Investor Happiness and Predictability of the Realized Volatility of Oil Price
Abstract
:1. Introduction
2. Methods
3. Data
4. Empirical Results
5. Concluding Remarks
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Bahloul, W.; Balcilar, M.; Cunado, J.; Gupta, R. The role of economic and financial uncertainties in predicting commodity futures returns and volatility: Evidence from a nonparametric causality-in-quantiles test. J. Multinatl. Financ. Manag. 2018, 45, 52–71. [Google Scholar] [CrossRef]
- Bonato, M. Realized correlations, betas and volatility spillover in the agricultural commodity market: What has changed? J. Int. Financ. Mark. Inst. Money 2019, 62, 184–202. [Google Scholar] [CrossRef]
- Asai, M.; Gupta, R.; McAleer, M. Forecasting Volatility and co-volatility of crude oil and gold futures: Effects of leverage, jumps, spillovers, and geopolitical risks. Int. J. Forecast. 2020. [Google Scholar] [CrossRef] [Green Version]
- Asai, M.; Gupta, R.; McAleer, M. The Impact of Jumps and Leverage in Forecasting the Co-Volatility of Oil and Gold Futures. Energies 2019, 12, 3379. [Google Scholar] [CrossRef] [Green Version]
- Demirer, R.; Gupta, R.; Suleman, T.; Wohar, M.E. Time-varying rare disaster risks, oil returns and volatility. Energy Econ. 2018, 75, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Elder, J.; Serletis, A. Oil price uncertainty. J. Money Credit Bank. 2010, 42, 1137–1159. [Google Scholar] [CrossRef]
- Van Eyden, R.; Difeto, M.; Gupta, R.; Wohar, M.E. Oil price volatility and economic growth: Evidence from advanced OECD countries using over one century of data. Appl. Energy 2019, 233, 612–621. [Google Scholar] [CrossRef] [Green Version]
- Henriques, I.; Sadorsky, P. Can environmental sustainability be used to manage energy price risk? Energy Econ. 2010, 32, 1131–1138. [Google Scholar] [CrossRef]
- Jiang, Y.; Ma, C.Q.; Yang, X.G.; Ren, Y.S. Time-Varying Volatility Feedback of Energy Prices: Evidence from Crude Oil, Petroleum Products, and Natural Gas Using a TVP-SVM Model. Sustainability 2018, 10, 4705. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.T.; Liu, L.N.; Wang, Z.J.; He, L.Y. Forecasting Oil Price Volatility in the Era of Big Data: A Text Mining for VaR Approach. Sustainability 2019, 11, 3892. [Google Scholar] [CrossRef] [Green Version]
- Gkillas, K.; Gupta, R.; Wohar, M.E. Oil shocks and volatility jumps. Rev. Quant. Financ. Account. 2020, 54, 247–272. [Google Scholar] [CrossRef] [Green Version]
- Lux, T.; Segnon, M.; Gupta, R. Forecasting crude oil price volatility and value-at-risk: Evidence from historical and recent data. Energy Econ. 2016, 56, 117–133. [Google Scholar] [CrossRef] [Green Version]
- McAleer, M.; Medeiros, M.C. Realized volatility: A review. Econom. Rev. 2008, 27, 10–45. [Google Scholar] [CrossRef]
- Haugom, E.; Langeland, H.; Molnár, P.; Westgaard, S. Forecasting volatility of the US oil market. J. Bank. Financ. 2014, 47, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Sévi, B. Forecasting the volatility of crude oil futures using intraday data. Eur. J. Oper. Res. 2014, 235, 643–659. [Google Scholar] [CrossRef]
- Prokopczuk, M.; Symeonidis, L.; Wese Simen, C. Do jumps matter for volatility forecasting? Evidence from energy markets. J. Futur. Mark. 2015, 36, 758–792. [Google Scholar] [CrossRef]
- Degiannakis, S.; Filis, G. Forecasting oil price realized volatility using information channels from other asset classes. J. Int. Money Financ. 2017, 76, 28–49. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Ma, F.; Yang, K.; Zhang, Y. Forecasting the oil futures price volatility: Large jumps and small jumps. Energy Econ. 2018, 72, 321–330. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, F.; Zhang, Y. Good, bad cojumps and volatility forecasting: New evidence from crude oil and the U.S. stock markets. Energy Econ. 2019, 81, 52–62. [Google Scholar] [CrossRef]
- Gkillas, K.; Gupta, R.; Pierdzioch, C. Forecasting realized oil-price volatility: The Role of financial stress and asymmetric loss. J. Int. Money Financ. 2020, 104, 102137. [Google Scholar] [CrossRef]
- Corsi, F. A simple approximate long-memory model of realized volatility. J. Financ. Econ. 2009, 7, 174–196. [Google Scholar] [CrossRef]
- Andersen, T.G.; Bollerslev, T. Answering the skeptics: Yes, standard volatility models do provide accurate forecasts. Int. Econ. Rev. 1998, 39, 885–905. [Google Scholar] [CrossRef]
- Phan, D.H.B.; Sharma, S.S.; Narayan, P.K. Intraday volatility interaction between the crude oil and equity markets. J. Int. Financ. Mark. Inst. Money 2016, 40, 1–13. [Google Scholar] [CrossRef]
- Chatrath, A.; Miao, H.; Ramchander, S.; Wang, T. The forecasting efficacy of risk-neutral moments for crude oil volatility. J. Forecast. 2015, 34, 177–190. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Shen, D.; Teglio, A. Daily happiness and stock returns: Some international evidence. Phys. A 2016, 460, 201–209. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, P.; Li, X.; Shen, D. Twitter’s daily happiness sentiment and international stock returns: Evidence from linear and nonlinear causality tests. J. Behav. Exp. Financ. 2018, 18, 50–53. [Google Scholar] [CrossRef]
- You, W.; Guo, Y.; Cheng, P. Twitter’s daily happiness sentiment and the predictability of stock returns. Financ. Res. Lett. 2017, 23, 58–64. [Google Scholar] [CrossRef]
- Reboredo, J.C.; Ugolini, A. The impact of Twitter sentiment on renewable energy stocks. Energy Econ. 2018, 76, 153–169. [Google Scholar] [CrossRef]
- Hong, H.; Yogo, M. What does futures market interest tell us about the macroeconomy and asset prices? J. Financ. Econ. 2012, 105, 473–490. [Google Scholar] [CrossRef] [Green Version]
- Singleton, K.J. Investor flows and the 2008 boom/bust in oil prices. Manag. Sci. 2014, 60, 300–318. [Google Scholar] [CrossRef] [Green Version]
- Olson, E.; Vivian, A.J.; Wohar, M.E. Do commodities make effective hedges for equity investors? Res. Int. Bus. Financ. 2017, 1274–1288. [Google Scholar] [CrossRef] [Green Version]
- Olson, E.; Vivian, A.J.; Wohar, M.E. What is a better cross-hedge for energy: Equities or other commodities? Glob. Financ. J. 2019, 42, 100417. [Google Scholar] [CrossRef] [Green Version]
- Qadan, M.; Nama, H. Investor sentiment and the price of oil. Energy Econ. 2018, 69, 42–58. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Li, S.-H. The impact of investor sentiment on crude oil market risks: Evidence from the wavelet approach. Quant. Financ. 2019, 19, 1357–1371. [Google Scholar] [CrossRef]
- Guo, J.-F.; Ji, Q. How does market concern derived from the Internet affect oil prices? Appl. Energy 2013, 112, 1536–1543. [Google Scholar] [CrossRef] [Green Version]
- Ji, Q.; Guo, J.-F. Oil price volatility and oil-related events: An Internet concern study perspective. Appl. Energy 2015, 137, 256–264. [Google Scholar] [CrossRef]
- Campbell, J.Y. Viewpoint: Estimating the equity premium. Can. J. Econ. 2008, 41, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Andersen, T.G.; Dobrev, D.; Schaumburg, E. Jump-robust volatility estimation using nearest neighbor truncation. J. Econom. 2012, 169, 75–93. [Google Scholar] [CrossRef] [Green Version]
- Müller, U.A.; Dacorogna, M.M.; Davé, R.D.; Olsen, R.B.; Pictet, O.V. Volatilities of different time resolutions—Analyzing the dynamics of market components. J. Empir. Financ. 1997, 4, 213–239. [Google Scholar] [CrossRef]
- Amaya, D.; Christoffersen, P.; Jacobs, K.; Vasquez, A. Does realized skewness predict the cross-section of equity returns? J. Financ. Econ. 2015, 118, 135–167. [Google Scholar] [CrossRef] [Green Version]
- Andersen, T.G.; Bollerslev, T.; Huang, X. A reduced form framework for modeling volatility of speculative prices based on realized variation measures. J. Econom. 2011, 160, 176–189. [Google Scholar] [CrossRef]
- Barndorff-Nielsen, O.E. and Shephard, N. Power and bipower variation with stochastic volatility and jumps. J. Financ. Econom. 2004, 2, 1–37. [Google Scholar] [CrossRef] [Green Version]
- Barndorff-Nielsen, O.E.; Shephard, N. Econometrics of Testing for Jumps in Financial Economics using Bipower Variation. J. Financ. Econom. 2006, 4, 1–30. [Google Scholar] [CrossRef]
- Zhou, H.; Zhu, J.Q. An empirical examination of jump risk in asset pricing and volatility forecasting in China’s equity and bond markets. Pac. Basin Financ. J. 2012, 20, 857–880. [Google Scholar] [CrossRef]
- Diebold, F.X.; Mariano, R.S. Comparing predictive accuracy. J. Bus. Econ. Stat. 1995, 13, 253–263. [Google Scholar]
- Harvey, D.; Leybourne, S.; Newbold, P. Testing the equality of prediction mean squared errors. Int. J. Forecast. 1997, 13, 281–291. [Google Scholar] [CrossRef]
- Bollerslev, T.; Ghysels, E. Periodic autoregressive conditional heteroscedasticity. J. Bus. Econ. Stat. 1996, 14, 139–151. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing, R version 3.3.3; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: http://www.R-project.org/ (accessed on 20 March 2020).
- Hyndman, R.J. Forecast: Forecasting Functions for Time Series and Linear Models; R Package Version 8.0; 2017; Available online: http://github.com/robjhyndman/forecast (accessed on 20 March 2020).
- Hyndman, R.J.; Khandakar, Y. Automatic time series forecasting: The forecast package for R. J. Stat. Softw. 2008, 26, 1–22. [Google Scholar]
- Liu, L.Y.; Patton, A.J.; Sheppard, K. Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes. J. Econom. 2015, 187, 293–311. [Google Scholar] [CrossRef] [Green Version]
- Bathia, D.; Bredin, D. An examination of investor sentiment effect in G7 stock market returns. Eur. J. Financ. 2013, 19, 909–937. [Google Scholar] [CrossRef]
- Bathia, D.; Bredin, D.; Nitzsche, D. International sentiment spillovers in equity returns. Int. J. Financ. Econ. 2016, 21, 332–359. [Google Scholar] [CrossRef]
- Baker, M.; Wurgler, J. Investor sentiment and the cross-section of stock returns. J. Financ. 2006, 61, 1645–1680. [Google Scholar] [CrossRef] [Green Version]
- Baker, M.; Wurgler, J. Investor sentiment in the stock market. J. Econ. Perspect. 2007, 21, 129–152. [Google Scholar] [CrossRef] [Green Version]
- Da, Z.; Engelberg, J.; Gao, P. The Sum of All FEARS Investor Sentiment and Asset Prices. Rev. Financ. Stud. 2015, 28, 1–32. [Google Scholar] [CrossRef] [Green Version]
- García, D. Sentiment during recessions. J. Financ. 2013, 68, 1267–1300. [Google Scholar] [CrossRef]
- Mei, D.; Liu, J.; Ma, F.; Chen, W. Forecasting stock market volatility: Do realized skewness and kurtosi? Help. Phys. A 2017, 481, 153–159. [Google Scholar] [CrossRef]
- Giacomini, R.; Rossi., B. Forecast comparisons in unstable environments. J. Appl. Econom. 2010, 25, 595–620. [Google Scholar] [CrossRef]
- Barndorff-Nielsen, O.E.; Kinnebrouk, S.; Shephard, N. Measuring downside risk: Realised semivariance. In Volatility and Time Series Econometrics: Essays in Honor of Robert F. Engle; Bollerslev, T., Russell, J., Watson, M., Eds.; Oxford University Press: Oxford, UK, 2010; pp. 117–136. [Google Scholar]
- Deeney, P.; Cummins, M.; Dowling, M.; Bermingham, A. Sentiment in oil markets. Int. Rev. Financ. Anal. 2015, 39, 179–185. [Google Scholar] [CrossRef] [Green Version]
Statistic | MRV | HA |
---|---|---|
Min | 0.001 | 5.840 |
Mean | 0.424 | 6.026 |
Median | 0.222 | 6.033 |
Max | 4.997 | 6.357 |
Results.Table | Intercept | MRV | MRV | MRV | HA | RKU | RSK | Adj. R2 |
---|---|---|---|---|---|---|---|---|
HAR-RV | 2.8153 | 4.0303 | 8.8586 | 1.7208 | – | – | – | 0.6354 |
p-value | 0.0049 | 0.0001 | 0.0000 | 0.0853 | – | – | – | – |
HAR-RV-HA | 4.2709 | 3.7583 | 8.9359 | 1.9765 | −4.2584 | – | – | 0.6390 |
p-value | 0.0000 | 0.0002 | 0.0000 | 0.0481 | 0.0000 | – | – | – |
HAR-RV-HA-RKU | 4.5456 | 3.9123 | 8.5785 | 1.8141 | −4.5257 | −1.3242 | – | 0.6390 |
p-value | 0.0000 | 0.0001 | 0.0000 | 0.0697 | 0.0000 | 0.1854 | – | – |
HAR-RV-HA-RSK | 4.2172 | 3.7246 | 8.9613 | 1.9992 | −4.2049 | – | −1.4846 | 0.6391 |
p-value | 0.0000 | 0.0002 | 0.0000 | 0.0456 | 0.0000 | – | 0.1377 | – |
HAR-RV-HA-RKU-RSK | 4.4645 | 3.8698 | 8.6267 | 1.8390 | −4.4448 | −1.0451 | −1.2514 | 0.6391 |
p-value | 0.0000 | 0.0001 | 0.0000 | 0.0659 | 0.0000 | 0.2960 | 0.2108 | – |
HAR-RV | 1.4702 | 3.9532 | 5.4185 | 2.8944 | – | – | – | 0.8431 |
p-value | 0.1415 | 0.0001 | 0.0000 | 0.0038 | – | – | – | – |
HAR-RV-HA | −0.2349 | 3.8698 | 5.4262 | 2.7933 | 0.2532 | – | – | 0.8431 |
p-value | 0.8143 | 0.0001 | 0.0000 | 0.0052 | 0.8001 | – | – | – |
HAR-RV-HA-RKU | −0.2244 | 4.0214 | 4.8399 | 2.6085 | 0.2416 | −0.1102 | – | 0.8430 |
p-value | 0.8225 | 0.0001 | 0.0000 | 0.0091 | 0.8091 | 0.9122 | – | – |
HAR-RV-HA-RSK | −0.2348 | 3.8914 | 5.4489 | 2.8141 | 0.253 | – | −0.0847 | 0.8430 |
p-value | 0.8144 | 0.0001 | 0.0000 | 0.0049 | 0.8003 | – | 0.9325 | – |
HAR-RV-HA-RKU-RSK | −0.2235 | 4.0578 | 4.8533 | 2.6302 | 0.2406 | −0.0956 | −0.0679 | 0.8429 |
p-value | 0.8231 | 0.0000 | 0.0000 | 0.0085 | 0.8099 | 0.9239 | 0.9459 | – |
HAR-RV | 1.2423 | 4.9368 | 2.7946 | 1.9409 | – | – | – | 0.8410 |
p-value | 0.2141 | 0.0000 | 0.0052 | 0.0523 | – | – | – | – |
HAR-RV-HA | −1.0653 | 4.9981 | 3.0358 | 2.0031 | 1.0739 | – | – | 0.8416 |
p-value | 0.2868 | 0.0000 | 0.0024 | 0.0452 | 0.2829 | – | – | – |
HAR-RV-HA-RKU | −1.1839 | 4.8468 | 2.6076 | 1.8103 | 1.1898 | 0.9923 | – | 0.8415 |
p-value | 0.2365 | 0.0000 | 0.0091 | 0.0702 | 0.2341 | 0.3210 | – | – |
HAR-RV-HA-RSK | −1.0820 | 4.9983 | 3.0343 | 2.0029 | 1.0908 | – | −1.0739 | 0.8416 |
p-value | 0.2793 | 0.0000 | 0.0024 | 0.0452 | 0.2753 | – | 0.2829 | – |
HAR-RV-HA-RKU-RSK | −1.1341 | 4.8989 | 2.6945 | 1.8347 | 1.1397 | 1.2809 | −1.2352 | 0.8416 |
p-value | 0.2567 | 0.0000 | 0.0071 | 0.0666 | 0.2544 | 0.2002 | 0.2167 | – |
Rolling Window | |||
---|---|---|---|
L1 loss | |||
1000 | 0.0269 | 0.5714 | 0.2693 |
1200 | 0.0007 | 0.4707 | 0.3105 |
1400 | 0.0000 | 0.9985 | 0.9274 |
L2 loss | |||
1000 | 0.0327 | 0.7654 | 0.6027 |
1200 | 0.0049 | 0.8196 | 0.6977 |
1400 | 0.0015 | 0.9641 | 0.9762 |
Specification Window | |||
---|---|---|---|
HAR-RV-RKU vs. HAR-RV-RKU-HA | 0.0055 | 0.8292 | 0.7168 |
HAR-RV-RSK vs. HAR-RV-RSK-HA | 0.0045 | 0.8188 | 0.6888 |
HAR-RV-JUMP vs. HAR-RV-JUMP-HA | 0.0055 | 0.8171 | 0.6962 |
Rolling Window | |||
---|---|---|---|
RVG | |||
1000 | 0.0711 | 0.7816 | 0.4886 |
1200 | 0.0015 | 0.8577 | 0.6647 |
1400 | 0.0005 | 0.9646 | 0.9708 |
RVB | |||
1000 | 0.0615 | 0.7825 | 0.5795 |
1200 | 0.0519 | 0.8274 | 0.6431 |
1400 | 0.0095 | 0.9687 | 0.9663 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonato, M.; Gkillas, K.; Gupta, R.; Pierdzioch, C. Investor Happiness and Predictability of the Realized Volatility of Oil Price. Sustainability 2020, 12, 4309. https://doi.org/10.3390/su12104309
Bonato M, Gkillas K, Gupta R, Pierdzioch C. Investor Happiness and Predictability of the Realized Volatility of Oil Price. Sustainability. 2020; 12(10):4309. https://doi.org/10.3390/su12104309
Chicago/Turabian StyleBonato, Matteo, Konstantinos Gkillas, Rangan Gupta, and Christian Pierdzioch. 2020. "Investor Happiness and Predictability of the Realized Volatility of Oil Price" Sustainability 12, no. 10: 4309. https://doi.org/10.3390/su12104309
APA StyleBonato, M., Gkillas, K., Gupta, R., & Pierdzioch, C. (2020). Investor Happiness and Predictability of the Realized Volatility of Oil Price. Sustainability, 12(10), 4309. https://doi.org/10.3390/su12104309