10.3390/su12104200